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Calibration of several first excited state properties
for organic molecules through systematic
comparison of TDDFT with experimental spectra†

Xia Wu, *a Xiaoyu Xie *b and Alessandro Troisi *a

Time-dependent density functional theory (TDDFT) is a powerful computational tool for investigating

excitation properties in organic electronics, and it holds significant potential for high-throughput virtual

screening (HTVS) in this field. While most benchmarks focus on excitation energies, less attention has

been paid to evaluating the accuracy of computed oscillator strengths and exciton reorganization

energies against experimental data. In this work, we provide a systematic approach to evaluate in parallel

the accuracy of these three quantities on the basis of a suitable fitting of the experimental absorption

spectra of 71 molecules in solution. After considering 18 computational methodologies, the results from

the M06-2X/def2-TZVP/PCM method demonstrate the strongest correlation with experimental data

across the desired properties. For HTVS, the M06-2X/6-31G(d)/PCM method appears to be a particularly

convenient choice among all methodologies due to its balance of computational efficiency and

accuracy. Our results provide an additional benchmark needed before employing TDDFT methods for

the discovery and design of organic electronic molecules.

Introduction

Time-dependent density functional theory (TDDFT) has gained
significant traction in high-throughput virtual screening,
enabling researchers to evaluate and predict the properties of
molecules efficiently.1–7 Numerous studies have delved into the
performance of TDDFT in calculating excitation energies,
which is a crucial aspect of understanding the optical and
electronic characteristics of materials.8–19 Naturally, the accu-
racy of these calculations needs to be thoroughly evaluated by
comparing the computed excitation energies against experi-
mental data.20–23 For example, Jacquemin and coworkers inves-
tigated the performance of various density functional
theory methods in calculating the excitation energies of over
100 organic dyes from major chromophore classes.24 With an
integrated design process involving theoretical calculations,
machine learning, and experimental validation, highly efficient
organic light-emitting diode molecules can be discovered from
1.6 million molecules with external quantum efficiencies up to
22%.2 In another recent example, a dataset of 48 182 organic

semiconductors containing benchmarks of organic molecules was
presented, providing relevant electronic properties and demon-
strating its potential for repurposing known molecules.25 Thus,
TDDFT provides a computationally efficient approach to modelling
excited-state energies, facilitating the exploration of potential can-
didates for applications such as organic light-emitting diodes,26,27

photovoltaics,28,29 and photocatalysis.30,31

Nevertheless, for organic electronics, achieving optimal
performance goes beyond merely aligning energy levels. In
the absence of competing photophysical processes, the oscilla-
tor strength ( f ) determines the rate of light absorption and is
strongly correlated with the efficiency of light emission, both of
which are critical aspects in the performance of optoelectronic
devices.32 Additionally, the exciton reorganization energy (l), a
measure of the structural changes accompanying the formation
or dissociation of excitons, significantly influences phenomena
such as exciton transport, emission efficiency and narrowness
of absorption/emission peaks.33–35 Tailoring these properties
through molecular design or external manipulation becomes
imperative for applications such as organic light-emitting
diodes, organic photovoltaics, and organic field-effect transis-
tors, where efficient light-matter interactions and charge car-
rier mobilities are paramount.

Over the decade, numerous studies have benchmarked
oscillator strengths using various functionals and basis
sets.36–39 Recently, a few studies appeared that explore the
accuracy of the computed oscillator strength of organic
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molecules in comparison to experimental data. In Cole’s work,
the oscillator strength is discussed as a computational property
analogous to the experimental extinction coefficient, and they
also analyzed the agreement between sTDA/TDDFT calculated
f values and experimental intensity values.40 Gozem’s team
fitted and integrated 100 experimental UV-visible spectra of
solvated organic molecules to obtain experimental oscillator
strengths ( fexp.), compared them to computed oscillator
strengths ( fcomp.) from TDDFT, finding that while fcomp. over-
estimates fexp., there is good overall correlation between the
experimental and computed values.41 Alipour and coworkers
explored the use of the optimally tuned range-separated hybrid
density functionals combined with a polarizable continuum
model (OT-RSHs-PCM) and their screened versions (OT-SRSHs-
PCM) to reliably predict oscillator strengths for organic
compounds.42 To the best of our knowledge, no prior studies
have investigated the impact of l with experimental data in the
context of high-throughput virtual screening (HTVS), despite its
crucial importance.

It is important to note that highly accurate methodologies
have been developed over the years to reproduce the finest
details of the vibronically-resolved spectra, including the effect
of solvent,43–45 Duschinsky effect,46,47 and some of these results
in publicly available software like FCClasses and ezFCF.48,49

Santoro and coworkers presented a mixed quantum-classical
approach for computing vibronic absorption spectra of mole-
cular aggregates, reproducing changes in absorption spectrum
upon aggregation.50 Thiel’s team analysed vertical and adia-
batic Franck–Condon approaches using time-independent or
time-dependent methods to simulate absorption spectra of
three flavin compounds, finding that VFC with IMDHO-FA
provides superior accuracy in spectral predictions.51 These
studies, while suitable for a few molecules at a time, often
require selecting the most appropriate quantum chemistry
methodology. Consequently, they are not particularly suitable
for comprehensive comparisons across a large set of molecules.
Also, it is common for the work focusing on vibronic coupling
to ignore energy level accuracy and oscillator strength.52–54

(there are also a large number of works comparing a range of
quantum chemical methods among themselves and with
experimental vertical excitation energy).20–25 These can be
considered complementary to the work presented here, where
we instead focus on a restricted number of methods popular
in HTVS.

For TDDFT to be an effective screening protocol, it is crucial
to evaluate the accuracy of all three components (excitation
energy, f, and l) simultaneously. This comprehensive assess-
ment becomes particularly important when dealing with a large
number of compounds, as one typically aims to employ a single
efficient method for the screening process. HTVS involves in
principle millions of molecules, making it impractical to select
the optimal method for each dye individually. Moreover, when
the exciton–phonon coupling is very strong (large l), it becomes
challenging to accurately extract the oscillator strength f with-
out fitting the vibronic side peaks, which are affected by l. In
other words, it is not only useful but also more accurate to

assess f and l at the same time. In this work, we analysed 71
experimental absorption spectra and developed a fitting proce-
dure to extract the excitation energy of the lowest excited state
S1 (ES1), the corresponding oscillator strength ( fS1) and l.
Subsequently, we compared the parameters derived experimen-
tally and those computed with 18 different calculation levels to
determine the most convenient approach and its expected
accuracy.

Methods

Usually, there are vibronic peaks for the S1 absorption spec-
trum. The intensity of these peaks can be evaluated as

I0�m ¼ I
Q
i

S0; 0ih S1;mij ij j2; (1)

here, m = (m1, m2,. . ., mN) contains occupation numbers of N
modes, |Sk; mii is a vibronic state for mode i at Sk potential
energy surface state with mi being the occupation number and I
is the total intensity of S1 states, which is determined by its
oscillator strength.

Under the harmonic approximation and Condon approxi-
mation, overlap in eqn (1) can be expressed as:

S0; 0i S1;mij ihj j2¼ e�Si
smi
i

mi!
; (2)

here, si is the Huang–Rhys (HR) factor of normal mode i,
measuring the displacement of the excited state along that
particular mode.55 Moreover, the product in eqn (1) can be
further approximated as one overlap using one effective mode
with HR factor s and vibrational frequency o.

Then, the total spectrum can be decomposed as a set of
normal distributions with centres e0�m being,

e0�m = e0 + mo, (3)

and intensities I0�m being,

I0�m ¼ I � e�s
sm

m!
; (4)

where e0 is the 0–0 transition energy (or adiabatic excitation
energy) between S1 and S0, and m is the vibrational quantum
number of the effective mode. For the broadening s0�m of
normal distribution, two additional parameters are included
considering the broadening of the pure electronic part s0 and
vibrational part Ds,

s0�m = s0 + mDs, (5)

Therefore, there are six parameters for the spectrum fitting:
adiabatic excitation energy (e0), frequency of the effective mode
(o), HR factor of the effective mode (s), the total intensity of S1

absorption (I) and two broadening parameters s0 and Ds
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(see Fig. 1 for the illustration of the fitting), and the total fitting
absorption spectrum is given by,

efitðeÞ ¼
X
m

I0�m �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps0�m2
p e

� e�e0�mð Þ2
2s0�m2

¼ I
X
m

e�s
sm

m!
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p s0 þmDsð Þ2
q e

� e�e0�moð Þ2

2 s0þmDsð Þ2
(6)

In practice, the sum over occupation number is truncated to
4 (m o 5), considering that HR factors of organic molecules are
usually small.

After the fitting, oscillator strength can be calculated using
the total intensity I obtained by fitting,32

f0 ¼ 103ln 10
mec

2

NApe2

ð
ef itðeÞde ¼ I � 4:32� 10�9 cm�1; (7)

Here, me and e is the mass and charge of electron, respectively;
c is speed of light in vacuum and NA is the Avogadro’s number.

However, since the experiments were conducted in different
solvents, we incorporated the refractive index of the solvent
(n) when fitting f by employing an alternative equation for
more accurate calibration results, as suggested by
the, ref. 41,42,56 and 57

fS1
= nf0. (8)

In general, the adiabatic energy differs from 0–0 energy
depending on whether the zero-point energies (ZPE) in the S0

and S1 states are considered. However, our model (displaced
harmonic oscillator) assumes the same curvature of the
potential energy surfaces in the ground and excited states,
resulting in identical ZPE. Consequently, within our model,
the adiabatic energy and 0–0 energy are the same. The actual
difference between ZPE was verified for few selected molecules
reported in Table S4 of the ESI.† 58

In this work, the reorganization energy is defined as the
difference between the energy of the vertical excitation from
the equilibrium energy of S0 state and the lowest energy of the

potential energy of S1 state. Thus, the exciton reorganization
energy can be calculated by

l = so. (9)

If we could fit a more complex vibronic model from the
experiment, we could extract a more accurate experimental
reorganization energy. An example of benchmark work consid-
ering of this type (not focused on organic electronics) was given
in ref. 51. However, the low-resolution spectra we have prevent
us from deriving such a model.

Then, the vertical excitation energy of S1 state can be
evaluated as

ES1
= e0 + l. (10)

The error of the fitting was computed as:

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
DeðeÞ2de

r
: (11)

The De(e) represents the difference between experimental
and fitting absorption spectrum (normalized).

The code for the fitting processes is now shared in GitHub
by https://github.com/XiaoyuUoL/spectrum_fitting.

The UV/Vis+ photochemistry database of dyes is used in this
work to investigate the performance of our fitting.59 All experi-
mental data in the database are sourced from a single labora-
tory, with detailed experimental conditions to ensure
consistency and avoid any potential instrumental errors. 103
dyes from the database with isolated S1 absorption peak or
mirrored absorption/emission signal are selected for simulta-
neously evaluating of e0, fS1

and l. Besides, the spectra of the
database were recorded in different solvents including ethylene
glycol (n = 1.43), ethanol (n = 1.36), cyclohexane (n = 1.43),
methanol (n = 1.33) and dimethyl sulfoxide (n = 1.48). The
corresponding n was used for the fitting of fS1

, and the specific
solvent was employed in the calculations including solvent
effects. Since the original dataset focuses on dyes with relatively
high oscillator strength, to improve its representativeness,
several organic systems (named 061, 068, 077, 085, and 099)
with low UV/Vis intensity are also collected from ref. 41 We use
the names as given in the original database with full chemical
detail provided in the ESI.†

To achieve more accurate fitting results, we select 71 mole-
cules for the final dataset, each with an error below 0.03 cm0.5.
This selection includes 66 molecules from the original 103 dyes
and 5 additional molecules with low UV/Vis intensity (the
molecular structures are shown in Fig. S1, ESI†). All results of
fitting are presented in Table S1 (ESI†), Fig. 1b and Fig. S13–S82
(ESI†). The molecules with poor fitted results are almost
invariably affected by the presence of a nearby excited state.
Therefore, we believe there is no significant bias in excluding
these molecules. Moreover, we verified that the S2 state in
71 molecules is mostly ‘‘dark’’ with much lower f values than
the S1 state, and the energy gap between the S1 state and the
next ‘‘bright’’ state exceeds 1 eV for most dyes, resulting no
overlap between states for the dyes in our study.

Fig. 1 (a) Illustration of the relationship among the energy of the first
excited state (ES1

), the reorganization energy (l) and adiabatic excitation
energy (e0in the (one mode) model used to fit the experimental spectra of
absorption only. (b) The experiment (the red line) and fitted absorption
spectra (the dashed black line) for the molecule in the inset as example,
resulting e0 = 20573.63 cm�1, o = 920.38, s = 0.91, s0 = 345.574 cm�1,
Ds = 207.24 cm�1. The blue bars represent positions and intensities of
vibrational peaks before broadening.
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All DFT and TDDFT calculations were carried out using the
Gaussian 16A suite of programs.60 Geometry optimises
10 conformers using PM7 semi-empirical method. For the
lowest energy PM7 conformer, geometry optimizations were
carried out at the BLYP35/3-21G(d) level.4 Corresponding
TDDFT calculations were utilizing the B3LYP, M06-2X, and
oB97XD functionals in conjunction with the 6-31G(d), def2-
SVP, and def2-TZVP basis sets, total 18 methods. Solvation
effects were all taken into account based on the polarizable
continuum model (PCM), using the solvent as the same as that
employed in corresponding experiments (see Table S1, ESI†).61

Gauge-invariance corrections are not included in our calcula-
tions. Due to stability issues, we didn’t consider diffuse func-
tions which are not suitable for HTVS, where the goal is to
achieve a high yield of converged calculations without human
intervention. The molecular excitation properties were also
investigated by the hole–electron analysis using Multiwfn 3.6.62

For the calculation of l, we obtained results for 70 dyes, excluding
the dye named ‘bfl’ (details in Fig. S1, ESI†) due to unsuccessful
convergence in the S1 excited state.

Results and discussion

To begin, we computed ES1
of 71 dyes in the dataset along with

fS1
using a total of 18 calculation levels (Table S2 and Fig. S2–S7,

ESI†). The best results are obtained with the functional M06-2X
in conjunction with the larger basis set (def2-TZVP), accounting
for solvent effects. The calculated values for both ES1

and fS1

demonstrated a remarkable consistency with the experimental
fitted data, yielding the coefficient of determination (R2) values
of 0.948 and 0.844, respectively (Fig. 2a and b). Moreover, their
slope of the linear fitted by M06-2X/def2-TZVP/PCM was both
close to 1 (0.967 and 1.048, separately), indicating this method
exhibit excellent accuracy in predicting ES1

and fS1
. Computed

fS1
also exhibits a good correlation with experimental fitted f0

(R2 = 0.86), but the slope of the correlation is approximate 1.5
(Fig. S8, ESI†). This discrepancy prompted us to use nfexp.
instead of fexp. to mitigate the inaccuracy as proposed
in,ref. 33,34 and 36 where n is the refractive index of the
solution.

To illustrate the relative significance of functionals, basis
sets, and solvent effects, we compared the results of 18 meth-
ods in Fig. 3. The choice of functional is crucial, as M06-2X and
oB97XD functionals yielded similar and superior performance
compared to B3LYP, with the R2 exceeding 0.9 for both func-
tionals. Basis set selection influences the results moderately,
but its impact is less important. A more cost-effective calcula-
tion with the 6-31G(d) basis set can be recommended. Notably,
it is noteworthy that the solvent effects are essential for
accurately predicting both the ES1

and the corresponding fS1
.

The calculated values obtained using the PCM model exhibit
noticeably better agreement with experimental data compared
to gas-phase calculations employing the same functional. How-
ever, the impact of solvent effects is more pronounced on the
calculations of ES1

compared to fS1
.

Regarding l, which involves the expensive geometry optimi-
zation of the S1 state, our initial approach utilized the M06-2X/
6-31G(d) method to expedite the calculations, as its correlation
for ES1

and fS1
was deemed acceptable. However, the obtained

Fig. 2 The correlation between the experimental fitted and calculated (a)
the first vertical excited state energy ES1

and (b) the corresponding
oscillator strength fS1

under M06-2X/def2-TZVP/PCM.

Fig. 3 R2 values of ES1
and fS1

between the experimental fitted and
calculated data under 18 computational methods.
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results for l proved unsatisfactory, with an R2 of only 0.344
(Fig. S9a, ESI†). This poor performance can be primarily
attributed to the inaccurate predictions for charged molecules,
where the computed values deviated significantly from the
experimental fitted data. Furthermore, even for few neutral
molecules, the results exhibited large errors, further decreasing
the R2 value for l.

Consequently, we employed our best-performing method,
M06-2X/def2-TZVP/PCM, and observed a favourable correlation
between the calculated and the experimental fitted l, with an R2

value of approximately 0.7 (Fig. 4). For charged molecules, the
computed values also aligned well with the fitted line. Within
the experimental fitted l range of 0 to 0.2 eV, the correlation
strength is further improved, yielding an R2 value of 0.809. This
underscores the substantial impact of incorporating solvent
effects on the accuracy of reorganization energy calculations.
Additionally, it is worth noting that the theoretical values
tended to overestimate the experimental results by a factor of
approximately 2.

The unsatisfactory outcomes associated with the M06-2X/6-
31G(d) method prompted us to investigate the solvent effect on
our systems more closely. Firstly, to avoid possible state cross-
ing during the process of S1 state optimization, we checked all
the molecules and ensure their S1 state has the same character
between the Franck–Condon state and adiabatic excited state
with and without PCM. Fig. S9a (ESI†) highlights an intriguing
observation: dyes such as dasbt, pry1, pry2, and the sty series
(molecular details provided in the ESI†) exhibit notably low
calculated l compared to experimental fitted data without
solvent effects. Interestingly, these molecules share a common
characteristic – they are all charged species. However, when
solvent effects are introduced into the calculations (Fig. S9b,
ESI†), the results align more closely with the experimental data,
suggesting a significant influence of charges on the system
behaviour, especially for l. This is illustrated more in detail in
Table 1, showing that both pyr1 and sty6 exhibit similar trends
under solvated and gas-phase conditions, with relative errors

becoming much smaller when the effect of the solvent is
included.

Nevertheless, certain charged molecules remain unaffected
by solvent effects, as evidenced by their consistent placement
near the fitting curve, irrespective of the presence or absence of
solvent environments. Examples include rh6g and hidci, where
the calculated l exhibit good correlations with the experimental
fitted l regardless of the inclusion of solvent effects (Table S2,
ESI†). Therefore, it becomes evident that the presence of
charges alone does not directly influence the calculated l
results. To gain deeper insights, we investigated the distance
between the centroid of the electron and hole distributions, as
illustrated in Fig. S11 and Table S2 (ESI†). Molecules like pyr1
and sty6 exhibit a larger separation between the electron and
hole centroids (larger than 2 Å) compared to rh6g and hidci
(less than 2 Å). This characteristic of spatially separated charge
distributions makes them more susceptible to the stabilizing
effects of the solvent environment.

Table 1 also reports the relative computational costs by
using four cores for the different methods employed, which
are representative for molecules of these sizes. These sizes, in
turn, are typical for molecules considered in virtual screening
protocols. Clearly, the significantly improved accuracy of calcu-
lations for l including the implicit solvent effect carries a very
small additional computational cost. However, the inclusion of
a large basis set does not offer a major advantage in accuracy,
despite being substantially more expensive computationally.
When considered alongside the results for the excitation energy
and oscillator strength it seems that M06-2X/6-31G(d)/PCM
offers among the best compromises between accuracy and
speed across different quantities to evaluate.

Conclusions

In summary, we proposed a procedure to fit automatically
experimental absorption spectra of medium-sized organic
molecules in solution and obtain parameters that can be
accessed experimentally: the excitation energy of the first
excited state, corresponding oscillator strength, and exciton
reorganization energy. By comparing computed and experi-
mental parameters for a dataset of 71 molecules we can
determine the accuracy expected from a range of TDDFT
methods routinely used in the digital design of molecules for

Fig. 4 The correlation between the experimental fitted and calculated l
using M06-2X/def2-TZVP/PCM (equation: y = 2.3690x � 0.1181). The inset
shows the results for small experimental fitted l at 0–0.2 eV region
(equation: y = 1.9650x � 0.0712).

Table 1 The experimental fitted and calculated l using different methods
and corresponding relative CPU time during the computation

Dyes
Experimental
l (eV) Methods

Calculated
l (eV)

Relative
CPU
time

pyr1 0.195 M06-2X/6-31G(d) 0.046 1.000
M06-2X/def2-TZVP 0.044 13.894
M06-2X/6-31G(d)/PCM 0.318 1.048
M06-2X/def2-TZVP/PCM 0.329 13.095

sty6 0.205 M06-2X/6-31G(d) 0.050 1.503
M06-2X/def2-TZVP 0.053 11.873
M06-2X/6-31G(d)/PCM 0.161 1.926
M06-2X/def2-TZVP/PCM 0.182 17.894
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organic electronics. Our study demonstrates a robust correla-
tion between calculated and experimental S1 energy, with most
R2 values exceeding 0.9, particularly achieving R2 = 0.948 with
the M06-2X/def2-TZVP/PCM method. The same method also
produces very good quality predictions of oscillator strength
(R2 = 0.844) and reasonable predictions (R2 = 0.690) of the
excitation reorganization energy (the quality of the latter pre-
diction improves for technologically relevant dyes with reorga-
nization energy o 0.2 eV). This suggests that the M06-2X/def2-
TZVP/PCM method exhibits the best overall performance
among the 18 computational methods tested. Comparison of
several methodologies highlights that the inclusion of implicit
solvent effects is essential to achieve good predictivity while
extended basis sets are not as critical: the results obtained with
the smaller 6-31G(d) basis set seems to be sufficiently accurate
for high-throughput screening applications. These benchmarks
can be used to determine the expected accuracy of computa-
tional predictions and to introduce suitable corrections to the
systematic errors inherent to the computational methods. Our
procedure will yield increasingly more accurate and informative
results as larger and homogenous experimental data sets
become available in the future.
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