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Nanoparticles containing lanthanide (Ln®*) ions in their structure have become one of the most important tools
in nanomedicine, mainly due to their appealing spectroscopic properties. The unique energy level structure of
Ln>* allows for the generation of characteristic luminescence, which depends highly on the temperature. It is
possible to use the intensity ratio between two emission lines of a single Ln®* ion or the emission of two
different ions to monitor the system'’s temperature. This approach often leads to the high sensitivity of such
thermometers; however, the most important is the possibility of remote temperature sensing. That property
allows for monitoring various physiological processes in living organisms and is helpful in theranostics. What is
essential for bioapplications is that the excitation and emission wavelengths of Ln** ions can occur within three
spectral ranges, known as optical transparency windows (biological windows). The biological materials, such as
tissues, are transparent to radiation with wavelengths in the ranges of 750-950 nm, 1000-1350 nm and 1500-
1800 nm. In this article, we review the state of the art regarding nanoparticles doped with Ln** ions for applica-
tions in temperature sensing within optical transparency windows regarding both excitation and emission wave-
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1. Introduction

Temperature is considered one of the most fundamental state
functions and the most frequently used and investigated thermo-
dynamic parameter."” Increased temperature may accelerate most
chemical reactions, as well as biological and physical processes
occurring in nature and laboratory conditions. That is why its
precise and accurate monitoring is highly important in various
industrial, scientific, environmental, and biological processes.’™
The latter area is also strictly related to modern biomedicine, where
continuous and online temperature regulation is utilized in medical
diagnosis, disease treatment and general healthcare purposes.®®
Temperature detection has been realized in diverse manners
for centuries. Nowadays, the most commonly used thermo-
meters are based on (I) liquid solvents or mercury, utilizing
their thermal expansion properties for temperature detection;
(IT) the thermoelectric effect used in thermocouples; (III) resistance
thermometers, which measure the temperature-dependent
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chemical compounds that form the basis for nanoparticles.

electrical resistivity; and (IV) pyrometers, which optically detect
the body’s infrared radiation by correlating it with the temperature
of the analysed object."*° Nevertheless, in all cases (except the
latter one), a mechanical or electrical connection with the measur-
ing object must be maintained, significantly hampering remote
and non-invasive temperature detection, e.g. inside the human
body, in a closed mechanical system or the small-sized, i.e. micro-
and even nanosized areas.">*'° Although pyrometers do not need
any solid connection with a measured object, they provide tem-
perature readouts only from the body’s surface; they have low
accuracy and spatial resolution, typically allowing rough tempera-
ture estimations of bulk, macroscale objects."”

The mentioned issues can be easily addressed and solved by the
luminescence (nano)thermometry technique, which is based on
noninvasive, remote detection of temperature based on monitoring
the temperature-induced changes of some luminescence features of
optically active probes (luminescent materials), allowing tempera-
ture monitoring in microscopic and nano-sized areas.’®™ In other
words, this technique utilizes temperature-dependent steady-state
or time-resolved spectroscopic features for remote temperature
sensing, such as luminescence/fluorescence intensity ratio (LIR/
FIR), signal intensity, spectral position of the emission line, full-
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width-at-half maximum (FWHM) of the band, or luminescence
decay/rise times, respectively.”"*'*™"® Each of these factors can be
used as a “thermometric parameter”, whose change can be corre-
lated and calibrated with temperature of the system.’®'*'” The most
frequently used thermometric parameters are LIR/FIR and emission
decay time. The first one can be monitored in a facile way using
standard detection systems, but it can also be easily biased by the
reabsorption/scattering effects and by variations of the on-target
excitation power density when performing the measures in a real
system, e.g. in vitro or in vivo experiments.'®?>*' On the other hand,
the second approach is not biased by the mentioned factors and can
provide accurate temperature readouts in different environments.
However, the time-resolved experiments are generally much more
complicated, requiring pulse excitation sources and fast detection
systems.'® Nowadays, researchers try to combine both approaches,
i.e. different sensing strategies in multi-modal and multi-parameter
temperature detection, which benefits from improved sensing
reliability.'***>*

Luminescent thermometers, i.e. optical temperature probes,
are typically made of inorganic luminescent materials based on
lanthanide (Ln**) ions, d-block metal ions, quantum dots or other
optically active nanoparticles (NPs).>'***** Among them, Ln**-
doped materials play a leading role, mainly due to their unique
optical properties, including luminescence covering a broad spectral
range from UV to visible and NIR, presence of narrow absorption
and emission lines, rich ladder-like energy levels structure, long
luminescence decay times (us-ms), and so forth.>*>>° Moreover,
Ln*"-doped inorganic materials and NPs may exhibit not only
classical down-shifting emission upon UV-visible excitation
(Stokes-type process) but also upconversion (UC) emission (anti-
Stokes) upon a low-energy near-infrared (NIR) laser excitation.>>?%>*
The UC process is a non-linear and non-parametric process, where
absorption of two or multiple photons leads to generating one
higher energy photon.®® In such case, it is possible to use the low-
energy NIR laser radiation coinciding with the 1%, 2™ or 3™
biological window (BW) and produce emissions in the 1 or 2™
BW, which is highly beneficial from the point of view of various
biomedical applications. Nevertheless, one of the most beneficial
features of Ln*" ions for temperature sensing is the presence of
thermally-coupled levels (TCLs) in most Ln*" ions, i.e. mainly excited
states typically separated by 200-2000 cm™.>"* Such energy separa-
tion (AE) ensures decent population of both TCLs within a typically
utilized Tranges, including cryogenic, room temperature and high-
T ranges.'”"* This feature is utilized for LIR-based optical thermo-
meters, allowing ratiometric temperature detection, which is
much more reliable than sensing based on the intensity of a
single band. The most commonly used Ln*" activator ions for
temperature sensing are Er’* (AE ~ 700-850 cm '), Tm’"
(AE ~ 1500-2000 cm™ '), Nd** (AE ~ 1000-1100 cm ') and
Pr’* (AE ~ 500-600 cm ).°"?

On the other hand, the most frequently chosen materials to
host the selected Ln*" ions are inorganic fluorides, simple and
mixed/complex oxides, phosphates, vanadates, silicates, borates,
tungstates, molybdates, among which the most commonly used
compound is NaYF,:Yb*",Er’" (as NPs), which has low phonon
energy and provides bright UC luminescence.”***" Utilization
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of the mentioned inorganic nanomaterials is associated with
several factors, such as their high-temperature stability, low-
phonon energies allowing the generation of UC emission, insolu-
bility in water, as well as facile synthesis in the form of
NPs.>>?%3638 The latter feature is crucial for the development of
Ln**-based luminescent nanothermometers, i.e. nano-sized optical
probes of temperature, which allow temperature detection with
excellent spatial resolution, which is important in thermal sensing
and imaging of microscopic and nanoscopic objects.'"!%>%3%-41
Using luminescent nanothermometers enables remote and non-
invasive temperature monitoring in living organisms by introdu-
cing optically active NPs into the body fluids, tissues and single
cells.’®***! Generally, using the nanothermometry approach is
desirable in all situations where classical macroscopic thermo-
meters are impossible, impractical, or inconvenient, ie., in such
applications, where the sensor size plays a vital role.*>™**

One of the most extensively studied sub-fields in optical sen-
sing is temperature detection in biological systems, ie. remote
monitoring of temperature gradient in cells/tissues and in the
whole human or animal body, performed inside a living organism
(in vivo) or outside it in laboratory experiments (in vitro and
ex vivo).**” Such studies are performed to examine temperature
distribution in a given tissue, monitor temperature elevation due
to some disease-related problems (e.g. tumour growth), analysis of
optical heating processes during laser-induced cell damage, photo-
dynamic therapy, hyperthermia, controlled drug release therapies,
and so forth.*” The selection of appropriate luminescent
nanothermometers for diverse bioapplications should depend on
their spectral characteristics, i.e., the possibility of photo-excitation
and the presence of emission lines in the biological transparency
windows, where the light absorption and scattering effects by
water, tissues and blood are minimal. In general, we can distin-
guish three spectral ranges, called 15 BW (~750-950 nm), 2" BW
(~1000-1350 nm) and 3™ BW (~1500-1800 nm), where the
mentioned effects are minimized (see Fig. 1).">***” All of them
are located in the low-energy NIR spectral ranges, which is
beneficial for bioapplications, in contrast to excitation and detec-
tion in the UV and visible ranges. This is because the high-energy
excitation light sources generating light in the UV and visible
ranges (especially lasers) may easily damage the irradiated
tissues and transform healthy cells into tumour ones. Moreover,
in the case of temperature sensing in biological systems, the
excitation and detection outside the BWs range frequently lead
to significantly biased temperature readouts because of the
discussed reabsorption and scattering effects of the surround-
ing media, as well as due to the enhanced optical heating upon
laser irradiation.>®

The most frequently used equation in luminescence thermo-
metry is associated with the Boltzmann-type distribution of the
electrons in a thermal equilibrium, which typically occupies excited
states separated with a relatively small AE value. This equation fits
the determined LIR values and correlates them with temperature. It
is commonly expressed in the following form ref. 9:

LIR = L_ Bexp (—A—E) )]
I B
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Fig. 1 (A) Absorption spectrum of human skin showing the 1%, 2" and 3"
biological windows. (B) Zoom in on the two first optical windows in some
biological tissues and fluids. These plots of effective attenuation coeffi-
cient (on a logarithmic scale) vs. wavelength show the quantitative rele-
vance of different body substances (oxygenated blood, deoxygenated
blood, skin and fatty tissue) when aiming for deep sub-skin imaging. Used
with permission of The Royal Society of Chemistry from ref. 47; permission
conveyed through Copyright Clearance Center, Inc.

where LIR is the luminescence intensity ratio of two thermalized
emission bands associated with emissions from the given TCLs of
Ln*" ions; L, is the intensity of the higher-energy band, and I
corresponds to the intensity of the lower-energy band; AE is the
energy separation between two TCLs, which is typically obtained
from fitting of the experimental data to eqn 1, or it is derived from
the emission spectra by calculating the differences in energies of
two thermalized bands; T is the absolute temperature; kg is the
Boltzmann constant; and B is a constant which depends on
degeneracies of states, transitions angular frequencies, rates of total
spontaneous emission, as well as branching ratio of the transitions
in respect to the ground state.>*® It is worth noting that the thermal
relations of non-TCLs are often used for optical temperature sen-
sing, where the dependences of LIR of the non-thermalized bands
are used."®* In this situation, the observed changes in the relative
band intensities, so in the LIR values, may originate from
temperature-dependent energy transfer (ET) and quenching pro-
cesses, which vary for different radiative transitions.'®"* In such
cases, the determined LIR values are correlated with temperature
by fitting to some empirical functions (the phenomenological
models are used in the case of absence of a proper physical model
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conforming to the observed changes), e.g. higher-order polynomials
or exponential functions.'>*** Similarly, it is possible to fit and
correlate the luminescence decay times, FWHM of the emission
band, signal intensity, or other selected thermometric parameters
with temperature. Using the kinetics of the excited state as a
thermometric parameter offers an extra benefit, ie. unlike the
ratiometric method, the lifetime of the excited state remains
unaffected by light absorption or scattering as it travels through
the medium between the thermometric phosphor and the detector.
Consequently, in this scenario, the reliability of luminescent ther-
mometers based on lifetime is anticipated to be higher.**

To quantitatively evaluate the sensing performance of any
luminescent thermometer, the absolute (S,) and relative (S,)
temperature sensitivities are commonly determined using the
following equations:®

dsp
Si="gr @
1 dSpP

where SP is the spectroscopic parameter analysed. However, for
comparisons of different LIR-based optical thermometers
between different laboratories, optical setups, and thermometric
parameters, only the S; value is a valid and reliable figure of
merit, as it does not depend on the mentioned factors (apparatus
effects). The S, informs how the selected thermometric parameter
changes per 1 °C of the absolute temperature. Another important
parameter is temperature resolution (87), ie., uncertainty of
sensing. It takes into account the uncertainty of determination
of the measured spectroscopic parameter (8SP), which is asso-
ciated with signal-to-noise ratio, and it can be theoretically
estimated via the following general formula:®

0T = 185P 4)
S, SP

In developing new luminescent thermometers, one should also
consider factors such as the signal intensity of the phosphor used
(which depends on its quantum yield and brightness), which
typically decreases with temperature, and the thermal stability of
the sensor used.'®" The latter can be determined by performing
the thermal cycling experiments, ie. by monitoring how the
selected luminescence features change during several cycles of
material heating and cooling between two extreme temperature
values to confirm the sensing repeatability.® Obviously, the
selected SP should not change after the thermal cycling experi-
ments, ie. it should be constant at fixed temperature values, and
any deviations may indicate the thermal instability/decomposition
of the material studied.

As there are thousands of reports dealing with luminescence
thermometry,'® in this review article, we focus only on
lanthanide-based luminescent thermometers, operating strictly
within the 1°¢, 2™ or 3™ BW. Here, we assume this requirement
is fulfilled only if excitation and emission wavelengths originat-
ing from Ln*" ions are within the BWs’ spectral ranges. Hence,
we do not discuss the numerous reports showing the use of

This journal is © The Royal Society of Chemistry 2024
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975/980 nm excitations, even if the emission of the corres-
ponding thermometer is located in the NIR range of any BW. This
is because, in the abovementioned cases, the change (deteriora-
tion) in excitation flux caused by significant absorption and light
scattering by the body fluids around 975 nm (outside the 1°* and
2™d BW) alters the on-target laser power density.?! This often
underestimated effect may bias the majority of temperature
readouts, especially in the case of upconverting materials and
thermometers utilizing non-TCLs.'>?**> Moreover, using a
975 nm laser for excitation often causes undesired optical heating
effects and artificial elevation of the local temperature of the
sample, which is usually much stronger than, e.g. by using
~/808 nm or 1532 nm excitations.>® The selection of the excita-
tion wavelength of NPs in a medium containing water is of great
significance for the resulting luminescence and potential optical
heating of water. The absorption properties of the biological
system components are the most important issue that may lead
to the reabsorption of radiation from NPs.>* However, water itself
can absorb excitation radiation, causing heating. It has been
demonstrated that using excitation outside the BWs, such as
980 nm, results in significant water heating, which was not
observed with an 808 nm wavelength.>®> The authors showed,
that the use of a 980 nm laser with a power density of 140 W cm >
causes water to heat up by 3.5 °C after 25 minutes of irradiation.
In contrast, an 808 nm laser with the same power heats the water
under the same conditions by approximately 1 °C. The presence
of NPs absorbing the excitation radiation additionally increases
this effect by about 0.5 °C.>>

The properties of NPs in temperature detection are most
commonly studied in the form of colloids or powders. Some
publications have also demonstrated simple ex vivo experi-
ments verifying the utility of nanothermometers in real biolo-
gical systems.>*"%"% However, this does not change the fact
that nanothermometry using the emission of Ln*" ions requires
much more work and research to ultimately verify whether
practical utilization of Ln**-doped NPs in temperature detec-
tion is valid and reliable. A compelling example prompting a
reconsideration of strategies and enriching thermometry
research with in vivo studies is the work published by Shen
et al.,*" which presents specific examples of how different types
of NPs behave in biological systems studied in vivo. Scientists
have shown that distortions in the emission spectra resulting
from skin tissue absorption are evident. Indeed, they affect the
intensity ratio between emissions at 980 and 1060 nm, which,
in turn, is commonly used for thermal sensing, for example, in
systems involving Yb*", Er**, or primarily Nd** ions.®*® The
absorption by the skin additionally diminishes the emission
bands around 1230 and 1470 nm of Tm®', which is also
employed for ratiometric thermal sensing.®®

2. Down-shifting nanothermometers

Ln’* jons exhibit excellent NIR down-shifting emission with long
excited state lifetimes, large tissue penetration depths, good
efficiency, and photochemical stability. Nanothermometers

This journal is © The Royal Society of Chemistry 2024

View Article Online

Journal of Materials Chemistry C

based on down-shfted luminescence are listed in Table 1. One
of the best ions for nanothermometry based on down-shifted
luminescence is Nd*". Because of the spectral overlap of the
emission bands with the transparency windows of human tissues,
NPs doped with Nd** ions emerge as relevant sub-tissue optical
probes. Most commonly in the literature, an excitation wavelength
of 808 nm and an intensity ratio between Stark levels (crystal-field
components) within 880-1060 nm range is employed. However,
Nd** ions may also emit longer wavelength NIR light, i.e. around
1320 nm (see Fig. 2). Unlike in UCNPs, the excitation and emission
fall into the highest transparency window of tissues within the NIR
spectral region. Moreover, the Stokes emission quantum yield (QY)
is at least one order of magnitude higher than the QY of
upconversion, which makes Nd**-doped NPs the most promising
for bioapplications. Nd**-doped NPs allow temperature sensing
and bioimaging in the NIR range by simultaneous excitation
within the 1% BW, ie., at around 808 nm. Examples of such
applications are experimental studies reported by Savchuk
et al.,*” Quintanilla et al®® or Cantarano et al.®® The studies of
Nd**-based nanothermometry are the most frequent, and much
information can be drawn from the below-discussed ones. Nd**-
based nanothermometer performance is highly dependent on
Nd** concentration, which Maciejewska et al.”® demonstrated.
According to these results, Nd** concentration also determines
the range in which the thermometer can be applied. Moreover, it
seems crucial to select appropriate Nd*" emission lines for the
high sensitivity of the thermometer. Examples of works presenting
different LIRs taken from Nd*'-doped NPs are those published by
Gschwend et al.,”* Skripka et al.>® or by Debasu et al.”* Below, we
discuss four groups of down-shifted nanothermometers: (i) based
on Nd**-only-doped NPs, (ii) systems in which Nd** played a role of
sensitizers and another Ln®*' ions, together with Nd*" were
emitters (e.g. NaGdF,Yb*',Tm*'@NaYF,:Yb**@NaGdF,:Yb*",
Nd**@NaGdF,),”* (iii) NPs in which Tm** ions were used as
sensitizers for luminescence (e.g. KLu(WO,),:Ho*",Tm**)"* and (iv)
NPs doped with Yb** ions as sensitizers (e.g. CaF,:Yb**/Er*"/Tm*").”>

2.1. Nanoparticles doped with Nd** ions only, excitable within
the 750-808 nm range

Nd*" ions seem to be excellent lanthanide dopants for observing
luminescence signals in the range of biological windows. Nd**
ions are capable of bright emission at around 880 and 1060 nm,
corresponding to the *“F3, — Iy, and *F3, — I3y, transitions,
respectively. Usually, the emission band connected with *F;, —
"), transition is composed of several sub-bands related to the
Stark energy sublevels of both *F/, and *I,/, manifold state (Fig. 3).
The ratio between sub-bands at around 860 and 870 nm shows
temperature dependence. One of the first reports on the thermal
behaviour of these bands was published by Wawrzynczyk et al.,”®
who studied NaYF,;:Nd®" cubic NPs under excitation at 830 nm.
The analysis of Stark components of “F5,, — “Iy, transition bands
indicated the dependence of LIR on temperature and shift of the
bands’ maxima. The researchers calculated the relative sensitivity
of the studied NPs, which was 0.12% °C™* at 0 °C.”°

Rocha et al.®® demonstrated the thermal behaviour of Nd**-
doped LaF; core@shell NPs under excitation with an 808 nm
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