Benchmarking nitrous oxide adsorption and activation in metal–organic frameworks bearing coordinatively unsaturated metal centers†

Anthropogenic emissions of N\(_2\)O, the third most abundant greenhouse gas after CO\(_2\) and CH\(_4\), are contributing to global climate change. Although metal–organic frameworks (MOFs) have been widely studied as adsorbents for CO\(_2\) and CH\(_4\), less effort has focused on the use of MOFs to remove N\(_2\)O from emission streams or from air. Further, N\(_2\)O activation would enable its use as an inexpensive oxidant for fine chemical synthesis. Herein, we identify features that contribute to strong binding and high uptake of N\(_2\)O at coordinatively unsaturated metal sites in the M\(_2\)Cl\(_2\)(btdd) (M = Mn, Co, Ni, Cu; btdd\(^{2-}\) = bis(1,2,3-triazolo[4,5-b],[4′,5′-i]dibenzo[1,4]dioxin)) and M\(_2\)(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn; dobdc\(^{4-}\) = 2,5-dioxido-1,4-benzenedicarboxylate) series of MOFs. Combined experimental and computational studies suggest that N\(_2\)O adsorption at open-metal-sites is primarily based on electrostatic interactions, rather than \(\pi\)-backbonding, causing MOFs with more Lewis acidic metal centers to be superior N\(_2\)O adsorbents. As a result, Mg\(_2\)(dobdc) demonstrates strong binding and record-setting N\(_2\)O uptake (8.75 mmol g\(^{-1}\) at 1 bar and 298 K). Using density functional theory (DFT) to characterize reactive intermediates and transition states, we demonstrate that N\(_2\)O activation to form a M(IV)–oxo species and N\(_2\) is thermodynamically favorable in Mn\(_2\)(dobdc) and Fe\(_2\)(dobdc) but appears to be kinetically limited in Mn\(_2\)(dobdc). Our work lays a foundation for understanding N\(_2\)O adsorption and activation in MOFs, paving the way for the design of promising next-generation materials for N\(_2\)O capture and utilization.

Introduction

N\(_2\)O is the third most prevalent anthropogenic greenhouse gas after CO\(_2\) and CH\(_4\), accounting for 6% of the effective radiative forcing from 1960 to 2019.\(^1\) Although CO\(_2\) and CH\(_4\) are present in higher concentrations in the atmosphere, the global warming potential of N\(_2\)O (265) is far greater (1 and 28 for CO\(_2\) and CH\(_4\), respectively).\(^2\) Over the last four decades, global anthropogenic emissions of N\(_2\)O have increased by 30%.\(^3\) Up to 87% of this increase derives from agricultural practices such as nitrogen additions to soils.

By nature, the sources of these emissions (i.e., farmlands) are diffuse, in contrast to point sources of N\(_2\)O emissions such as adipic and nitric acid manufacturing.\(^4\) Diffuse emissions are currently largely uncontrolled, except for preventative measures such as the use of more efficient fertilizers.\(^5,6\) At point sources, N\(_2\)O can be catalytically destroyed, but regulations requiring this practice have not been globally adopted.\(^7\) Thus, the majority of human-caused N\(_2\)O emissions are currently unabated, leading to a current estimated rate of increase in atmospheric N\(_2\)O concentration of 2% per decade.\(^3\) In addition to its global warming potential, N\(_2\)O was found to be the dominant ozone-depleting substance emitted in the 21st century,\(^4\) underscoring the urgency of curtailing N\(_2\)O emissions. The environmental effects of anthropogenic N\(_2\)O emissions and its long atmospheric lifetime necessitate the development of new materials for N\(_2\)O capture.

Selectively capturing gases from diffuse sources such as air is a unique challenge that requires specially designed sorbents. Metal–organic frameworks (MOFs) are an emerging class of materials that have drawn significant interest for their potential applications in greenhouse gas capture,\(^8\) separations,\(^9\) catalysis,\(^10\) and beyond.\(^11\) They are crystalline, highly porous
materials formed by connecting metal secondary building units (SBU) with multtopic organic linkers. MOFs have been designed to selectively bind CO₂ and CH₄ based on electrostatic interactions, chemical reactivity, hydrogen bonding, and more. In contrast, only a small number of largely unrelated MOFs have been studied for N₂O capture to date. The presence of Lewis acid open-metal-sites in the Mn₂Cl₂(btdd) (M = Mn, Co, Ni, Cu; btdd= bis[1,2,3-triazolo[4,5-b][4',5'-i]dibenzo[1,4]-dioxin]) and Mn₂(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn; dobdc= 2,5-dioxido-1,4-benzenedicarboxylate) series of MOFs has been shown to enhance N₂O binding; however, a general lack of structure–property trends informing the design of new materials hinders improvements in N₂O capture in porous materials.

Herein, we present a structure–activity study of N₂O adsorption in MOFs, with the purpose of identifying features that lead to strong binding and high uptake. Through a combined experimental and computational analysis, we clarify the effects of the ligand field and metal identity on N₂O adsorption at Lewis acidic open-metal-sites in the Mn₂Cl₂(btdd) (M = Mn, Co, Ni, Cu; btdd= bis[1,2,3-triazolo[4,5-b][4',5'-i]dibenzo[1,4]-dioxin]) and Mn₂(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn; dobdc= 2,5-dioxido-1,4-benzenedicarboxylate) series of MOFs. From this analysis, we identify the Mn₂(dobdc) series, particularly Mg₂(dobdc) and Ni₂(dobdc), as promising adsorbents that display strong binding and record-setting N₂O adsorption capacities.

Beyond reducing its environmental impact, N₂O capture is incentivized by the opportunity to utilize it as a cheap, abundant, and potent oxidant in organic synthesis. As a kinetically inert molecule, transition metal catalysts and/or high temperatures and pressures are required to facilitate N₂O activation. Thus, MOFs and zeolites containing Fe(II) sites have been explored as catalysts for N₂O utilization. In particular, Fe₆(dobdc) has been demonstrated to catalyze C–H oxidation of hydrocarbons using N₂O as an oxidant. Bearing strong similarities to enzymatic iron-based catalysts, this occurs through a 2 e⁻ transfer from high spin Fe(II) to N₂O, cleaving the N–O bond and forming a high spin Fe(IV)–oxo intermediate. This process is calculated to be followed by σ-attack and H atom abstraction by the Fe(IV)–oxo and radical rebound to generate the oxidized product. Herein, DFT calculations support that N₂O activation is also thermodynamically favorable in Mn₆(dobdc), and we map out an approximate reaction coordinate for this process using the climbing-image nudged elastic band method (CI-NEB). While combined analysis of computation and experiment suggests that this reaction is kinetically limited in Mn₆(dobdc), our work motivates further study of N₂O activation in related Mn-based MOFs. Overall, our findings stimulate the development of new framework materials for selective N₂O capture and conversion to mitigate its environmentally destructive impact.

Results and discussion

N₂O adsorption analysis

N₂O is a weakly σ-donating and π-accepting ligand, which has limited the number of well-characterized transition metal adducts of N₂O to only a small handful, typically bound as η¹-N or η²-N₂N coordinated N₂O through π-backbonding interactions. Although N₂O has a relatively weak dipole moment (0.161 D), sorbents could compensate by incorporating Lewis acidic sites to strengthen electrostatic interactions between N₂O and the sorbent material. MOFs containing highly Lewis acidic coordinatively unsaturated metal centers are effective adsorbents for a wide variety of gases through strong electrostatic interactions. To identify robust structure–property trends regarding N₂O binding at open-metal-sites, we targeted isostructural frameworks accommodating a range of metal ions in similar ligand fields. These criteria should effectively yield insights into the interplay of the metal identity and ligand field on the binding strength of N₂O at open-metal-sites in MOFs.

Two groups of MOFs that fulfill these requirements are the Mn₂Cl₂(btdd) and Mn₂(dobdc) series. These MOFs are composed of hexagonal-pored structures formed by connecting one-dimensional, rod-like metal SBUs with ditopic organic linkers (Fig. 1). Porous channels extend through the materials and, after activation, become lined with a high density of coordinatively unsaturated metal sites confined in square pyramidal geometries. While the overall structures of the Mn₂Cl₂(btdd) and Mn₂(dobdc) series are similar, their SBUs lead to distinctive ligation of the metal sites. In Mn₂Cl₂(btdd), metal ions are coordinated to three individual triazolate groups through one nitrogen atom per triazolate. Each triazolate coordinates to three distinct metal ions, and two chlorides (μ₂) bridge neighboring metals, forming M–Cl chains. For this study, the isostructural Mn, Co, Ni, and Cu MOFs of this series were synthesized according to reported procedures (Fig. 1a and Sections S3–S6, ESI†). In the Mn₂(dobdc) series, the secondary building units are composed of metal-salicylate chains, forming an oxygen-based ligand field. The Mg, Mn, Fe, Co, Ni, Cu, and Zn variants of Mn₂(dobdc) were synthesized in accordance with the literature (Fig. 1b and Sections S7–S13, ESI†). All MOFs analyzed in this study were confirmed to be highly crystalline and match the expected structures via powder X-ray diffraction (PXRD). The porosity of all MOFs was confirmed using 77 K N₂ adsorption/desorption measurements. The calculated surface areas are similar to those reported in the literature in every case.

After synthesis, the MOFs were each evaluated as N₂O sorbents by measuring N₂O adsorption and desorption isotherms at 25 °C, 35 °C, and 45 °C (Sections S3–S13, ESI†). Adsorption data were fit using dual-site Langmuir–Freundlich models (eqn (S1), ESI†). These fits were subsequently used to calculate enthalpies of N₂O adsorption (ΔH_ads) in each MOF using the Clausius–Clapeyron equation (eqn (S2), ESI†). The resulting ΔH_ads values as a function of N₂O uptake in both series of MOFs are summarized in Fig. 2 and Table 1. Critically, PXRD and surface area measurements confirm the stability of every MOF towards N₂O except for Fe₆(dobdc), which has been previously shown to react irreversibly with this gas. As a result, the adsorption data for this MOF were excluded from the analysis below.

The Mn₂Cl₂(btdd) series were first evaluated as N₂O sorbents. Despite their high density of open-metal-sites, all MOFs of this
series only weakly interact with N₂O (−ΔH_{ads} < 25 kJ mol⁻¹). The difference in binding strength between the variants is minor: Mn, Co, and Ni analogues exhibit similar binding strengths, followed by Cu (Table 1). MOFs bearing coordinatively unsaturated Cu sites are commonly poor adsorbents due to Jahn–Teller axial distortion at the Cu sites.¹²,⁶⁰ Lacking substantial differences in binding strength between variants, the influence of the metal identity appears to be overshadowed by that of the ligand field in the M₂Cl₂(btdd) series. The Lewis acidities of the metals are likely tempered by the electron-donating coordination environment of triazolate and chloride ligands. These ligands produce electron-rich metal centers that are less Lewis acidic than those found in other materials. Although these MOFs are capable of binding polar gases such as NH₃,²⁶ the absence of a significant dipole moment on N₂O makes the M₂Cl₂(btdd) MOFs ineffective N₂O adsorbents. Lack- ing suitable binding sites, the M₂Cl₂(btdd) series show very limited uptakes; the quantity of N₂O adsorbed under equilibrium conditions, even at 1000 mbar N₂O and 298 K (Table 1), does not come close to saturating the available open-metal-sites.

Decreasing the ligand field strength surrounding the open-metal-sites should produce more Lewis acidic metal centers and thus lead to stronger electrostatic interactions with N₂O. Switching from M₂Cl₂(btdd) to M₂(dobdc) preserves the coordination geometry of the metal centers, but the oxygen-based SBU provides a weaker ligand field overall. Indeed, every member of the M₂(dobdc) series binds N₂O more strongly at low pressures than the M₂Cl₂(btdd) MOFs (Fig. 2b). Moreover, the comparatively electron-deficient coordination environments in this series emphasize the influence of the metal identity on N₂O binding strengths; enthalpies of adsorption vary by as much as 20 kJ mol⁻¹ among M₂(dobdc) variants (Table 1). N₂O binding strengths in these series mirror the empirical Irving–Williams series: Cu < Zn < Mn < Co < Mg < Ni.⁶¹ Like Cu₂Cl₂(btdd), Cu₂(dobdc) likely exhibits weak N₂O adsorption because of axial distortion.¹² In contrast, Mg₂(dobdc) is an especially effective N₂O adsorbent due to the hard nature of its Lewis acidic Mg(II) cations. As the effective charge of the transition metal centers increases from Mn to Ni,⁶² the N₂O binding strengths increase as well. As a result, Ni₂(dobdc) is the strongest N₂O adsorbent assessed in this study (−ΔH_{ads} = 43.8 ± 0.6 kJ mol⁻¹). Compared to other commonly studied gases (CO₂, O₂, N₂), N₂O is generally more strongly bound by the M₂(dobdc) series, which is likely due to its modest dipole moment. In particular, N₂O binding is approximately 2–6 kJ mol⁻¹ stronger than CO₂ in all cases except for in Mg₂(dobdc), in which CO₂ binds more strongly by approximately 3 kJ mol⁻¹.¹² O₂ and N₂ binding enthalpies are consistently 10–20 kJ lower than those of N₂O as well.⁶³ These findings highlight the discrepancy between the comparatively strong binding of N₂O at metal centers compared to CO₂, O₂, and N₂ and the lack of well-characterized N₂O-bound metal complexes.⁴⁶–⁵₀
capacities in the M2(dobdc) series of frameworks. In particular, Mn2Cl2(btdd) 23.0 surpassing the previous record-holder, MIL-100 (Cr)

MOF

\[
\begin{array}{ccc}
\text{N}_2\text{O adsorption enthalpies and maximum uptake values at 298 K} \\
\text{Mn}_2\text{Cl}_2(\text{btdd}) & 23.0 \pm 1.1 & 2.37 \\
\text{Co}_2\text{Cl}_2(\text{btdd}) & 23.9 \pm 0.8 & 3.10 \\
\text{Ni}_2\text{Cl}_2(\text{btdd}) & 23.8 \pm 1.1 & 3.49 \\
\text{Cu}_2\text{Cl}_2(\text{btdd}) & 19.2 \pm 1.1 & 1.86 \\
\text{Mg}_2(\text{dobdc}) & 39.9 \pm 0.5 & 8.75 \\
\text{Mn}_2(\text{dobdc}) & 33.4 \pm 0.6 & 7.77 \\
\text{Co}_2(\text{dobdc}) & 37.5 \pm 0.8 & 7.26 \\
\text{Ni}_2(\text{dobdc}) & 43.8 \pm 0.6 & 6.44 \\
\text{Cu}_2(\text{dobdc}) & 24.3 \pm 0.7 & 2.21 \\
\text{Zn}_2(\text{dobdc}) & 30.0 \pm 0.5 & 5.37 \\
\end{array}
\]

Strong N2O binding is accompanied by relatively high N2O capacities in the M2(dobdc) series of frameworks. In particular, the second-strongest adsorbent of N2O identified in this work, Mg2(dobdc), adsorbs 8.75 mmol g\(^{-1}\) at 1000 mbar of N2O and 298 K, surpassing the previous record-holder, MIL-100 (Cr) (5.78 mmol g\(^{-1}\), MIL = Materials Institute Lavoisier), by a significant margin. The Mn, Co, and Ni M2(dobdc) variants also exceed the previous record for N2O uptake in a MOF. Overall, this comparison underlines the M2(dobdc) series, especially Mg2(dobdc), as promising adsorbents that exhibit high gravimetric N2O capacities coupled with strong and tuneable binding strengths.

Computational survey of N2O adsorption.

After establishing the M2(dobdc) series as effective N2O adsorbents, we further evaluated N2O binding in this series using DFT calculations (Section S14, ESI†). For these calculations, trimetallic cluster models were generated to approximately study the one-dimensional chain SBU (Fig. 3a). Similar cluster models have been used to evaluate N2O reduction in Fe2(dobdc).\(^{40,41}\) For each member of the M2(dobdc) series, excluding Mg2(dobdc) for redundancy, two types of cluster models were simulated: a trimetallic system and a Mg-diluted system. In the Mg-diluted models, both edge metal ions were replaced with Mg(II) ions. The purpose of including the Mg-diluted systems is to simulate only one open-shell metal center and decouple adsorption energetics from the potential influence of metal-metal coupling on N2O adsorption. All systems are neutral with all M(II) ions in the high-spin state where applicable (Table S13, ESI†).

The energies of adsorption (\(-\Delta E_{\text{ads}}\)) for both \(\eta^1\)-N and \(\eta^1\)-O coordinated N2O adducts in the model clusters were first calculated (Fig. 3b–c and Table S11, ESI†). In both the trimetallic and Mg-diluted models, \(\eta^1\)-O coordinated N2O is slightly more stabilized (2–10 kJ mol\(^{-1}\)) than \(\eta^1\)-N coordinated N2O. This aligns with the approximately 60%/40% \(\eta^1\)-O/\(\eta^1\)-N population split determined from neutron diffraction data collected on N2O-dosed Fe2(dobdc).\(^{37}\) The calculated formation energies of N2O adducts in the Mg-diluted series (Fig. 3b) approximately match the trend observed experimentally: Cu < Mn < Fe < Zn < Co < Ni ≈ Mg. However, some divergence is noted in the trimetallic systems (Fig. 3c): the Mn-based trimetallic system binds N2O considerably more strongly than the equivalent Mg-diluted model, suggesting multiple metal effects that require consideration of metal-metal coupling (see below). Additionally, \(\eta^1\)-N coordination to Mn2(dobdc) is slightly more favorable than \(\eta^1\)-O in the trimetallic model.

Across the series, the model systems reveal that \(\eta^1\)-O and \(\eta^1\)-N adducts of N2O are bent, with bond angles and M–N2O distances in agreement with those solved from the neutron diffraction data in N2O–Fe2(dobdc) (Table S12, ESI†), the only definitively characterized structure of N2O bound to a metal center within a MOF reported to date.\(^{37}\) In the DFT-calculated structure, \(\eta^1\)-N coordinated N2O exhibits a typical bond angle of 115–123° (122° in N2O–Fe2(dobdc)), whereas \(\eta^1\)-O coordinated N2O exhibits slightly smaller bond angles ranging from 105–120° (117° in N2O–Fe2(dobdc)). Bond lengths of \(\eta^1\)-N and \(\eta^1\)-O coordinated N2O (2.25–2.57 Å and 2.27–2.54 Å, respectively) vary over only a narrow range. These models reinforce that N2O binding across the M2(dobdc) series is primarily based on electrostatic interactions rather than \(\pi\)-backbonding, which
would be expected to lead to linear η^1-N (V, Cu, Ru, Rh) or side-on η^2-N,N (Co, Ni) interactions with N$_2$O.$^{46-52}$ It should be noted that N$_2$O adsorption has been modelled previously in a small variety of other open-metal-site MOFs. The Fe(II)- and Cu(II)-based paddlewheel nodes in M$_3$(btc)$_2$ (btc$^{3-}$ = benzene-1,3,5-tricarboxylate) MOFs show bent η^1-N and η^1-O coordination modes for N$_2$O.24 Likewise, N$_2$O adducts have been modelled for the trinuclear carboxylate-bridged, oxygen-centered nodes (M$_3$(µ$_3$-O)(RCOO)$_6$, M = V, Cr, Mn, Fe, Co, Ni) common among MOFs such as MIL-100, MIL-101, and MIL-127.64 The calculated binding of η^1-N coordinated N$_2$O at V centers is linear, but other adducts are bent, with similar bond angles and bond lengths as calculated in the M$_2$(dobdc) series herein. In the Kuratowski-type SBU of Cu-MFU-4 (MFU = Metal–Organic Framework Ulm-University), DFT calculations support an approximately linear η^1-N coordinated N$_2$O molecule, indicating possible π-backbonding from the Cu(i) centers.19 Overall, these findings support that N$_2$O is predicted to bind in a bent fashion at most metal centers in MOFs.

A notable exception to the trends outlined above is the trimetallic Mn cluster, in which η^1-N coordinated N$_2$O is nearly linear (172°), suggesting that π-backbonding occurs from the Mn d orbitals into the π^* orbital of N$_2$O, which has previously been invoked in linear η^1-N V, Cu, Ru, and Rh adducts of N$_2$O to justify the stability of those complexes.$^{46,48-50,52}$. Consistently, the Mn–N bond length (1.95 Å) is considerably shorter than in other models (Fig. S68, ESI†). These characteristics are distinct from the equivalent Mg-diluted cluster, suggesting that metal–metal coupling may affect the binding mode of N$_2$O in these calculations. We thus evaluated N$_2$O binding in the open-shell trinuclear systems (Mn through Cu) using broken-symmetry density functional theory (BS-DFT) with two spin flip configurations (i.e., in the central metal or in one edge metal) to quantify the metal–metal coupling and to extract coupling constants (Fig. S69 and Section S14, ESI†). To ensure that the BS-DFT calculations converged to the desired states, the spin density was visually inspected (Fig. S70, ESI†). In particular, the energetic difference in the trimetallic Mn system in comparison to the dilute case indicates especially strong metal–metal coupling (Table S14, ESI†). From this data, we calculated strong magnetic coupling along the SBU chains in the trimetallic Mn system ($J = 314.27$ cm$^{-1}$), which becomes even stronger after N$_2$O binding regardless of the coordination mode ($J = 857.47$ cm$^{-1}$ for η^1-N, $J = 857.47$ cm$^{-1}$ for η^1-O). Consistently, magnetic susceptibility measurements (Fig. S77, ESI†) and prior first principles studies support that Mn$_3$(dobdc) exhibits antiferromagnetic coupling below approximately 27 K.63,65 Adsorbate-induced changes in magnetic coupling are also precedent in the M$_2$(dobdc) series; for example, in Fe$_2$(dobdc), the ferromagnetic exchange strength along the SBU chains is attenuated by interaction with weak adsorbates (e.g., CH$_4$, $-\Delta H_{ads} = 20$ kJ mol$^{-1}$), and the coupling becomes antiferromagnetic upon interaction with strong adsorbates (e.g., C$_2$H$_4$, $-\Delta H_{ads} = 47$ kJ mol$^{-1}$).66 Our results point to an additional stabilization of the N$_2$O adducts of Mn$_3$(dobdc) related to enhanced metal coupling, possibly leading to greater π-backbonding from Mn to N$_2$O and favoring linear η^1-N coordination. Above 27 K, however, this effect is no longer expected to significantly contribute to the adsorption interactions as the spins become randomly oriented. Consistently, the experimental binding enthalpies do not show enhanced adsorption in Mn$_3$(dobdc) relative to other MOFs in the series. Nevertheless, if a suitable Mn-based open-metal-site MOF with a higher Néel temperature were to be identified, this feature could potentially be leveraged to enhance N$_2$O binding.
Evaluating N₂O activation in the M₃(dobdc) series

N₂O activation to form M(IV)-oxo species and N₂ in MOFs has been principally studied in Fe₃(dobdc) and other Fe(n)-based frameworks. The method used to calculate the barrier in Fe₂(dobdc) differs between the initial state and this approximate transition state, as the rest of the pathway is characterized by O–N bond elongation as unbound N₂ moves away from the cluster. The approximate transition state of the reaction is rather early, with Mn–O and N–O bond lengths of 2.00 Å and 1.39 Å, respectively (Fig. 4c). From the difference in energy between the initial state and this approximate transition state, the kinetic barrier to N₂O activation in this model cluster was calculated to be approximately 113 kJ mol⁻¹. This barrier is comparable to the calculated activation barriers of 167 kJ mol⁻¹ in the Mn-based trinuclear MOF nodes and 109 kJ mol⁻¹ in the Mn-substituted polyoxo metalates discussed above. In previous studies, heating N₂O-dosed Fe₃(dobdc) at only 35 °C was sufficient to partially oxidize the material, and its complete oxidation was accomplished at 60 °C after prolonged heating. The activation barrier for Fe(n)-oxo formation in N₂O-bound Fe₃(dobdc) was calculated to be 94 kJ mol⁻¹ (enthalpy of activation = 82 kJ mol⁻¹). While we note that the method used to calculate the barrier in Fe₃(dobdc) differs
from this work, it is nonetheless a useful comparison. Although the calculated activation barrier for Mn(nv)-oxo formation in Mn$_2$(dobdc) is notably larger, the conditions that lead to Fe(nv)-oxo formation in Fe$_2$(dobdc) are mild. As such, we evaluated whether more forceful conditions (i.e., higher temperatures) could enable Mn(nv)-oxo formation in Mn$_2$(dobdc). To probe this possibility, N$_2$O adsorption measurements in Mn$_2$(dobdc) at 180 °C, 250 °C, and 300 °C were collected to identify potential N$_2$O activation through changes in the adsorption properties of the material (Fig. S72, ESI†). Fully reversible N$_2$O adsorption was measured at 180 °C; however, measurements at 250 °C and 300 °C consistently yielded anomalous negative adsorption, possibly indicating reactivity with the MOF. For further analysis, a bulk sample of Mn$_2$(dobdc) was prepared by dosing the MOF with N$_2$O at 300 °C (Section S15, ESI,†). The BET surface area of Mn$_2$(dobdc) after heating at 300 °C (1285 ± 3 m2 g$^{-1}$) under vacuum for 24 h is comparable to that of the pristine MOF (1344 ± 3 m2 g$^{-1}$), supporting that this MOF is stable at elevated temperatures. Notably, the BET surface area is significantly attenuated after N$_2$O dosing at 300 °C (896 ± 2 m2 g$^{-1}$) (Fig. S73, ESI†). The reduction in surface area is accompanied by a color change from orange to brown. PXRD measurements confirm that Mn$_2$(dobdc) retains its crystallinity after this process, although some peak-broadening was observed, indicative of partial decomposition (Fig. S74, ESI†).

Magnetic susceptibility measurements were used to characterize the product(s) resulting from high-temperature treatment of Mn$_2$(dobdc) with N$_2$O. The magnetic moments in Mn$_2$(dobdc) calculated from susceptibility measurements before ($\mu_{\text{eff}} = 5.94\mu_B$) and after ($\mu_{\text{eff}} = 5.89\mu_B$) (Fig. S80 and S81, ESI†) N$_2$O treatment at 300 °C closely match the value expected for Mn(nv) with a spin of 5/2 (5.92μ_B), indicating a lack of oxidation at the metal center after N$_2$O treatment (Fig. 5). Despite this, increased magnetic susceptibility relative to unreacted Mn$_2$(dobdc) was consistently noted in moment vs. field measurements collected at 5 K after N$_2$O treatment at 300 °C (Fig. S82, ESI†). This finding may point to reactivity between N$_2$O and the redox-active linker instead, as oxidation of the high-spin Mn(nv) sites to Mn(nv) should result in a decrease in the magnetic susceptibility.

To further characterize the reaction of Mn$_2$(dobdc) with N$_2$O, we utilized variable-temperature diffuse reflectance Fourier transform (DRIFTS) spectroscopy (Fig. S75 and S76, ESI†). A sample of Mn$_2$(dobdc) was heated under an atmosphere of N$_2$O (approx. 1 bar) from 25 °C to 300 °C and held at 300 °C for 15 h. Spectra were collected periodically throughout the duration of the measurement. New Mn–O stretches corresponding to Mn(nv)-oxo (approx. 845 cm$^{-1}$) or Mn(nv)-OH species (600–700 cm$^{-1}$) were not observed (Fig. S76, ESI†). Likewise, stretches corresponding to quinone formation due to linker oxidation were not observed (1657 cm$^{-1}$). However, a weak O–H stretching frequency at 3673 cm$^{-1}$ emerged over time, and the prominent stretch at 1406 cm$^{-1}$ reduced in intensity after prolonged treatment with N$_2$O (Fig. S75, ESI†). Overall, while the MOF appears to react with N$_2$O at high temperatures, the DRIFTS and magnetic data indicate a lack of oxidation at the metal centers. This finding suggests that the high kinetic barrier to Mn(nv)-oxo formation in Mn$_2$(dobdc) is likely prohibitive, despite its thermodynamic favorability. Elucidating the products of this MOF’s reaction with N$_2$O is the focus of ongoing work.

Conclusions

Herein, we identify features that contribute to strong binding and high uptake of N$_2$O at Lewis acidic, coordinatively unsaturated metal sites in MOFs. We utilize the Mg$_2$(btdd) and Mg$_2$(dobdc) series as model systems to facilitate comparisons, as their general structures are related but distinguished by the ligation of the open-metal-sites. In the Mg$_2$(btdd) series, the binding enthalpies of N$_2$O are generally low (<25 kJ mol$^{-1}$) and within error, despite variations in the metal identity. In contrast, the salicylate-based SBU in the Mg$_2$(dobdc) series provides a weaker, oxygen-based ligand field. N$_2$O binding strengths in these MOFs mostly mirror the Irving–Williams series, with Mg$_2$(dobdc) exhibiting the strongest adsorption of N$_2$O among all tested MOFs (−$\Delta H_{\text{ads}} = 43.8 \pm 0.6$ kJ mol$^{-1}$). Notably, Mg$_2$(dobdc) exhibits a record-breaking N$_2$O gravimetric capacity (8.75 mmol g$^{-1}$ at 1000 mbar of N$_2$O and 298 K) among MOFs. While these Lewis acidic sites are effective for N$_2$O capture, they are not necessarily selective for N$_2$O among other polar(izable) gases, such as H$_2$O. Achieving selective adsorption of N$_2$O at open-metal-sites will be the focus of future work.

Using the cluster systems to computationally model the oxidation of the Mg$_2$(btdd) series by N$_2$O, forming Mn(nv)-oxo species, we find that Mn-oxo formation is also thermodynamically favorable in Mn$_2$(dobdc) according to DFT calculations. We thus used the CI-NEB method to map a reaction coordinate for this process and determined an approximate activation barrier of 113 kJ mol$^{-1}$, which is higher than that calculated.

Fig. 5 Variable-temperature magnetic susceptibility (χ_mT) measurements of Mn$_2$(dobdc) under an applied field of 1000 Oe before (blue) and after (red) N$_2$O treatment at 300 °C. The minor increase in χ_mT of the N$_2$O-treated sample from approximately 2–40 K is attributed to slight O$_2$ contamination.
for Fe$_2$(dobdc) (94 kJ mol$^{-1}$). Although experiments indicate that this kinetic barrier is too high to be overcome in Mn$_2$(dobdc), these findings suggest that Mn-based MOFs may be promising alternatives to traditionally studied Fe-based materials for N$_2$O activation.

Overall, this work adds to the growing body of research seeking to utilize N$_2$O as a green oxidant, in which Mn-based solid-state catalysts remain relatively understudied. The results reported herein will help to drive the identification and development of other effective MOF-based sorbents to mitigate environmentally destructive N$_2$O emissions.

Author contributions

P. J. M and H. J. K. conceived the project. T. A. P. carried out the synthesis, characterization, and gas sorption measurements of MOF samples under the supervision of P. J. M. P. J. M. and M. E. Z. also synthesized MOF samples. H. J. and A. N. carried out computational studies under the supervision of H. J. K. T. J. A. carried out magnetic measurements. T. A. P. and H. J. prepared the first draft of the manuscript, which was edited and approved by all co-authors.

Conflicts of interest

P. J. M. is listed as a co-inventor on several patents related to metal–organic frameworks.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0021000 (T. A. P., T. J. A., M. E. Z., P. J. M.). Computational modeling was supported by the National Science Foundation under Award Number CBET-1846426 (H. J., A. N., H. J. K.) as well as a National Science Foundation Graduate Research Fellowship under Grant 1122374 (to A. N.). T. J. A. thanks Cornell University for financial support through a recruiting fellowship. We acknowledge the support of a Camille Dreyfus Teacher-Scholar Award to P. J. M. (TC-23-048). This work made use of a Bruker 500 MHz spectrometer, which was purchased through the National Science Foundation (CHE-1531632). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875). This work used Expanse at the San Diego Supercomputing Center through allocation CHE140073 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants 2138259, 2138286, 2138307, 2137603, and 2138296. We thank Prof. Joseph Zadrozny (the Ohio State University) for helpful discussions.

Notes and references

