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Topological insulators, a class of materials possessing bulk bandgap and metallic surface states with a topo-

logical nontrivial symmetry, are considered promising candidates for emerging quantum and optoelectronic

applications. However, achieving scalable growth and control over the parameters including thickness, carrier

density, bulk bandgap, and defect density remains a challenge in realizing such applications. In this work, we

show the scalable growth of topological insulator alloys Bi2Se(3�x)Sx and demonstrate composition-tunable

bandgap, using chemical vapor deposition (CVD). A bandgap increase of up to B40% at a sulfur concentration

of B15% is demonstrated. Correspondingly, the real part (n) of the refractive index is reduced in the alloy by

B25% relative to that of Bi2Se3. Additionally, electronic transport measurements indicate a bulk p-type doping

and field-effect tunable metallic surface states of the alloy. This work paves the way for the controlled growth of

topological insulators, free from surface-state pinning, suitable for quantum optoelectronics and spintronics

applications.

Introduction

Topological insulators (TIs), a class of materials having a bulk
bandgap and metallic states,1–4 are considered promising for
novel applications in electronics and optoelectronics.5–10 This
is due to the several interesting properties introduced by their

surface/edge states such as spin-momentum locking, resulting
in spin-polarized transport and significant suppression of
backscattering by impurities.11 The topological properties are
mainly induced by relatively strong spin–orbit coupling
interaction,12,13 and under certain conditions, may also be
augmented by applying an electric field.12

Bi2Se3 is one of the most studied three-dimensional (3D) TIs
due to its Z2 topology manifested in a band structure with a single
Dirac cone at the gamma point and a relatively large, direct
bandgap of B0.3 eV.11,14–17 However, the material is usually
heavily n-doped, likely due to shallow defect states emerging from
Se vacancies that act as donors. This results in the pinning of the
Fermi level to the conduction band, leading to bulk conduction
rather than surface-dominated conduction of charge carriers. This
issue is one of the main challenges in device applications of Bi2Se3

and other TIs.11,14,15,18

The pursuit of TI materials having large bulk bandgaps also
stems from their importance for future room-temperature spintro-
nic applications.1,19,20 In this respect, alloying presents a promising
means of tuning the electronic properties of Bi2Se3,15,21–23 with the
potential to address both the problems of Fermi-level pinning
and bandgap engineering. By utilizing a chemical composition
of higher stability in the alloy, the density of natural chalcogen
vacancies decreases and suppresses the natural n-doping of
Bi2Se3.

a Faculty of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel.

E-mail: doron.naveh@biu.ac.il
b Institute for Nanotechnology and Advanced Materials, Bar-Ilan University,

Ramat-Gan 52900, Israel
c Department of Physics, School of Applied Mathematical and Physical Sciences,

National Technical University of Athens, Athens, Greece
d Department of Physics, Faculty of Exact Sciences, Bar-Ilan University,

Ramat-Gan 52900, Israel
e Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv,

Tel Aviv 6997801, Israel
f Department of Mechanical and Industrial Engineering,

University of Massachusetts, Amherst, USA
g Materials Science and Engineering Graduate Program,

University of Massachusetts, Amherst, USA
h Graphenea Headquarters, Spain

† Electronic supplementary information (ESI) available: Bi2Se(3�x)Sx synthesis,
mass spectroscopy mapping of the grown Bi2Se(3�x)Sx crystals, diffusion processes
of chalcogen atoms, Raman spectroscopy, X-ray diffraction, lattice parameters–
sulfur content relation by DFT calculations, reflection measurements, optical
constants, and temperature-dependent resistance measurements. See DOI:
https://doi.org/10.1039/d3tc03428c

Received 20th September 2023,
Accepted 15th January 2024

DOI: 10.1039/d3tc03428c

rsc.li/materials-c

Journal of
Materials Chemistry C

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 6
/1

1/
20

25
 1

0:
49

:1
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0001-8348-6971
https://orcid.org/0000-0003-4631-6257
https://orcid.org/0000-0002-6006-0748
https://orcid.org/0000-0002-4328-9591
https://orcid.org/0000-0002-0330-0813
https://orcid.org/0000-0003-1091-5661
http://crossmark.crossref.org/dialog/?doi=10.1039/d3tc03428c&domain=pdf&date_stamp=2024-01-25
https://doi.org/10.1039/d3tc03428c
https://rsc.li/materials-c
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3tc03428c
https://pubs.rsc.org/en/journals/journal/TC
https://pubs.rsc.org/en/journals/journal/TC?issueid=TC012008


2724 |  J. Mater. Chem. C, 2024, 12, 2723–2729 This journal is © The Royal Society of Chemistry 2024

The implementation of practical electronic and optoelectro-
nic devices requires repeatable growth of high-quality active
materials with uniformity over large areas. In this context,
chemical vapor deposition (CVD) is a well-known method
for scalable deposition of transition metal dichalcogenides
(TMDCs),24,25 transition metal oxides (TMOs) such as wafer-
scale single-layer amorphous MoO3,26,27 and has also been
demonstrated on chalcogenide optical materials.28 CVD grown
Bi2Se3 crystals, with sizes up to 20 mm, were previously reported
as well,29 yet the synthesis of alloyed Bi2Se3 has primarily relied
on solution-processed techniques and molecular beam epitaxy
(MBE).15,21,30–32

Here, we show a CVD growth of Bi2Se3 alloyed with sulfur on
various substrates, from isolated crystals to continuous films,
uniform on a wafer-scale and with a crystal domain size up
to B50 mm. The alloyed crystals present a wider bulk bandgap

(up to 40% larger than pure Bi2Se3), p-type doping, and field-
effect tunable Fermi-level while maintaining the original struc-
tural and topological properties of Bi2Se3.

Results and discussion

Continuous layers and isolated Bi2Se(3�x)Sx crystals were grown
by CVD on various substrates (see Table 1), starting from
Bi2Se3 powder (Alfa Aesar – 99.999%) and sulfur powder
(Sigma Aldrich – 99.5%), as illustrated schematically in
Fig. 1a. In short, the growth of Bi2Se(3�x)Sx was carried out in
a quartz tube at the temperatures specified in Table 1 for the
Bi2Se3 precursor and at 140 1C for the sulfur, at a base pressure
of 50 mTorr and N2 flow rate of 5 sccm (see the ESI† for full
synthesis details). The temperature of the substrate (Table 1)

Table 1 Bi2Se(3�x)Sx growth parameters and morphology. See Fig. S1 for SEM images of the various morphologies

Substrate

Growth
temperature
[1C]

Growth
time
[min.]

Substrate
temperature
[1C] Morphology

Si/SiO2 570 10 440 Isolated hexagonal crystals with growth direction perpendicular to the sub-
strate (Fig. S1a, ESI)

Sapphire 580 180 450 Hexagonal crystals on a scale of B50 mm clustered in vertical growth (Fig. S1b,
ESI)

Monolayer graphene on Si/SiO2 580 60 460 Isolated hexagonal crystals on a scale of up to 15 mm (Fig. S1c, ESI)
120 440 Isolated hexagonal crystals on a scale of up to 20 mm (Fig. S1d, ESI)
180 410 Continuous layers (Fig. S1e, ESI)

Fig. 1 Growth process and structural characterization of CVD-grown Bi2Se(3�x)Sx. (a) Schematic illustration of the CVD system and growth process. (b)
HRSEM images of the hexagonal grown Bi2Se(3�x)Sx crystals. (c) Raman spectra of exfoliated Bi2Se3 (blue), bulk and monolayer Bi2Se(3�x)Sx grown by CVD
(red and yellow respectively), and exfoliated Bi2S3 (green). (d) HRSEM image of monolayer Bi2Se(3�x)Sx grown by CVD. (e) AFM topography of monolayer
Bi2Se(3�x)Sx grown by CVD, showing (inset) a 1.5 nm step thickness of the flake.
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was controlled by its distance from the Bi2Se3 precursor and the
temperature at the center of the furnace.

The representative morphology of isolated crystals is pre-
sented in Fig. 1b, showing hexagonal domains on a scale of up
to 50 mm. However, the morphology depends drastically on the
growth substrate and exhibits large variations in the growth
products. On a substrate of Si/SiO2, the hexagonal crystals are
oriented vertically to the surface, having minimal contact area
with the substrate (Fig. S1a, ESI†). On sapphire substrates,
multiple crystalline domains grow laterally and vertically from
a single seed and overlap each other (Fig. S1b, ESI†). In high-
vacuum conditions, the growth is dominated by thin crystals
and adlayers forming crystal seeds in the principal crystalline
directions. The minimal measured thickness is attributed to
such a monolayer and was found to be 1.5 nm (see the SEM
micrograph and AFM topography in Fig. 1d and e). Interest-
ingly, the growth on graphene-covered Si/SiO2 is lateral (Fig. S1c
and S1d, ESI†) and tends to form continuous films (Fig. S1e,
ESI†). The latter is probably a result of reduced surface

reactivity and enhanced diffusivity of the reactants on the
surface of graphene. In all cases, the obtained alloys maintain
high uniformity (Fig. 2 and Fig. S2, ESI†), owing to the high
diffusivity of sulfur in Bi2Se3 and its ability to passivate existing
vacancies (see Fig. S3 and associated text, ESI†).

The Raman signature (Fig. 1c) of bulk and monolayer
Bi2Se(3�x)Sx (red and yellow lines, respectively) show similar
peak positions, with distinct broadening of the peaks in the
monolayer crystal compared to that of a bulk crystal. Both thin
and thick alloys show shifted spectra relative to pure exfoliated
Bi2Se3 (Fig. 1c, blue line), as specified in Table S1 (ESI†). The
Raman spectrum of orthorhombic Bi2S3 (Fig. 1c, green line)
differs distinctly from the rhombohedral crystals, showing
characteristic Raman modes at B101 and B189 cm�1 that do
not appear in the grown alloy materials. This is further sup-
ported by the X-ray diffraction (XRD) pattern of the alloyed
samples in which the peaks show proximity to those of the
reference exfoliated Bi2Se3 sample and agree with the calcu-
lated XRD of the rhombohedral structure (Fig. S4, ESI†).

Fig. 2 Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis. Chemical lateral imaging of Bi2Se(3�x)Sx flakes using (a) BiSe�, (b) BiS�,
(c) BiSeS�, and (d) S� ions. (e) Signal intensity of selected ions as a function of sputtering time (depth).

Fig. 3 (a) Illustration of the shift in the crystallographic planes of the alloyed samples relative to those of Bi2Se3 (the crystallographic plane 006 is given as
an example). (b) Tauc plots for the direct bandgap of exfoliated pure Bi2Se3 and sulfur alloyed Bi2Se3 samples. (c) Extracted real (n, blue line) and imaginary
(k, gray line) parts of the refractive index of Bi2Se2.64S0.36.
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From the analysis of XRD measurements of the alloyed
crystals (Fig. 3a and Fig. S4b, ESI†), the variation in the c-axis
spacing was correlated with structurally optimized results of
Density Functional Theory (DFT) calculations resolved by rela-
tive sulfur concentration (see ESI† for details). In a random
alloy, the calculated structure predicts a trend that can be
fitted to c = �4 � 10�5[%S]2 � 6.5 � 10�3[%S] + 28.669 Å
(Fig. S5, ESI†), where the constant coefficient (28.669) is the
experimental c value for pure Bi2Se3. The data for two alloys on
monolayer graphene on Si/SiO2 (90 nm) are summarized in
Table 2 relative to Bi2Se3.

The variation in the bandgap values of these samples is
given in Table 2. The values were determined by applying the
Tauc method on the quantity ~a, which was obtained by employ-
ing the Kubelka–Munk (K–M) function (eqn (1))33,34 on the
reflection spectra of the samples:

~a ¼ a
S
¼ 1� R1ð Þ2

2R1
(1)

where a and S are the absorption and scattering coefficients

respectively, and R1 ¼
Rsample

Rstandard
is the reflection of the sample.

Pure exfoliated Bi2Se3 yielded a direct bandgap of 0.31 eV
(Fig. 3b), matching with the data reported in the literature for
Bi2Se3. The calculated direct bandgap values of the alloyed
samples are summarized in Table 2. Correlating the sulfur
content with the calculated bandgaps, we find that the bandgap
increases with higher sulfur content in the sample. Particularly,
replacing 15.2% of the chalcogen content with sulfur results in
a nearly 40% larger bandgap than that of Bi2Se3.

Fig. 3c shows the real (n) and imaginary (k) parts of the
complex refractive index of Bi2Se2.64S0.36 obtained by fitting the
experimental reflection spectrum with a multiple Drude–Lor-
entz oscillator model, as detailed in Fig. S6 and Table S2 (ESI†).
The values of n at the wavelength corresponding to the bulk
energy bandgap are compared for the pure (6.34)35 and alloyed
(4.90) Bi2Se(3�x)Sx TIs and are qualitatively in compliance with
the Moss relation (Table 3).36 However, the metallic surface
states result in the absence of an absorption edge in TIs,
rendering the Moss relation as undefined. In addition, in

highly doped samples, where the Fermi level is pinned to the
conduction band, a Moss–Burstein shift is manifested due
to the metallicity of the bulk.37–39 Interestingly, the losses
manifested in the imaginary part of the refractive index are
significantly smaller than previously reported chalcogenide
topological insulators.7,35,40

Further characterization of the alloy TIs was exercised by
measuring their electrical characteristics. Devices were fabri-
cated on 300 nm Si/SiO2 (Fig. 4a) with metallization of Ti/Au
contacts. Room temperature I–V measurements at varying gate
voltages show an effective field effect (Fig. 4b and c), with some
nonlinear character arising from a metal-semiconductor inter-
face at the contacts. This is indicative of an unpinned Fermi-
level in the alloyed samples as well as a narrow bulk bandgap
semiconductor rather than the metallic behavior of highly doped
topological insulators. Furthermore, temperature-dependent mea-
surements (see the ESI† for details) demonstrate a typical metallic
behavior, where the resistance increases with increasing tempera-
ture (Fig. 4c inset), as opposed to a semiconductor. This char-
acteristic metallic behavior stems from a decrease in the mean
free path of electrons between collisions as temperature increases.
Since the bulk of the alloys exhibits a bandgap that was measured
optically, the metallic transport is exclusively attributed to surface
states, implying that the topological phase is maintained after
alloying with sulfur. Yet, the origin of the varying temperature
coefficient of resistance remains unclear. Notably, monolayer
samples are highly resistive, indicating that the topological phase
is not supported in monolayer Bi2Se(3�x)Sx. We associate the
electrical resistance with the contact interface; however, at this
stage, these observations are not conclusive and may require
further investigation.

Conclusions

We have grown Bi2Se(3�x)Sx by CVD from powder precursors on
several substrates, obtaining isolated crystals and continuous
films. The formation of the latter is promoted by graphene-
covered substrates, probably due to enhanced diffusion and
reduced surface chemical reactivity. Additionally, smaller
Bi2Se(3�x)Sx crystals tend to have higher sulfur content (12–15%).
We associate this trend with the increased surface area of smaller
crystals, leading to higher sulfur diffusion. Optical measurements
show that the bulk energy bandgap was tuned by B40% with a
sulfur content of B15%, a reasonable value compared with, e.g.,
InGaAs.41 The bandgap tuning affected the optical constants and
reduced the n value of Bi2Se2.64S0.36 by B25% compared to that of
Bi2Se3, in qualitative agreement with the Moss relation.36 Moreover,
the alloy is characterized by remarkably low losses. I–V measure-
ments demonstrate a field effect tuning of the device and a proven
unpinned Fermi-level of Bi2Se(3�x)Sx. The field effect tuning and the
absence of Moss–Burstein shift indicate a lower density of defects.
Interestingly, the Fermi-level resides on the valence band in the
case of the alloyed TI, rather than in the case of pure Bi2Se3.
Furthermore, the temperature dependence of the resistance reveals
a clear metallic behavior that stems from surface state-dominated

Table 2 c-axis spacing, [%S] and Eg values summary for pure Bi2Se3 and
sulfur alloyed Bi2Se3 samples

Sample c [Å] [%S] x Chemical formula Eg [eV]

Bi2Se3 28.669 0 0 Bi2Se3 0.31 � 1.42 � 10�3

Bi2Se(3�x)Sx #1 28.586 11.9 0.36 Bi2Se2.64S0.36 0.38 � 1.42 � 10�3

Bi2Se(3�x)Sx #2 28.561 15.2 0.46 Bi2Se2.54S0.46 0.43 � 2.74 � 10�3

Table 3 n at the wavelength corresponding to the bandgap for pure and
sulfur alloyed Bi2Se3

Material Eg [eV]/lg [mm]

n at the corresponding bandgap

Moss relation36 Experimental

Bi2Se3 0.31/4.0 4.3 6.3435

Bi2Se2.64S0.36 0.38/3.26 4.1 4.90 (this work)
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transport. The coexistence of bulk bandgap and metallic trans-
port is a conclusive proof of the conservation of the original
topological properties of Bi2Se3 in the alloys. This work paves
the way for the controlled growth of topological insulators, free
from surface-state pinning, suitable for quantum optoelectro-
nics and spintronics applications.
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