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Host—guest complexes of perylene bisimide-based
metallacage and fullerenes for efficient
photoinduced charge separationt

O. A. Stasyuk, @22 M. Sola @ *® and A. J. Stasyuk (2 *@°

The discovery of coordination-driven self-assembly has greatly expanded the field of organic
macrocyclic compounds. This approach enables the construction of precise supramolecular complexes,
known as metallacages, assembled from organic ligands coordinated with metal centers. Metallacages
come in various sizes and shapes, making them capable of hosting guest molecules of different sizes.
In this work, we report the ground and excited state properties of non-covalent complexes between
various fullerenes (Cgo, C70. SczN@Cgo, SczCH@Cgo, and Sc;0:@Cgp) and PtgPBl; metallacage, com-
posed of perylene bisimide units and organoplatinum nodes. These complexes exhibit thermo-
dynamically favorable photoinduced charge transfer from endohedral metallofullerenes to metallacage
that occurs within picoseconds. Among the systems considered, the PtgPBls>ScsN@Cgo complex
stands out as the most promising candidate for use in photovoltaics due to its ability for fast charge
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Introduction

Organic macrocyclic compounds, such as crown ethers," cryp-
tands,” and cavitands®* became widespread and firmly estab-
lished in the routine life of chemists almost immediately
after their discovery.” Due to their ability to engage in multiple
non-covalent interactions and selectively bind small cationic
species, they are widely used as phase transfer catalysts,®’
specific metal cation sensors,®® or even as compounds that
facilitate ion transport across cell membranes (ionophore) in
biological applications.'® Cyclodextrins are another type of
macrocyclic compound composed of glucopyranoside sugar
molecules bound together in rings of various sizes. Depending
on their size, they can accommodate neutral or charged
molecules.'" This ability, in combination with very low toxicity,
allows cyclodextrins to find broad applications as drug delivery
agents in numerous official approved medicines.'*™* However,
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separation and slow charge recombination.

due to the narrow cavity size, their host-guest chemistry is
limited to small molecules and often has restricted use in polar
protogenic environments. Porous organic cages'®> with shape-
stable structures are of particular interest in supramolecular
chemistry due to their internal cavities of different size and
ability to bind to guest molecules, such as fullerenes.'®™®
Charge-separated states with long lifetimes were observed
in porphyrin-based organic cages with encapsulated Cgo/Cyo
fullerenes.'”"*°

The discovery of coordination-driven self-assembly has
significantly expanded host-guest chemistry.>*”**> This power-
ful tool allows for precise construction of supramolecular
complexes, such as metal-organic cages or metallacages, in
various shapes and sizes.”®>* Metal-organic cages are molecu-
lar assemblies of organic ligands coordinated with either metal
cations or metal oxide clusters of different nuclearities, result-
ing in architectures with inherent porosity. Similar to other
macrocyclic compounds, metal-organic cages are capable of
binding various organic guests. At the same time, since the size
and shape of metal-organic cages can vary broadly, the size of
the guest molecule can also differ significantly.>>2°

Since the majority of metallacages are constructed from
rigid organic fragments, enhancing non-covalent interactions
is a natural approach to facilitate their hosting ability.>”®
Therefore, the ideal building blocks for preparation of metalla-
cages with promising host-guest chemistry are extended n-
conjugated organic ligands, such as polycyclic aromatic
hydrocarbons,?** porphyrins,®*° or rylene bisimides.*”*°
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In 2013, Wiirthner and co-workers first synthesized and
characterized a giant tetrahedral host (M,L¢), assembled from
octahedral Fe(u) ions and linear perylene bisimide (PBI) dyes
with 2,2"-bipyridine groups.*! The reported cage, with an edge
length of 3.9 nm and an estimated internal volume of more
than 950 A%, exhibits broad and strong absorption in the visible
region (up to 650 nm). Moreover, it demonstrates a total of
7 highly reversible electrochemical oxidation and reduction
waves. The ability to encapsulate Cgo fullerene was demon-
strated through UV-Vis and NMR spectroscopy, as well as mass
spectrometry. It is important to note that spectroscopic
measurements suggest that each cage can accommodate two
fullerenes. The evolution of this work led to the synthesis of
a structurally similar metallacage in which Fe(u) ions were
replaced by Zn(n) ions.*” This replacement dramatically
enhanced the cage’s fluorescence quantum yield. The new cage
also demonstrates the ability to accommodate aromatic guests,
coronene and perylene, with host-guest ratio of 1:2 and 1:3,
respectively.

In 2020, Fang, Stang, and their co-workers reported a novel
supramolecular complex constructed through the coordination-
driven self-assembly of o-tetrapyridyl perylene bisimide with cis-
(PEt;),Pt(OTf),.*> The synthesized metallacage (PtgPBI;) has the
shape of a trigonal prism and possesses an inner cavity with a
diameter of 14.7 A. A cavity of this size is suitable for accommo-
dating both Ceo and Cs, fullerenes, providing free rotation of the
fullerenes inside it. However, as has been demonstrated, the cage
exhibits a greater affinity towards C,,. This, combined with the
possibility of fabricating monomolecular membranes, opens up
broad application perspectives for PtsPBI; and its host-guest
complexes.

In this work, we report a theoretical study of the electronic
and photophysical properties of the host-guest complexes of
PtsPBI; and various fullerenes. We conduct a comprehensive
analysis of the photoinduced electron transfer (PET) occurring
in the complexes by means of DFT/TDA-DFT method. The
obtained results show that the PtsPBI; metallacage exhibits a
strong electron acceptor nature. The complexes formed with
fullerene guests can exhibit either intense fluorescence or
pronounced PET properties.

Computational methods

Geometry optimizations were performed utilizing the DFT
BLYP***® exchange-correlation functional along with the
empirical D3(B]) dispersion correction®®*” and def2-SVP basis
set.”®* The calculations were performed within the ORCA 5.0.3
program.>>*' Energy decomposition analysis (EDA) at BLYP-
D3(BJ)/TZP level was performed using the Amsterdam density
functional (ADF) program.®” For electronic structure calcula-
tions and vertical excitation energies, the TDA formalism®?
with the range-separated CAM-B3LYP functional®® and def2-SVP
basis set*®*® was employed in Gaussian 16 (rev. A.03).>> Popula-
tion analysis was performed within Mulliken,”® Léwdin,””
Hirshfeld,”® and CM5° schemes. Solvent effects were accounted
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using a COSMO-like polarizable continuum model (C-PCM) with
acetonitrile as a solvent (dielectric constant ¢ = 35.69).°>*" Topo-
logical analysis of the electron density distribution was conducted
using the “quantum theory of atoms in molecules” (QTAIM).
Properties of electron density at the bond critical points (BCPs),
such as electron density [p(r)], its Laplacian [V>p(r)], potential
energy density [V(r)], kinetic energy density [G(r)], and total
electron energy density [H(r)] were evaluated using the AIMALL
suite.”* Chemcraft 1.8 program® was utilized for molecular
structures and frontier molecular orbitals visualization. Further
methodological details, including analysis of excited states, calcu-
lation of electron transfer rates, reorganization and interaction
energies are available in the ESL7

Results and discussion

Ground state properties of PtsPBI; metallacage and its
complexes with Cgo/C5, fullerenes

The encapsulation of Cg¢ and C, fullerenes in PtsPBI; metal-
lacage was experimentally carried out in acetone solution and
robustly confirmed by a combination of multinuclear NMR and
mass-spectrometry.”> A series of NMR measurements taken
over an extended period of time for a very dilute solution of
PtcPBI; O Cg¢ and PtsPBI; ©C,, complexes revealed no indica-
tion of complex instability. The electronic complementarity
between the metallacage and fullerenes, along with their ability
to undergo reversible electrochemical oxidation/reduction sug-
gests strong electronic communication between the units in
both ground and excited states. However, cyclic voltammetry
and spectroscopic studies indicated that fullerene encapsula-
tion has only a limited effect on the electronic nature of the
metallacage, suggesting weak electronic communication between
the host and guest units.

To gain deeper insights into the behavior of the PtsPBI;
metallacage and the fullerenes in their free state and within the
corresponding host-guest complexes, a detailed comparison
of their electronic properties was conducted. The optimized
ground state (GS) geometries of the PtsPBI;D>Cq, and
PtsPBI; O C,, complexes are shown in Fig. 1.

It is well known that fullerenes possess strong electron-
acceptor properties. As depicted in Fig. 1, the lowest unoccupied
molecular orbital (LUMO) of the metallacage is almost 1 eV lower
in energy than LUMO of Ceo/Cyo, indicating its exceptionally
strong electron-acceptor capabilities. In the PtsPBI; >Cq, and
PtsPBI; 5C,, complexes, the LUMO remains localized on the
cage, and its energy is nearly identical to that of the isolated
metallacage. The nature of the highest occupied molecular orbital
(HOMO) is somewhat different in the complexes with Cgo and Cy,.
In PtgPBI; D> Cg,, the HOMO is delocalized over both host and
guest units in a ratio of 0.64:0.36, respectively. Meanwhile, in
PtsPBI; O C5,, the degree of HOMO localization increases to a ratio
of 0.88:0.12. Thus, the destabilization of the HOMO observed
during the complex formation is attributed to its partial deloca-
lization over the fullerene units. Given the strong electron-
acceptor properties of the metallacage, we checked the charge

This journal is © The Royal Society of Chemistry 2024
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Fig. 1 Structure of PtgPBlz>Cgo and PtgPBlz>Cy;9 complexes. HOMO
and LUMO energies of PtgPBls;, Cgo, and Cy in free state and in the
corresponding complexes.

separation between host and guest units in the GS. However,
population analysis performed within commonly used schemes
did not reveal any significant charge transfer between the units,
charge separation in GS does not exceed 0.1 e (Table S1, ESIT).
Thus, the slight differences in orbital energies observed upon
complexation, coupled with the absence of GS charge separation,
validate the limited electronic communication between the metal-
lacage and fullerenes, which has been previously observed in the
electrochemical and spectroscopic studies.*

To assess the stability of the complexes, we calculated the
interaction energy (AE;,) between the PtsPBI; cage and Cg/Co
units, as well as the deformation energy (A Eq.f) associated with
the distortion of the units from their equilibrium geometries to
the geometries they adopt in the complexes. For PtsPBI; D Cgo
and PtgPBI; S Cyg, AEiy is —61.5 and —78.3 kecal mol ', while
AEges is 5.4 and 9.8 kecal mol ', respectively. The most of the
deformation energy is attributed to the cage deformation, with
deformation of the fullerenes contributing less than 10%.
To analyze the nature of the host-guest interactions, we
employed the Morokuma-like interaction energy decomposi-
tion analysis® implemented in the ADF program.®> The EDA
decomposes the interaction energy into four components: elec-
trostatic (AEesear), Pauli repulsion (AEp,y;), orbital interactions
(AE,;), and dispersion correction (AEgjsp). This decomposition
enables us to assess the role of the specific interactions in the
systems.

Table 1 represents the EDA analysis results showing similar
nature of host-guest interactions in the complexes. Dispersion
dominates (63%), followed by electrostatic attraction (24-25%),
and orbital interactions (12-13%). The destabilizing term
(AEpau) is 92.6 for PtgPBI;DCg and 112.5 kcal mol ' for
PtsPBI; O C,,. The complex with Cy, also has higher deformation

This journal is © The Royal Society of Chemistry 2024
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energy compared to PtsPBI;DCgo. Overall, based on the com-
plexation energy values, PtsPBI; © C,, complex is more stable than
Pt¢PBI; D Cg, confirming the greater cage affinity to C,, observed
in the experiment.*?

We used QTAIM calculations®® to analyze the host-guest
interaction topology in the PtgPBI3>Cgo and PtsPBI;DC5,
complexes, considering various topological parameters at BCPs
(Table S2, ESIT). Numerical values of these parameters can
provide information on the nature of interactions.®® In both
complexes, the analysis revealed only one type of interactions:
C---C contacts between fullerene and host cage linkers.
These interactions can be described as weak, closed-shell
non-covalent interactions. Considering the n-conjugated nature
of the guest and PBI units, the C- - -C contacts can be attributed
to m---m interactions. No interactions of fullerenes with other
metallacage parts were observed due to their spatial separation.
In PtgPBI; D Cg, 11 BCPs for =w- - -1 interactions were detected,
while replacing Ceo with Cyq increases the number of BCPs to 15
in PtgPBI3; O C,o. QTAIM molecular graphs for both complexes
are depicted in Fig. S1, ESL{ Considering the similar electron
density characteristics at BCPs in both complexes but the
higher number of BCPs in PtsPBI; O C,,, the results correlate
well with its stronger interaction energy. The non-covalent
interaction (NCI) index analysis®” showed qualitatively similar
NCI isosurface arrangements in both complexes, resembling
the metallacage shape. In particular, three distinct areas
between PBI linkers and fullerene were observed. The reduced
density gradient (RDG) plots and NCI isosurfaces are presented
in Fig. S2 and S3, ESL.

Singlet excited states of PtsPBI; D Cgo and PtsPBI; ©C;,
complexes

Our results revealed relatively low LUMO energy for both the
PtsPBI; cage and Ceg0/C5o fullerenes: —3.82 and —2.71/—2.80 eV,
respectively (Fig. 1). A very low-lying LUMO of Pt¢PBI; suggests
its potential as a strong electron acceptor, capable of oxidizing
fullerene under photoexcitation. However, study by Fang,
Stang, and co-workers indicates only marginal changes in the
UV-Vis spectrum of the cage upon fullerene inclusion.*® To get
deeper understanding of the processes taking place under
photoexcitation, we performed simulations of excited states
using the TDA-DFT method at the CAM-B3LYP-D3(BJ)/def2-
SVP//BLYP-D3(BJ)/def2-SVP level of theory (see ESIT for compu-
tational details). The TDA-DFT performs well in reproducing
experimental absorption and emission spectra of a series of
medium-sized conjugated molecules®® and is computationally
feasible method for excited state simulations of large systems.
Moreover, the range-separated CAM-B3LYP functional per-
forms well for prediction of excitation energy and is particularly
effective in modeling charge transfer processes in fullerene-
based complexes, yielding a mean absolute percentage error of
6.3% for charge transfer rate values.®

The complexes were split into two fragments: PtsPBI; and
Ce0/C7o fullerene. We examined the electron density distribu-
tion for the 40 lowest singlet excited states. These states can be
categorized into three types: (1) locally excited (LE) states, in
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Table 1 EDA results (in kcal mol™) for PtgPBls > Cgo and PtgPBl3 > Cyo complexes at the BLYP-D3(BJ)/TZP level of theory®

Energy terms AEqer
Complex AEpauii AEestat AEg; AEgisp AE;jn: Cage Fullerene AEcomplex
PtePBI; 5 Cq 92.57 —37.17 (24%) —19.88 (13%) —97.04 (63%) —61.52 5.14 0.56 —56.10
PtoPBI; > Cq 112.52 —47.15 (25%) —23.39 (12%) —120.27 (63%) —78.29 9.41 0.40 —68.48

¢ Relative values (in parentheses) are given as a percentage and express the contribution to the sum of all attractive energy terms: A Eejgear + AEo; +

AEgisp. Complexation energy: AEcompiex = AEint + AEgef.

which the exciton is mostly localized on either fullerene
(LE®"**Y or PtsPBI; (LE"°*") with charge separation (CS) below
0.1 e; (2) charge transfer (CT) states with significant charge
separation (CS > 0.8 e); and (3) mixed states, involving both LE
and CT contributions (0.1 e < CS < 0.8 e).

The gas-phase energies of the 40 lowest-lying singlet excited
states of PtgPBI3; D> Cgo range from 2.50 to 3.28 eV. The first
excited state, at 2.50 eV, corresponds to the LES"** state with
exciton localization on Cgq (Table 2). The LEP° state was found
at 2.73 eV, i.e. 0.23 eV higher in energy compared to LES**', The
lowest CT state with 0.81 e transferred lies at 2.98 eV and can be
described as [PtgPBI;]” ©[Ceq]". In the case of PtsPBI; > Cy,, the
first 40 excited states have the energy range from 2.29 to 3.14 eV.
The lowest-lying excited state, at 2.29 €V, is the LES"**" state. The
energy of the LE™® state is very similar to that in PtgPBI; D Cgp
and equal to 2.71 eV. Since the HOMO energy of C,, is slightly
higher than that of Cgy, this fullerene should have a slightly
improved electron-donor capability. Indeed, the energy of the CT
state is 2.63 €V, which is 0.35 eV lower compared to the CT state in
the complex with Cg. Similar to PtgPBI; D Cgy, this state results
from an electron transfer from C,, fullerene to the metallacage.

To understand how polar environment affects electronic
excitations, we used a COSMO-like model®®®"7~7 with acet-
onitrile solvent. For the PtgPBI; D Cqo and PtgPBI; > C,, com-
plexes, GS dipole moments are 0.87 and 2.11 D, respectively.
Their rather small values are due to symmetric structure of
the metallacage and fullerene fragments. With Pt(u) centers,
o-tetrapyridyl PBI and triflate counterions, both complexes are
expected to have high solvation energies in the GS. In particu-
lar, their solvation energies are similar and equal to —5.29 and
—5.28 eV. The change in the dipole moment (Ay) due to GS —
LES"*SYLEH°" excitations is small and hardly exceeds 1 D,
keeping the solvation energies in both LES"** and LE"° states
similar to those in the GS. Solvation data for both complexes
are given in Table S3, ESL.¥ The dipole moment changes from
GS to CT states are usually much larger than those to LE states
due to charge separation. In our study, PtsPBI3;>Cgy and
PtsPBI; © C,, showed relatively small changes, namely 11.84
and 14.47 D, due to high symmetry and efficient charge
delocalization. Solvation of the complexes stabilizes CT states,
lowering their energies from 2.96 to 2.68 eV and from 2.63
to 2.31 eV for PtgPBI3DCso and PtsPBI;DC,,, respectively.

Table 2 Excitation energies (E,, €V), main singly excited configuration (HOMO(H)-LUMO(L)) with the largest squared coefficient in the configuration-
interaction (Cl coef.), oscillator strength (f), extent of charge transfer (CT, e) or localization of exciton (X) computed for PtgPBl3s > Cgq and PtgPBlz 5 C5o

complexes in the gas-phase (VAC) and acetonitrile (ACN)

Supramolecular system

PtsPBI; O Cqo PtsPBI; > C5,
VAC ACN VAC ACN
LEGuest (CGO/C70)
E, 2.500 2.499 2.289 2.284
Transition (CI coef.) H—2-L+3 (0.20) H—1-L+4 (0.24) H-L+3 (0.45) H-L+3 (0.48)
f <0.001 0.001 <0.001 <0.001
X 0.922 0.902 0.930 0.908
LEF* (Pt¢PBI;)
E, 2.727 2.698 2.711 2.678
Transition (CI coef.) H-8-L (0.13) H-5-L+2 (0.20) H-3-L+2 (0.14) H-3-L+1 (0.25)
f 0.015 0.027 0.205 0.207
X 0.865 0.868 0.888 0.885
Most intense absorption band
E, 2.792 2.741 2.789¢ 2.739
Transition (CI coef.) H-L+2 (0.28) H-5-L+1 (0.27) H—6-L+5 (0.05) H-5-L (0.23)
f 1.787 2.199 1.266 1.193
Localization Pt¢PBI; Pt¢PBI; Pt¢PBI; PtPBI;
X 0.887 0.860 0.754 0.833
CT (Cgo/C70 — PtePBI,)

E, 2.982 2.678 2.632 2.305
Transition (CI coef.) H—2-L+2 (0.17) H—4-1+2 (0.21) H—2-L+2 (0.23) H-1-L+1 (0.47)
f 0.030 0.027 0.009 0.006
CT 0.813 0.885 0.858 0.928

“ Mixed state with significant contributions of both LE and CT.
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Table 3 Gibbs energy (AG®, in eV), electronic coupling (IV4l, in eV), reorganization energy (4, in eV), Huang—Rhys factor (Sef), rates (kx, in s} and
characteristic time (z, in ns) for CS and CR processes in PtgPBlz > Cgo and PtgPBl; > C,o complexes in ACN

Complex PtgPBI; D Cy Transition AG°“ [Vl A Set ky T

PtPBI; O Cqp LECUsst -, CT 0.179 2.34 x 1073 0.744 1.26 4.95 x 10° 202.1
CT — GS —2.678 2.87 x 1072 0.724 1.15 7.32 x 10° 136.6

PtsPBI; 5 Co, LEC"st - CT 0.021 2.42 x 1073 0.683 1.12 3.54 x 10° 2.8
CT - GS —2.305 1.24 x 102 0.680 1.10 3.23 x 10’ 31.0

“ Gibbs energy difference between the given states. b Effective value of the Huang-Rhys factor Seg = Ai/hwegr, Where fiweg is set to 1600 cm™ .

Thus, stabilization of the CT states significantly reduces the
energy gap between the CT and the lowest excited state
(LES"**"), making CT population possible from this state.

The method of Ulstrup and Jortner”’* was employed to
estimate charge separation (kcs) and charge recombination (kcg)
rates using four parameters, such as electronic coupling of initial
and final states (V;), solvation reorganization energy (4), reaction
Gibbs energy (AG°), and Huang-Rhys factor (Se). We used an
effective frequency of 1600 cm ™", corresponding to C—C bond
stretching. Testing the effect of the selected frequency on the rate
did not reveal significant changes (Table S4, ESIt). The kcs and
kcr rates calculated in ACN are listed in Table 3.

In Table 3, PtsPBI; D Cqo complex shows charge separation
with positive Gibbs energy, taking place in the inverted Marcus
region (JAG°| > 7). The rate of this process is 4.95 x 10° s~
At the same time, charge recombination (CT — GS) occurs in a
deep inverted Marcus region (JAG®| » A). The rates for CS and
CR differ by less than two times, with CR surpassing CS. The
predicted kcs/kcr ratio suggests that the CT state formation is
unlikely in PtgPBI3 > Cgo. In turn, PtgPBI; >C,, has near-zero
Gibbs energy for CS, therefore this process is more thermo-
dynamically favorable than in Pt¢PBI;>Cgo. The CS and CR
rates for PtsPBI;DC,, are significantly faster compared to
PtsPBI; O Cg, the processes occur in nanoseconds (2.8 ns for
CS and 31.0 ns for CR). The slower CR than CS implies a
detectable CT state lifetime, although formation of the CT state
has not been observed in UV-Vis experiment.** The fluorescence
measurements for empty metallacage and both complexes with
fullerenes show minimal difference in fluorescence decay. The
amplitude weighted average fluorescence lifetimes are 2.42, 2.56,
and 2.71 ns for PtsPBI;, PtsPBI; D Cg, and PtsPBI; O C5,, respec-
tively. Thus, radiative deactivation of excited state is much faster
than CT state generation for PtgPBI; D Cg (2.6 ns vs. 202.1 ns) and
comparable for PtgPBI; ©Cy, (2.7 1S vs. 2.8 ns).

Hence, the absence of experimental detection of the CT state
in the studied complexes results from faster radiative deac-
tivation (fluorescence) than CT state formation. Notably, in
Pt¢PBI; D Cg, the formation of the CT state is also slower than
non-radiative charge recombination. Fig. 2 highlights the
fluorescence and charge transfer processes following photoex-
citation of the PtgPBI; D Cgy and PtgPBI; D Coy.

Facilitating electron transfer using endohedral
metallofullerenes

It is known that an increase in the size of fullerene leads to an
increase in its donor abilities. A comparison of the HOMO and

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Summary of the excited state processes for PtgPBlz >Cgo and
PtgPBIl3; > C5o in ACN. Fluorescence rates are taken from ref. 43.

LUMO energies of pristine Cgp, C79, and Cg,4 fullerenes (Fig. 3)
clearly demonstrates an increase in their HOMO energy from
—7.50 eV for Cgo to —7.08 eV for Cgy. The observations made
based on the HOMO energy are in a good agreement with the
experimentally measured ionization energies of fullerenes,
which are equal to 7.57, 7.36, and 7.17 eV for Cgp, C79, and Cgy,
respectively.””

As the electron-acceptor properties of PtgPBI; proved insuf-
ficient to withdraw electron from Cgy and C,, fullerenes, we
hypothesized that replacing these pristine fullerenes with more
effective electron donors could facilitate charge transfer.
Earlier, we demonstrated that metal nitride endohedral full-
erenes effectively donate electrons in complexes with carbon-
rich acceptors, such as pristine fullerenes and y-graphynes.”®””
Guided by these results, we aimed to evaluate the feasibility of
the PET in a series of complexes composed of the PtsPBI;
metallacage and various endohedral I;-Cgy-based metallofuller-
enes. As it can be seen in Fig. 3, the HOMO energies of endohedral

4 Pristine fullerenes Y4 Metallofullerenes N
LUMO
-2.2_5eV

LUMO
-2.39eV

LUMO
-2.44 eV

Se;N@Cqy  Sc;CH@Cgy  Sc,0;@Cy
-&6? eV
HOMO

668 eV
HOMO

674 eV
HOMO

\ HOMO J\ /

Fig.3 HOMO and LUMO energies (in eV) of pristine and endohedral
metallofullerenes.

J. Mater. Chem. C, 2024, 12, 685-695 | 689


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3tc03412g

Open Access Article. Published on 02 December 2023. Downloaded on 2/9/2026 12:23:06 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

metallofullerenes are higher compared to those of the pristine
fullerenes of a similar size, suggesting better donor properties,
even surpassing those of Cg, fullerene. This change can be
explained by a partial charge transfer between the metal cluster
and fullerene cage, thus the electronic structure of the considered
metallofullerenes M@Cg, can be represented as M @Cgo’ .
Importantly, the host size is suitable to accommodate these
metallofullerenes, given their diameter is only 20% larger than
that of Cgp. As cluster-encapsulated fullerenes, we selected three
experimentally obtained systems: scandium nitride (Sc;N@Csyo),”
hydrogenated scandium carbide (Sc;CH@Cgo),”* and scan-
dium oxide (Se;0;@Cgo)®" endohedral fullerenes (Fig. 3). The
structures of PtsPBI; DSc;N@Cgy, PtePBI; D Sc;CH@Cgy, and
PtPBI; ©Sc,0;@Cgp Wwere optimized using the BLYP-D3(B])
functional and def2-SVP basis set.

Given that the metallofullerenes are larger than Ce and
Cyo, we first checked the stability of the new complexes. The
analysis performed according to the same scheme as for
PtsPBI; ©DCq and PtsPBI;DC,, revealed some interesting
features of these systems. First, the deformation energy of
new complexes is noticeably higher than that of complexes
with pristine fullerenes. At the same time, the main contribu-
tion to the deformation energy is made by the deformation of
metallacage, as in the Cg9 and C;, based complexes. Second,
the interaction energies are higher compared to PtsPBI; D Cgg
and Pt¢PBI; D C,, due to the larger dispersion correction term.
Overall, the complexation energies range from —63.9 to —67.8
kcal mol™" (Table S5, ESIf). Note that the nature of the
interactions in all studied complexes is very similar. Thus,
the stability of the new complexes is in between of the energy
range for PtgPBI; D Cgo and PtgPBI; D C,,. Therefore, the bind-
ing affinity of the metallacage to the studied fullerenes is in the
following order: C; > Sc,0;@Csgp > SczN@Cgo > Sc;CH@Cgo >
Ceo- Since the complexes with pristine fullerenes were successfully
synthesized and isolated, we are convinced that the synthesis of
the proposed complexes with metallofullerenes is also possible.

Fig. 4 shows that LUMO in all cases is located on one of the
PBI subunits of the metallacage. Its energy is almost equal to
the LUMO energy in PtgPBI; D Cgo and PtsPBI; DCy. In turn,
due to the better electron-donor ability of the endohedral
metallofullerenes, the HOMO energy in their complexes is in
between -7.39 and -7.49 eV, which is higher than the HOMO
energies predicted for the complexes with pristine fullerenes
(—8.14 and —7.99 eV for PtgPBI3DCq, and PtgPBI; D Cy).
In addition, the HOMO in the metallofullerene-based com-
plexes is fully localized on the fullerene, unlike the originally
described complexes with pristine fullerenes (Fig. 1). The
mentioned differences should facilitate the photoinduced elec-
tron transfer in the new systems. To test this assumption, we
analyzed the electron density distribution for their 40 lowest
singlet excited states.

In all cases, the energies of the excited states in the gas-
phase vary from 2.1 to 3.1 eV. The LE state energies of both
LEC"' and LE"°* turned out to be similar. The CT state in the
complexes of interest is characterized by energies from 2.15 to
2.35 eV, depending on the particular complex. It is much lower
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Fig. 4 Structure
PtGPB|3 >} SC:I,N@Cso,
complexes.

energies (in eV) of
and PtsPB|3 D SC403@C30

than the CT state energies in PtsPBI3; D Cgp and PtsPBI; D Cyg
(Table 4). Usually, the energies of the CT states correlate well
with the HOMO-LUMO energy gap. It is important to note that
for the PtsPBI; D Sc;CH@Cg, complex, the CT state is the lowest
excited state, even in the gas-phase. For other complexes, the
energy difference between the CT state and the lowest LE state,
with the exciton localized on the fullerene, does not exceed
0.15 eV. The frontier MOs representing the LE and CT states for

Table 4 Excitation energies (E,, eV), main singly excited configuration
(HOMO(H)-LUMO(L)) with the largest squared coefficient in the
configuration-interaction (Cl coef.), oscillator strength (f), extent of charge
transfer (CT, e) or localization of exciton (X) computed for PtgPBlz>
SC3N@C80, PtGPB|3DSC3CH@C30, and PtGPB|3DSC403@C80 complexes
in the gas-phase (VAC)

Supramolecular system

PtsPBI; S XXX@Cgo
Se;N@Cgo Sc;CH@Cgo  Sc403@Csgo
LEGuest (XXX@Cgo)

E, 2.116 2.215 2.235
Transition (CI coef.) H—4-L+4 (0.77) H-L+3 (0.86) H-L+3 (0.37)

f 0.013 <0.001 <005

X 0.923 0.920 0.886

LEHS (PtePBI,)

E, 2.812 2.747 2.756
Transition (CI coef.) H—13-L+3 (0.25) H—7-L () H-5-L+2 (0.37)
f 0.446 0.439 0.431

X 0.872 0.881 0.889

CT (XXX@Cgo — PtPBI;)

E, 2.260 2.152 2.347
Transition (CI coef.) H—4-L (0.40) H-L+2 (0.74) H—1-L (0.55)
f 0.014 0.013 0.010

CT 0.894 0.883 0.834

This journal is © The Royal Society of Chemistry 2024
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the PtsPBL; > Sc;N@Cgo, PtePBI; > Sc;CH@Cgo, and PtgPBL, O
Sc,0;@Cgo complexes are shown in Fig. S4-S6, ESL¥

The GS solvation energies of PtgPBI; D Sc;N@Cgg, PtsPBI; D
Sc;CH®@Cgy, and PtgPBI; D Sc,0;@Cgo complexes turned out to
be very close to those of the Cg¢ and C,, based complexes and
are equal to —4.83, —5.18, and —5.31 eV, respectively. The
difference in dipole moments of the GS and both LE®“*** and
LEH°S* states is quite small and does not exceed 3.5 D.
As expected, the solvation energies of these LE states are very
similar to the solvation energies of GS. At the same time, the
difference in dipole moments of GS and CT states in the
complexes of interest is large: 10 D for PtesPBI; D Sc;N@Csgo
and 21 D for PtgPBI; D Sc;CH®@Cg, and PtgPBI; D Sc,O;@Cg.
Subsequently, the difference in solvation energies between GS
and CT states is —0.34 eV for the complex with Sc;N@Cg, and
—0.58 and —0.54 eV for the complexes with Se;CH@Cg, and
Sc,0;@Cgo. Detailed solvation data in ACN are given in Table
S6, ESL.T It is important to note that stabilization of the CT state
is sufficient to reorder the LES"**" and CT states in all com-
plexes of interest. Fig. 5 shows the energies of the GS, LE, and
CT states in the gas-phase and in ACN, as well as the simulated
absorption spectra for all metallofullerene-based complexes.

The higher solvation energy of the CT states in PtsPBI3;>
Sc;CH@Cgy and PtgPBI; O Sc,0;@Cgo compared to the ScsN@Cgg
based complex can be explained by different charge delocalization
over the host fragment measured by inverse participation ratio
(IPR), which counts the number of atoms involved in the charge
delocalization. For PtgPBI; DSc;N@Cg, PtePBI; D Sc;CH@C g,
and PtgPBI; D Sc,0;@Cg, the calculated IPR values for the PtgPBI;
host unit are 51.9, 27.5, and 28.4 (see Table S7 for details, ESIY).
Charge delocalization over endohedral metallofullerene units is
apparently less significant due to their lower accessibility to
the solvent. The IPR value for the Sc;N@Cgo, Scz;CH@Cgy, and
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Sc,0;@Cgp units are 30.4, 20.0, and 24.8. Thus, higher charge
delocalization and subsequently IPR values for both host and
guest subunits in PtgPBI; D ScsN@Cg, are responsible for its lower
solvation in the CT state.

According to Table 4, GS — CT transitions in all complexes
with metallofullerenes are characterized by a low oscillator
strength, making direct population of the CT states through
light absorption difficult. However, they can be generated by a
decay of LE states. The kcs and kcr rates were calculated using
the semi-classical approach.”*’* The main parameters used in
calculation, as well as the rate values are given in Table 5.

Photoinduced electron transfer in the studied complexes is
characterized by a negative Gibbs energy in the range from
—0.19 to —0.60 eV. The estimated rates of CT generation are
very high, thus the process occurs on a picosecond timescale.
Characteristic time is 2, 2, and 1 ps, for PtgPBI; D Sc;N@Cgo,
PtsPBI; © Sc;CH@Cgo, and PtgPBI; ©Sc,;0;@Cso, respectively.
The CR reaction proceeds in a deep inverted Marcus region
(JAG°| » 1) and its rate varies considerably from complex to
complex. In particular, for PtsPBI; O ScsN@Cgg, charge recom-
bination is almost three orders of magnitude slower than the
corresponding charge separation. At the same time, for
PtsPBI; O Sc;CH®@Cg, the charge recombination is only 14
times slower than charge separation. The PtsPBI; D Sc;0;@Cgo
complex is located in the middle, with a ratio of charge
separation time to charge recombination time of approximately
1:150. Considering the fact that PET depends not only on the
rate of charge separation, but also on the efficiency of hole and
electron extraction, the ideal combination for practical usage is
characterized by fast charge separation and slow charge recombi-
nation. Therefore, it can be concluded that the PtgPBI;D
Sc;N@Cgo complex is the best candidate among the considered
systems for use as active layer in photovoltaic devices.

——PtPBI, D SC,N@Cyo
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o o)
2 &
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(Left) Relative energies (in eV) of GS, LE, and CT states of PtgPBl3 5 SczsN@Cgo (yellow), PtgPBl3s > ScsCH@Cgq (green), and PtgPBl3; 5Sc403@Cgo

(blue) complexes calculated in vacuum (VAC) and acetonitrile (ACN). (Right) Simulated absorption spectra of the studied complexes in ACN. The spectra
were constructed using Gaussian broadening (FWHM = 0.15 eV). Red vertical lines show the oscillator strength for 40 lowest singlet excited states.

Vertical arrows correspond to the positions of CT bands in the spectra.
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Table 5 Gibbs energy AGP (in eV), electronic coupling |V;l (in eV), reorganization energy A (in eV), Huang—Rhys factor (Se), activation energy E, (in eV),
rates ky (in s™%) and characteristic time t (in ps) for CS and CR processes in PtgPBls>ScsN@Cgo, PtgPBls>SczsCH@Cgo, and PtePBls>Sc,03@Cgo

calculated in ACN

Complex PtgPBI; O Cyy Transition AG°“ [Vl A Sett’ ky T
PtsPBI; D Sc;N@Cgo LECUsst  CT —0.191 5.83 x 10° 0.412 1.11 4.94 x 10™ 2
CT > GS —1.920 5.25 X 107> 0.401 1.05 7.47 x 10® 1339
PtPBI; D Sc;CH@Cg, LESUst _, CT —0.600 5.94 x 10° 0.534 1.02 4.95 x 10" 2
CT — GS —1.577 3.46 x 107> 0.531 1.00 3.60 x 10*° 28
PtcPBI; © Sc,;0;@Cg, LECUsSt _ CT —0.422 8.85 x 10* 0.500 1.11 1.28 x 10 1
CT - GS —1.807 5.26 x 10> 0.488 1.05 6.49 x 10° 154

% Gibbs energy difference between the given states. b Effective value of the Huang-Rhys factor Segr = Ai/Aiwesr, where Aiw.g is set to 1600 em™?, which

corresponds to the stretching of C=C bonds.

Conclusions

Using the DFT method, we showed that the PtsPBI; metallacage
constructed from perylene bisimide units and organoplatinum
nodes features an appropriately sized internal cavity, allowing it
to form stable complexes not only with pristine Cgo and Cyq
fullerenes but also with Se;N@Cg, Sc;CH@Cgg, and Sc;0;@Cgo
metallofullerenes. Our calculations reveal that the binding
affinities of the studied fullerenes to PtsPBI; follows this order:
Cyo > Sc0;@Cgo > Sc;N@Cgo > Sc;CH@Cgo > Ceo-

The TDA-DFT results indicate that the metallacage has a
lower LUMO energy than Cg and a high ability to delocalize an
excess charge, ensuring its excellent electron-acceptor properties.
However, the electron affinity of the metallacage is insufficient to
withdraw an electron from Cgo Or Cyo fullerenes. Charge separa-
tion in the PtgPBI; D Cqp and PtsPBI; O C,, complexes is character-
ized by a small positive Gibbs energy and occurs within
nanoseconds. Charge recombination is also fast in both com-
plexes, serving as a competitive deactivation channel for the CT
state. Moreover, the formation of the CT state in such complexes
is hindered by the rapid radiative deactivation channel (fluores-
cence) of the corresponding LE states, which occurs more quickly
than CT state formation.

However, replacing pristine fullerenes with metallofuller-
enes enables photoinduced electron transfer from fullerene to
metallacage, a thermodynamically favorable process occurring
within picoseconds. Importantly, in all cases, charge recombina-
tion is one to three orders of magnitude slower than the corres-
ponding charge separation. Among the studied complexes,
PtsPBI; D Sc;N@Cg demonstrates the best ratio of fast charge
separation and relatively slow charge recombination, making it a
highly promising candidate for photovoltaic systems.
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