
Journal of Materials Chemistry B

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *J. Mater. Chem. B*, 2024, **12**, 10110

Correction: Surface modification of medical grade biomaterials by using a low-temperature-processed dual functional Ag-TiO₂ coating for preventing biofilm formation

Lipi Pradhan,^a Sobhan Hazra,^b Satya Veer Singh,^b Bajrang,^a Anjali Upadhyay,^a Bhola Nath Pal*^b and Sudip Mukherjee*^a

DOI: 10.1039/d4tb90157f

rsc.li/materials-b

Correction for 'Surface modification of medical grade biomaterials by using a low-temperature-processed dual functional $Ag-TiO_2$ coating for preventing biofilm formation' by Lipi Pradhan *et al.*, *J. Mater. Chem. B*, 2024, https://doi.org/10.1039/D4TB00701H.

The authors regret an error in Fig. 4c for the control group. The corrected Fig. 4c is provided below.

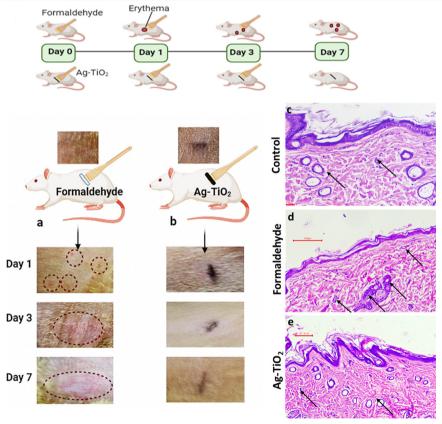


Fig. 4 Skin irritation test. (a) Rat exposed to formaldehyde and (b) $Ag-TiO_2$, (c) normal histology in the control group, (d) loss of epidermal cells in skin exposed to formaldehyde and (e) histologic features of skin exposed to $Ag-TiO_2$ for 7 days.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

a School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India. E-mail: sudip.bme@iitbhu.ac.in

b School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India. E-mail: bnpal.mst@iitbhu.ac.in