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Navigating predictions at nanoscale: a
comprehensive study of regression models in
magnetic nanoparticle synthesis†

Lukas Glänzer, Lennart Göpfert, Thomas Schmitz-Rode and Ioana Slabu *

The applicability of magnetic nanoparticles (MNP) highly depends on their physical properties, especially

their size. Synthesizing MNP with a specific size is challenging due to the large number of interdepend

parameters during the synthesis that control their properties. In general, synthesis control cannot be

described by white box approaches (empirical, simulation or physics based). To handle synthesis control,

this study presents machine learning based approaches for predicting the size of MNP during their

synthesis. A dataset comprising 17 synthesis parameters and the corresponding MNP sizes were

analyzed. Eight regression algorithms (ridge, lasso, elastic net, decision trees, random forest, gradient

boosting, support vectors and multilayer perceptron) were evaluated. The model performance was

assessed via root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage

error (MAPE) and standard deviation of residuals. Support vector regression (SVR) exhibited the lowest

RMSE values of 3.44 and a standard deviation for the residuals of 5.13. SVR demonstrated a favorable

balance between accuracy and consistency among these methods. Qualitative factors like adaptability to

online learning and robustness against outliers were additionally considered. Altogether, SVR emerged as

the most suitable approach to predict MNP sizes due to its ability to continuously learn from new data

and resilience to noise, making it well-suited for real-time applications with varying data quality. In this

way, a feasible optimization framework for automated and self-regulated MNP synthesis was

implemented. Key challenges included the limited dataset size, potential violations of modeling

assumptions, and sensitivity to hyperparameters. Strategies like data regularization, correlation analysis,

and grid search for model hyperparameters were employed to mitigate these issues.

1. Introduction

Magnetic nanoparticles (MNP) are of high interest due to their
unique magnetic properties and wide-ranging applications in
various research fields, including biomedicine,1–5 environmental
remediation,6 and catalysis.7 In the medical field, MNP have
gained special attention in pharmacology, molecular imaging,
and bio-sensing.8,9 Most promising future potential therapeutic
applications of MNP include their use in localized magnetic
hyperthermia cancer treatment and controlled drug delivery.10–12

Tailoring the size, narrowing size distribution, and achieving
high phase purity of MNP can significantly impact their magnetic
behaviour and performance for the different applications men-
tioned above.13,14 The ability to tailor the properties of MNP

during synthesis has been highlighted as essential for optimizing
their performance in specific applications like serving as contrast
agents in magnetic resonance imaging (MRI), as tracers in
magnetic particle imaging (MPI) or for magnetic hyperthermia for
heating.15,16 However, the synthesis process involves numerous
variables that can influence the resulting properties, making it
challenging to predict and control the desired outcomes.17–20

Therefore, developing a robust predictive model that can accu-
rately map the synthesis parameters to the target properties of
MNP is of paramount importance. Such a model would enable
researchers and manufacturers to design and produce MNP with
custom-tailored properties, thereby enhancing their efficacy and
expanding their potential applications.

Despite the significant advancements in MNP synthesis
techniques, the underlying chemistry governing the formation
and properties of these MNP is highly complex and not fully
understood.9,18,21,22 The synthesis process involves intricate inter-
actions between various parameters, such as precursor concentra-
tions, reaction temperature or pH, which can have nonlinear
and interdependent effects on the resulting MNP properties.
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This complexity makes it challenging to develop accurate
theoretical models or derive closed-form equations that can
reliably predict the desired properties based on the synthesis
conditions.23–25 Machine learning algorithms, with their ability
to learn from data and capture intricate patterns, offer a
powerful approach to address these challenges. It is important
to note that the data used in this study is extracted from a
specific synthesis setup, with parameters that are unique to
particular experimental configuration. Consequently, the data
cannot be combined with information gathered from other
setups, as similar parameters may not always be directly
comparable between different synthesis systems. This specificity
underscores the need for careful consideration when applying
machine learning models across different experimental setups
in the field of MNP synthesis. By training machine learning
regression models on experimental synthesis data, this study
aims to unravel the underlying relations between synthesis
parameters and target properties, enabling accurate predictions
and facilitating the design and production of MNP with custom-
tailored characteristics specific to the underlying experimental
setup. However, the presented framework is versatile and can be
used for all sorts of manufacturing processes.

While the potential benefits of a predictive model are signifi-
cant, several challenges must be addressed. Firstly, the available
synthesis data is often limited, which can hinder the model’s
ability to generalize and make accurate predictions.26–28 Secondly,
the synthesis process involves numerous variables, some of which
may have nonlinear and interactive effects on the target proper-
ties, making the modelling task more complex.29–32

Fig. 1 shows the envisioned workflow of an automated, self-
regulated and targeted MNP production setting. A setup for a
continuous MNP synthesis33 yields MNP within a narrow size
range. However, an optimization of the process is needed to
ensure MNP production with a targeted size. Here, a predictive

model will be developed using the parameters of the synthesis
setup described in ref. 33 as an input. The system parameters of
the system will serve as training features whereas the MNP size
will be the training target. The model should be able to output a
new set of parameters for the synthesis setup to optimize
production towards specific MNP sizes. With a regression model
capable of performing online learning, the model can progres-
sively adapt with the ongoing continuous synthesis and guide
the production towards a defined target. Further, the predictive
model should be capable of effectively capturing the complex
relations between synthesis parameters and target properties of
MNP. This model will then be the basis for the self-regulated
parameter adaptation of the automated synthesis.

2. Material and methods
2.1 Data acquisition

The dataset encompasses 17 system parameters (cf. Section
2.2.1) extracted from a previously published synthesis setup,33

offering a detailed exploration of the MNP production process.
MNP synthesis involves two main stages: upstream and

downstream processing. For this study, all data is extracted from
the upstream process, as this is where the actual formation and
size determination of the MNP occur. This crucial stage involves
carefully controlling reaction conditions such as temperature,
pH, and educt concentrations to nucleate and grow MNP with
desired sizes and properties (cf. Table 1). Following the upstream
synthesis, downstream processing involves purification steps to
isolate the MNP and remove any unreacted educts or byproducts,
as well as characterization techniques to verify the quality and
attributes of the synthesized MNP. Here, the final MNP size is
determined and added to the extracted data.

This study focuses on the prediction of the size of the
synthesized MNP. Across the complete and unfiltered dataset,
the MNP size exhibits a range from 4.0 to 90.21 nm with a
median of 14.3 nm. While the range is constrained, this
limitation facilitates an initial comparative study, even with a
modest dataset size of 113 data points. The curated dataset
provides a focused yet insightful examination of the interplay
between system parameters and MNP size.

Although the dataset is limited in number of data points,
adding data from other sources is infeasible. The data extracted
from this synthesis is highly specific to the setup design. For
example, the flow rate of an educt or the position of the
quenching in the reactor is not directly linked to other synth-
esis setups. Thus, mixing information from multiple setups
would yield wrong results.

2.2 Data preparation

2.2.1 Data structure. The dataset captures a comprehen-
sive set of parameters crucial for the synthesis of MNP. The
parameters can be categorized into educt, base, temperature,
flow rates, coating, reactor, and the resulting MNP size. Table 1
groups all parameters that were taken from the synthesis setup.
The complete dataset is given in Table S1 (ESI†).

Fig. 1 The envisioned workflow of an autonomous MNP synthesis pro-
cess with machine learning optimization for the production target. This
study aims to build the predictive modelling unit of this workflow. The
necessary steps are given in the outer extension of the ‘‘Predictive
Modelling’’ section.
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2.2.2 Data filtering. Usually experimental data is documen-
ted laboratory environment and contains information which is
not useful for the model development., e.g. dates and times,
storage notes etc. Therefore, data filtering is necessary to ensure
conciseness of the used data.

After a manual selection of potentially relevant features, an
automated data filtering process was conducted with a specific
focus on ensuring consistency within the dataset derived from the
synthesis process. Accordingly, the dataset should correspond to a
specific coating type, i.e., citric acid. Filtering out data points with
other coating types reduced the dataset to 101 data points. This
strategic filtering approach aimed to emphasize these predominant
coating type, which constituted most data points in the dataset. The
rationale behind this filtering strategy was to enhance the relevance
and alignment of data points, facilitating more meaningful results
for size prediction without the influence on the coating type.
Further, data points where the target variable was not included
due to an erroneous synthesis were removed. Consequently, the
dataset was reduced to 71 data points. This selective data filtering
ensured that the dataset maintained a comparable structure, allow-
ing for a more focused and meaningful analysis of the synthesis
process and the resulting MNP sizes. Additionally, columns exhibit-
ing constant values across all data points were excluded to maintain
dataset conciseness (e.g. all temperatures were given as ‘‘RT’’, see
Table 1). The resulting dataset, now homogenized in terms of
coating types, serve as the foundation for subsequent stages of data
preparation and regression modelling.

2.2.3 Outlier removal. Outlier removal prior to the model
training is crucial, as these anomalous data points can signifi-
cantly impact the model’s performance and generalization
ability. In the context of MNP synthesis, outliers may arise
from various sources such as experimental errors or equipment
malfunctions during data collection, temporary process distur-
bances or unusual operating conditions, sensor noise or

calibration issues or human errors during data recording or
sample handling.

The outlier removal process was refined by employing the
median absolute deviation (MAD) principle.34 This method
involves calculating the MAD value, a robust measure of data
dispersion, and determining outliers based on their z-scores.35

Specifically, each data point with a z-score exceeding the median
of z-scores plus 3 times the MAD value was identified as an
outlier. This approach provides a more robust and resistant
measure of dispersion, particularly suitable for datasets with
potential skewness or non-normal distributions. Following this
criterion, the dataset was pruned to 67 data points, underscoring
a refined dataset less influenced by outliers.

The utilization of the MAD principle for outlier detection
enhances the sensitivity of the process to variations in the
dataset, ensuring a more reliable and statistically grounded
approach to maintaining dataset integrity.

2.2.4 Handling missing values. The treatment of missing
values within the dataset involved a systematic approach to ensure
the integrity and completeness of the data. The strategy employed
was to fill missing values based on the nature of the data
represented in each column. For columns representing the
amount of an educt used in the synthesis, missing values were
replaced with zeros, reflecting the absence of this specific educt in
the synthesis. For other columns containing missing values, the
approach involved replacing these gaps with the mean value of the
respective column. This imputation strategy aimed to preserve the
overall statistical characteristics of the dataset while ensuring that
missing values did not compromise the quality of the analysis.

This standardized handling of missing values contributes to
a consistent and complete dataset, ready for further analysis
and regression modeling.

2.2.5 Data normalization and encoding. A critical step in the
data preparation process involves normalization and encoding to

Table 1 The following table gives an overview of all parameters of the upstream synthesis (see Section 2.1) and further distinguishes between material
parameters – parameters that are defined by the type of iron salts, bases or coating material – and synthesis settings – parameters that are settable
before or during the running synthesis

Parameter type Parameter group Parameter name Description

Material parameters Iron salts FeSO4�7H2O Concentration in mol
FeCl3�6H2O Concentration in mol
Iron ion ratio Ratio of Fe3+/Fe2+

V-IronSalts Total educt volume in mL
Base NH3 Molarity in mol L�1

pH pH value of the base
V-Base Base volume in mL

Coating Coating type Type of coating material
V-Coating Volume of coating material in mL

System settings Temperaturea T-IronSalts Temperature of the iron salts
T-Base Temperature of the base
T-Coil Temperature during crystallization

Flowrate FR-IronSalts Flowrate of the iron salts in mL s�1

FR-Base Flowrate of the base in mL s�1

FR-Coating Flowrate of the coating material in mL s�1

Reactor Coil length Length of the reaction coil in mm
Quenching position Quenching position in the coil in mm

Target — MNP size Measured MNP size in nm

a The parameters include three temperatures for each of the iron salts, the base and the coil. Otherwise, temperature is set to ‘‘RT’’ (= room
temperature). These parameters are included to ensure compatibility with future data where the temperatures might be set differently.
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ensure the consistency and compatibility of the data for regres-
sion modeling. To standardize the scale of numeric features, the
StandardScaler of the Python package scikit-learn36 was applied.
This normalization technique transforms the data, ensuring that
each feature has a mean of 0 and a standard deviation of 1.
Normalization is imperative for regression models, particularly
when dealing with features of varying magnitudes, as it aids in
preventing certain features from disproportionately influencing
the model.

Categorical variables, such as coating types, were subjected
to one-hot encoding, again with the scikit-learn package. This
method converts categorical variables into binary vectors,
enabling the incorporation of categorical information into the
regression models.

This dual approach of normalization and encoding ensures
that the dataset is suitably prepared for regression modeling,
allowing for an effective and unbiased exploration of the
relations between features and the target variable, MNP size.

2.2.6 Feature and target definition. Before the actual training,
the features and target variables for the regression models are
defined. The features comprise parameters associated with the
MNP synthesis process, while the target variable represents the
MNP size, which is the focal point of the predictive modeling.
The feature set includes material parameters such educt concen-
trations and system settings such as temperatures, flowrates etc.
(cf. Table 1). These features were carefully selected during the data
preparation stage to ensure that they encapsulate critical informa-
tion influencing the synthesis outcome. The target variable, MNP
size, is the parameter to be predicted by the regression models.
This essential variable guides the training and evaluation of the
models, aligning with the primary objective of understanding the
relations between synthesis parameters and resultant MNP size.

2.3 Regression models

2.3.1 Model selection criteria. In the process of selecting
regression models for this comparative study, specific criteria
were established to ensure the appropriateness of each model
for the dataset’s unique characteristics and the research objec-
tives. The chosen regression models were evaluated based on
their capacity to handle a limited dataset effectively. Given the
small sample size of 67 data points, models capable of general-
izing well from limited data were prioritized to ensure robust
performance and reliable predictions. Furthermore, as the data-
set contains a high number of both interdependent and inde-
pendent features, the prediction model is expected to efficiently
handle this high-dimensional feature space. Precision in pre-
dicting MNP size was identified as a critical criterion. Models
were assessed for their ability to provide accurate and precise
predictions, minimizing errors in estimating the target variable.
Additionally, considering the dynamic nature of MNP synthesis
processes, models with online learning capabilities are preferred
as they allow further model refinement. This enables the models
to adapt and update their predictions with new data, ensuring
continuous improvement and relevance of the model over time.

2.3.2 Brief descriptions of tested methods. In this study,
eight regression models were employed to predict MNP size,

and their hyperparameters were meticulously optimized
through an extensive grid search. The selected models and
their detailed explanations are as follows:

Ridge regression is a linear regression variant that introduces
regularization through a penalty term, known as the L2 penalty,
which is added to the cost function.37 The regularization helps
mitigate multicollinearity among the features, promoting stability
and preventing overfitting. Ridge regression is particularly useful
when dealing with datasets where many features are correlated.38

Like ridge, lasso regression incorporates regularization but
uses the absolute values of coefficients, implementing the L1
penalty. This has the effect of inducing sparsity in the model,
leading to automatic feature selection.32 Lasso is advantageous
when dealing with high-dimensional datasets, effectively nar-
rowing down to the most influential predictors.39

Elastic net regression combines the attributes of ridge and lasso
and employs both the L1 and L2 penalties. This hybrid approach
offers a balanced regularization that handles correlated features
effectively while still promoting sparsity. Elastic net is suitable for
datasets with a mix of correlated and independent features.40

Decision tree regression constructs a tree-like model by
recursively partitioning the dataset based on feature conditions
where each node in the tree represents a decision.41 The final
prediction is made by aggregating these decisions. Decision trees
are adept at capturing non-linear relations and are resilient to
outliers, making them suitable for diverse datasets.42

Random forest regression build an extension of decision
trees. They aggregate predictions from multiple trees, creating
an ensemble.43 This ensemble learning technique improves
predictive accuracy and reduces overfitting. Random forest is
robust, handles high-dimensional data well, and provides
feature importance rankings.44

Gradient boosting regression is another powerful ensemble
learning technique. It builds an additive model of weak lear-
ners, typically shallow decision trees.45 It sequentially corrects
errors in predictions, capturing intricate patterns and relations
in the data. Gradient boosting excels in capturing complex
relations and is less prone to overfitting.46

Support vector regression predicts continuous outcomes by
mapping data points into a high-dimensional space using a
kernel function.47,48 It is particularly effective in capturing non-
linear relations in high-dimensional spaces. This approach is
advantageous when dealing with datasets with complex deci-
sion boundaries and sparse feature spaces.49

Multilayer perceptron regression utilized an artificial neural net-
work with multiple layers for its predictions. It can capture intricate
patterns in data through a complex network of interconnected
nodes. This regression approach is suitable for modeling complex
relations but may require careful tuning to avoid overfitting.50

The subsequent grid search over hyperparameters aimed to
fine-tune each model’s performance, ensuring their effective-
ness in predicting MNP size.

2.4 Cross-validation

To assess the generalization performance of the regression
models and ensure their robustness, cross-validation techniques
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were employed. Cross-validation involves partitioning the data-
set into subsets for training and testing, iteratively rotating
through different combinations to evaluate the model’s perfor-
mance comprehensively. In this study, leave-one-out cross-
validation (LOOCV) was specifically chosen. LOOCV involves
using a single data point as the validation set while the remain-
ing data points constitute the training set. This process is
repeated for each data point, providing an exhaustive assess-
ment of the model’s ability to generalize.

The selection of LOOCV aligns with the limited size of the
dataset, maximizing the use of available data for both training
and validation.51 This approach minimizes bias introduced by the
small sample size52 and provides a reliable estimate of the
models’ performance under different conditions as well as offer-
ing insights into their ability to generalize to new data points.

In the context of cross-validation, it is important to note that
the primary purpose is to determine the optimal hyperpara-
meters for each model. The process involves assessing model
performance across various folds to find the configuration that
generalizes well to unseen data. Following hyperparameter
tuning, the final training is conducted using the identified
optimal settings, combined with a random 80–20 split of the
dataset. This approach ensures a robust evaluation of the
models and enhances their adaptability to new data points
beyond the seen training set.

2.5 Statistical analysis

To comprehensively evaluate the performance and variability of
the regression models in predicting MNP size, descriptive
statistics including the root mean squared error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE)
and the standard deviation of residuals were computed.

RMSE is a commonly used metric for assessing the accuracy
of regression models, providing a measure of the average
magnitude of the prediction errors. Mathematically, RMSE is
calculated as the square root of the mean of the squared
differences between predicted and actual values. The formula
is given by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

xi � x̂ið Þ2

N

vuuut

where xi represents the actual values, x̂i represents the pre-
dicted values, and N is the number of data points.

RMSE is particularly suitable for this study due to its
sensitivity to large errors. By squaring the differences between
predicted and actual values, RMSE penalizes larger errors more
heavily, providing a balanced representation of the overall
model performance. Given the nature of predicting MNP size,
where precision in the predictions is crucial, RMSE serves as a
reliable metric for assessing the accuracy of regression models
trained on the synthesized datasets.

Similarly, MAE is also a common metric for assessing the
accuracy of regression models. In contrast to RMSE, MAE
computes the average of the absolute prediction errors, thus

putting less emphasis on large errors. Therefore, it is sensible
to compare models on both metrics to gain additional informa-
tion on the models’ handling of extreme values. MAE’s formula
is given by:

MAE ¼ 1

N
�
XN
i¼1

xi � x̂i

with xi, x̂i and N as before.
MAPE is a widely used metric for evaluating the accuracy of

prediction models. It expresses the average absolute error as a
percentage of the actual values, making it an intuitive and scale-
independent measure. This characteristic allows for easy com-
parison of model performance across different datasets or time
series, regardless of their magnitudes. It helps in assessing how
far off predictions are on average, with lower MAPE values
indicating more accurate predictions. Its formula is given by:

MAPE ¼ 1

N
�
XN
i¼1

xi � x̂i

xi

����
����

with xi, x̂i and N as before.
The standard deviation of residuals quantifies the spread or

variability of prediction errors around the regression line. A
lower standard deviation implies more consistent model pre-
dictions, while higher values may suggest variability in predic-
tion errors, known as heteroscedasticity.

2.6 Used software and hardware

The implementation of regression models and the analysis of
data were conducted using Python as the primary programming
language. Key libraries and tools employed include scikit-learn36

for regression modeling and matplotlib53 for data visualizations.

3. Results

This chapter presents the outcomes of the conducted MNP
synthesis regressions. Each tested regression method is defined
by its determined hyperparameters shown in Table 2. For a
better visualization and interpretation of the dataset, descrip-
tive statistics were used, outlining the distribution and central
tendencies of MNP sizes. A correlation analysis reveals relations
between individual system parameters and MNP sizes, shed-
ding light on influencing factors in the synthesis process. The
qualitative and quantitative evaluation of different regression
models assesses their predictive performance and suitability
for MNP size prediction (cf. Sections 3.3 and 3.4).

Additionally, a sensitivity analysis underscores the relative
impact of system parameters on the variability in predicted
MNP sizes.

3.1 Hyperparameter study

Table 2 shows each model, its tuned hyperparameters and their
tested ranges. All methods were implemented in Python by
utilizing scikit-learn. The hyperparameters are thus named
according to the implementation. To capture the complexity
of hyperparameter tuning, sensible ranges must be chosen for
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testing the hyperparameters. For categorical hyperparameters
(e.g. kernel, activation function, etc.) all available options were
tested. For numerical parameters, multiple grid searches were
performed, each varying the tested ranges for each hyperpara-
meter. The resulting grid search is shown in Table 2 and
displays large ranges for each parameter. Table 2 denotes the
tested ranges as intervals with both endpoints enclosed. For
hyperparameters with integer values (e.g. max_depth, min_-
samples_split, etc.), all values within the interval were tested.
For hyperparameters with real values (e.g. alpha, gamma,
epsilon, etc.), 250 values evenly spread over the interval were
tested. For all tested hyperparameters, the identified best value
lies well within the respectively tested interval, indicating
suitable interval ranges.

3.2 Descriptive statistics

This section provides a brief overview of the distribution and
central tendencies of the MNP sizes. After filtering and outlier
removal (see Section 2.2), the dataset consisted of 67 data
points. Within this data, the MNP sizes have a mean value of
14.65 nm, with a standard deviation of 6.3 nm, reflecting the
narrow dispersion of values around the mean. The size range
spans from a minimum of 4.0 nm to a maximum of 36.0 nm.
Fig. 2(A) visualizes the MNP size distribution.

3.3 Correlation analysis

Fig. 2(B) shows the correlation matrix of the variables involved
in the MNP synthesis process. The correlation value is calcu-
lated using the Pearson correlation coefficient. These variables,

except for the MNP size, represent the parameters that are
manually set at the start of the synthesis process.

The correlation matrix reveals several instances of moder-
ate or strong correlations between individual variables. It is
important to note that these correlations do not imply causa-
tion or influence between the parameters, as they are all
manually set before the synthesis process. They merely reflect
the relations in the chosen settings for these parameters.
These relations are important to consider when choosing
regression models, as potential multicollinearity influences
regression performances. Noticeable correlations can be iden-
tified as follows:
� Perfect correlation: FeSO4�7H2O and FeCl3�6H2O have a

perfect positive correlation of 1.0. This suggests that these two
variables, which represent different iron salts used in the
synthesis, might have similar effects on the MNP size.
� High positive correlation: all three flowrates have a high

positive correlation of �0.7 or 0.72. This indicates that an
increase in the flow rate is usually done simultaneously.
�Moderate positive correlation: V-ironSalts and FR-ironSalts

have a positive correlation of 0.38. This indicates that the
volume of the iron salt and the pressure of the iron salts are
increased together in the synthesis settings. V-Coating, FR-base
and FR-coating have a positive correlation of 0.35. This suggests
that the flow rates and mass of the coating agent are increased
together in the synthesis settings.
� Moderate negative correlation: V-ironSalts and FR-Base

have a moderate negative correlation of �0.23. This suggests
that an increase in the volume of the iron salt is accompanied

Table 2 Regression models and the respective hyperparameters and tested ranges. All numerical ranges are denoted as intervals enclosing both
endpoints. For intervals with real numbers, 250 values evenly spread over the interval were tested. The hyperparameters are named according to the
models’ implementation in the scikit-learn libraries

Model Hyperparameter Tested range/values Best value

Ridge alpha [0.0, 25.0] 20.2
Lasso alpha [0.0, 2.5] 0.26

tol [0.0, 0.25] 0.098
Elastic net alpha [0.0, 1.0] 0.532

L1_ratio [0.01, 1.0] 0.01
Decision tree max_depth [1, 10] 3

min_samples_split [2, 10] 2
min_samples_leaf [1, 5] 1

Random forest n_estimators [100, 300] 117
max_depth [1, 10] 5
min_samples_split [2, 10] 3
min_samples_leaf [1, 5] 1

Gradient boosting n_estimators [100, 300] 275
max_depth [1, 10] 6
min_samples_split [2, 10] 2
learning_rate [0.0001, 0.1] 0.009

Support vector C [100.0, 200.0] 154.17
gamma [0.0, 1.0] 0.71
epsilon [0.0, 1.0] 0.1
kernel [linear, poly, rbf, sigmoid] rbf

Gradient boosting n_estimators [100, 300] 275
max_depth [1, 10] 6
min_samples_split [2, 10] 2
learning_rate [0.0001, 0.1] 0.009

Multilayer perceptron activation [logistic, tanh, relu, identity] relu
solver [adam, sgd, lbfgs] sgd
alpha [0.0, 3.0] 1.1
learning_rate [constant, invscaling, adaptive] adaptive
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by a decrease in the pressure of the ammonia water in the
synthesis settings.
� Multicollinearity: the variables V-coating, FR-ironSalts,

FR-base and FR-coating show correlations with each other.
This suggests potential multicollinearity issues that may
impact regression model reliability.

Looking at the correlations with the MNP size, no strong
correlations can be identified:
� Moderate correlation: FR-ironSalts and the quenching

position show moderate positive correlations with the MNP
size of around �0.38 and 0.3, respectively.
� Little correlation: FR-base and FR-coating show little nega-

tive correlations with the MNP size with values around �0.2.

None of the variables shows a strong correlation (above 0.5
or below �0.5) with the MNP size. This suggests that no single
variable has a significant impact on its own.

3.4 Regression model performance

This subsection aims to evaluate and compare the performance of
various regression models in predicting the size of MNP based on
the existing data. Four key metrics, the root mean square error
(RMSE), the mean absolute error (MAE), the mean absolute per-
centage error (MAPE) and the standard deviation of residuals, are
employed for this comparative analysis. The RMSE and MAE are
measures of the average magnitude of the residuals or prediction
errors. MAE is less sensitive to outliers than RMSE, whereas RMSE
is more desirable when large errors should be avoided. MAPE is a
measure of prediction accuracy that expresses the average absolute
error as a percentage of the actual values, providing a scale-
independent metric for comparison. The standard deviation of
residuals provides an understanding of the spread of residuals
around the mean residual, which ideally should be zero. Lower
values of all of these metrics indicate better predictive performance.
The models’ performances will be compared using bar charts,
visually depicting the different scores (see Fig. 3(A)).

Additionally, box plots of residuals will be utilized to offer a
detailed examination of the distribution of prediction errors
across different models (see Fig. 3(B)).

Among the evaluated methods, the support vector regression
model demonstrated superior performance across all metrics. It
achieved the lowest RMSE (3.44), MAE (3.25), MAPE (0.25), and
standard deviation of residuals (5.13), indicating high accuracy
and consistency in its predictions. The random forest model
emerged as the second-best performer, exhibiting low RMSE
(3.52) and competitive MAE (5.0) and MAPE (0.51) values,
suggesting a good balance between accuracy and consistency.

Interestingly, the lasso and elastic net models showed
identical performance across all metrics, with moderate RMSE
(3.95) but higher MAE (6.18) compared to the top performers.
This similarity in results suggests that the L1 regularization
component dominates in the elastic net model, effectively redu-
cing it to a lasso model in this case. The ridge regression model
demonstrated moderate performance across metrics, with a nota-
bly lower standard deviation of residuals (6.02) compared to lasso
and elastic net, indicating more consistent predictions. Ensemble
methods, particularly random forest and gradient boosting, gen-
erally performed well. However, the decision tree model under-
performed compared to these ensemble methods, with higher
RMSE (4.8) and MAPE (0.7) values indicating less accurate pre-
dictions. This underscores the advantages of ensemble techni-
ques in improving model robustness and predictive accuracy. The
multilayer perceptron model showed the poorest performance
across all metrics, with extremely high MAE (20.42), MAPE (1.48),
and standard deviation of residuals (42.0). These results suggest
potential overfitting or an unsuitable architecture for the problem
at hand, highlighting the importance of careful model selection
and hyperparameter tuning in neural network applications.

Looking at the distribution of residuals, the median values
for all models were close to zero with a little skewness in the

Fig. 2 (A) A histogram of the MNP size distribution. The mean value is
visualized by the red dashed line and the standard deviation by the green
dashed lines. (B) The correlation matrix of all variables. Values are calcu-
lated by Pearson correlation coefficient. Blue indicates positive correla-
tion; red indicates negative correlation. The magnitude of the correlations
is indicated by color intensity and square size.
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negative direction, indicating that the models’ predictions are
slightly biased on average. Ridge, lasso, elastic net and random
forest all exhibited similar interquartile ranges (IQRs), suggesting
comparable variability in the residuals. The decision tree regres-
sion model demonstrated a larger IQR, indicating more variability
in the residuals. Support vectors, gradient boosting and multilayer
perceptron show a smaller IQR, indicating less variability in the
predictions. Models with a small range fulfill the requirement of
precision. Also, the median residual of the support vectors is very
close to zero, suggesting unbiased predictions on average. A
median close to zero fulfills the requirement of accuracy.

3.5 Selection of the most suitable regression model

The evaluation of various regression models (see Fig. 3) reveals
that random forests, and support vectors exhibit the best
prediction accuracy. The support vectors demonstrate more
centralized residuals compared to random forests, which exhi-
bits a slight negative skewness, and a significantly larger range.
Gradient boosting showed less prediction accuracy but had a
much smaller range than random forests.

The support vectors demonstrated achieved a low MAPE
value of 0.25, which is less than half that of the next best model,
indicating its superior ability to generate predictions that
closely align with actual values across the dataset.

In addition to quantitative measures, qualitative considerations
are crucial for selecting the most suitable model. The integration of
online learning in the MNP production necessitates a model

capable of adaptation. While purely tree-based methods, e.g. deci-
sion trees and random forest, may face challenges in this regard,
gradient boosting and support vectors offer promising capabilities.
Both gradient boosting and support vectors excel in modeling
complex nonlinear relations and handling correlated features.
Gradient boosting’s inherent tree structure enhances interpretability
but complicates online learning adaptations, as each new chunk of
data requires the addition of a new weak classifier, potentially
leading to increased model complexity. Support vectors exhibits
ease of adaptability to online learning, making it a favorable choice
for real-time applications. Moreover, Gradient boosting’s tendency
to overfit on small datasets may result in longer learning times
during the online learning phase compared to support vectors.
Additionally, support vectors provides robustness against outliers
and noise in the data, which is particularly beneficial in practice
where data quality may vary. However, it is important to note that
support vectors’ performance may be sensitive to the selection of
hyperparameters, requiring careful tuning for optimal results. In
contrast, gradient boosting tends to be more robust to hyperpara-
meter settings, offering more straightforward implementation and
potentially shorter development times.

For the above-mentioned reasons, i.e. the achieved accuracy
and precision as well as the ability to perform online learning,
we selected the support vector regression as method of choice
to be implemented in the overall MNP optimization framework.
Fig. 4 shows the resulting prediction surface for the support
vectors model. The shown surface is a projection from the 17-
dimensional feature space to the 3-dimensional for better
visualization. The projection was performed using principal
component analysis (PCA). More PCA plots for each model
from different angles are shown in S2 to show the different
characteristics of each model and their predictions. PCA is a
dimensionality reduction technique that transforms a high-
dimensional dataset into a lower-dimensional space while
preserving as much variance as possible. In this study, PCA
was applied to reduce the original 17-dimensional feature space
to two principal components. These components capture the
most significant patterns in the data, allowing for a more
manageable and interpretable visualization. Each principal
component (PC) is a linear combination of original features.
The coefficients – or loadings – of these combinations indicate
how much each original feature contributes to the PC. Features
with high absolute values in the loadings matrix are the ones
that contribute most to the corresponding PC. The sign
indicates the direction of the relations between the feature
and the principal component.

The loadings shown in Table 3 show, that FeSO4�7H2O, FR-
ironSalts and FR-coating for PC1 and FeCl3�6H2O for PC2 are
strong contributors, meaning they have the strongest influence
on the target variable, the MNP size.

4. Discussion

This study aimed to find the most suitable machine learning
regression predictor for the size of MNP during their synthesis.

Fig. 3 (A) Bar chart with prediction results of the trained models for the
validation set. The blue bars represent the RMSE values, orange the MAE
values, green the MAPE values and red the standard deviation of residuals.
(B) Visualizes the distribution of the residuals of the validation set. The
dashed line shows the ideal value of zero for residuals, the orange bars and
triangles in the boxplots show the median and mean residual, respectively.
Circles denote individual outliers.
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Various regression methods were evaluated based on perfor-
mance metrics such as RMSE and standard deviation of resi-
duals. Among the evaluated methods ridge, random forests,
and support vector regression (SVR) demonstrated superior
performance in predicting MNP sizes. They exhibited small
RMSE and MAE values showing good prediction accuracy; but
only SVR exhibited centralized residuals, indicating consistent
prediction errors, while ridge and random forest showed a
slight positive skewness and a large range. Additionally, SVR
showed a significantly lower MAPE value of 0.25 than any other
model. Qualitative considerations, such as adaptability to
online learning and modelling of complex relations, favoured
gradient boosting and SVR. Gradient boosting is expected to be
suitable for complex non-linear data but could not outperform
the other shown methods. Lastly, the PCA visualizations pre-
sented in Fig. 4 and Fig. S2 (ESI†) clearly show, that the
resulting SVR model captures the training data best. All other
models show significant deviations in their predictions from
the surface plot. Thus, SVR emerged as the most suitable model
due to its ease of adaptability to online learning, robustness
against outliers and noise and suitability for real-time applica-
tions with varying data quality as well as its leading quantitative
performance.

Machine learning applications offer numerous advantages
for both predicting MNP sizes and gaining insights into the
synthesis process.54 This study has shown that SVR can be a
very promising and capable technique outperforming other
methods. The used performance metrics such as root mean
square error (RMSE), mean absolute error (MAE), mean

absolute percentage error (MAPE) and the standard deviation
of residuals clearly demonstrate this (cf. Fig. 3). These measures
were chosen as they have proven to yield in general a compre-
hensive assessment of model performance.55 These metrics
effectively capture the accuracy and consistency of predictions,
enabling a thorough comparison of different regression
methods.56,57

Moreover, the selected regression models, particularly SVR,
exhibited robustness in handling complex nonlinear relations
and correlated features. This capability is essential for accu-
rately modelling the intricate dynamics of nanoparticle synth-
esis, where multiple parameters interact to influence the final
product.58

SVR further distinguishes itself by its adaptability to online
learning,59–61 making it well-suited for real-time applications
and dynamic environments.59 This feature enables the model
to continuously update and refine its predictions as new data
becomes available, enhancing its practical utility in industrial
settings. Prediction accuracy may vary or be biased due to a
skewed dataset, but in the next steps we will incorporate online
learning, as indicated in Fig. 1, to counteract these effects.
A continuously increasing dataset will eventually become less
biased or skewed. SVR’s easy adaptation to incorporate online
learning will leverage the incoming data from the synthesis
setup and continuously learn the inherent process parameters
of MNP synthesis and increase its prediction accuracy by
proposing new parameters for the setup.

This continuous learning process was shown to lead promis-
ing results with the data used in this study, yet it requires
rigorous validation to ensure the model’s predictions remain
accurate and reliable over time. Such validation involves
comprehensive testing under various operating conditions,

Fig. 4 3D Surface plot of principal component analysis (PCA) applied to
the support vector regression model. The original dataset, comprising 17
features, was transformed into a 3-dimensional space using PCA, with the
first two principal components (PC1 and PC2) plotted on the x and y axes,
respectively, and the SVR predictions on the z axis.

Table 3 Loadings for each feature and each principal component. High
absolute values indicate a strong contribution of the feature, the sign
indicates whether the contribution is in positive or negative direction.
Features with a ‘‘0.0’’ entry were rounded to the fourth decimal place thus
showed non-zero but negligible contribution. Features with a ‘‘dash’’ entry
showed actual zero contribution because they were constant

Parameter name

PCA loadings

Principal component
1 (PC1)

Principal component
2 (PC2)

FeSO4�7H2O �0.5629 0.0987
FeCl3�6H2O �0.1506 0.9122
Iron ion ratio — —
V-IronSalts �0.284 �0.344
NH3 — —
pH — —
V-Base — —
Coating type — —
V-Coating 0.0 0.0
T-IronSalts — —
T-Base — —
T-Coil — —
FR-IronSalts �0.5432 �0.1982
FR-Base 0.0 0.0
FR-Coating �0.5336 0.0233
Coil length — —
Quenching position 0.0 0.0
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long-term stability assessments, and comparison with tradi-
tional optimization methods. Subsequent investigations will
delve into the long-term performance of the online learning
system, its adaptability to process drift, and its potential for
autonomous optimization of MNP synthesis parameters.

The application of SVR for predicting magnetic MNP sizes
presented several limitations and challenges, particularly due
to dealing with small datasets.26 Small datasets inherently pose
significant obstacles in machine learning endeavours, includ-
ing issues related to data diversity, noise, and imbalance.27,28

This limited diversity can lead to SVR models that perform
poorly when applied to new MNP systems outside the training
data.62,63 To address data diversity, noise and imbalance,
techniques such as data augmentation64 or online learning65

may be applied.
Data augmentation is a widely used and a well-established

technique to handle data sparsity, however, since the synthesis
process itself and thus its parameter settings are generally not
well understood, the identification of such new settings is
subject to this study. Regarding good practice for data
augmentation,29 this ultimately makes applying data augmen-
tation impossible for this study as no sensible new data points
can be generated.

Online learning is a machine learning technique making the
model capable of iteratively adding new data points from a pool
of unlabelled or of newly generated data, and then incorporat-
ing these data into the training set to improve its
performance.66–68 In the context of this study, online learning
can be used to retrain the SVR model with the updated training
set whenever new data are available, i.e. new syntheses were
performed. However, because creating new data by synthesiz-
ing new MNP is time consuming the effectivity of online
learning has to be subject of further studies. To handle these
biases in the data and include newly available data, online
learning will be implemented as a next step to continuously
learn from the synthesis setup and thus increase the
training data.

The hyperparameter settings of the conducted grid search
for this study were extensively tested. Multiple grid searches
were conducted to verify their results and carefully choose
sensible hyperparameters. This is necessary, because SVR, as
well as other machine learning methods, exhibits a high
sensitivity to hyperparameter settings.69,70 The selection of
appropriate kernel functions, regularization parameters, and
other hyperparameters significantly influences the model’s
performance. Given the inherent challenges posed by small
datasets, careful optimization of these parameters becomes
paramount to prevent overfitting and ensure robust general-
ization to unseen data.69,71 Techniques such as grid search72

have been explored to enhance the performance of SVR models
in such scenarios. For this study, grid search proved to be a
sufficient and reliable method for hyperparameter tuning.
Unlike random search or Bayesian optimization, grid search
guarantees finding the best solution within the defined para-
meter ranges, providing a comprehensive and systematic
exploration of the hyperparameter space. This exhaustive

approach is especially valuable when dealing with multiple
regression types, as it ensures that no potentially optimal
configuration is overlooked. Furthermore, the computational
costs associated with grid search were negligible, allowing for a
thorough examination of the parameter space without compro-
mising time or resources.

Moreover, the process of model training and validation
presents its own set of challenges in the context of small
datasets.73,74 Traditional validation methods, like cross-
validation, may not be as effective with small datasets because
splitting the data further reduces the amount available for
training and validation, potentially leading to unreliable per-
formance estimates.75 The employed leave-one-out-cross-
validation (cf. Section 2.4) validates each data point against
all others and thus tries to maximize the performance estima-
tion reliability during the performed hyperparameter grid
search.

Another measure to ensure robustness of the trained
models, data regularization was implemented to prevent over-
fitting by penalizing complex models. As shown in Fig. 2(B),
there are weak, but not negligible multicollinearities in the
selected features of the dataset. It is imperative to acknowledge
the assumptions underlying machine learning models regard-
ing the independence of observations and the distribution of
input features. Failure to meet these assumptions can signifi-
cantly impact the model’s learning capability and predictive
accuracy.29,30 Strategies to avoid multicollinearity are a proper
feature selection and data regularization.31,32

With this successful implementation, the study’s methodol-
ogy of using SVR to predict the outcome of MNP synthesis has
broader applications. Similar supervised learning approaches
could be applied to other manufacturing processes or material
property testing, offering potential benefits for optimizing
processes, predicting outcomes, and improving product quality
across various industries. For example, in the field of pharma-
ceuticals, SVR models could be employed to predict the proper-
ties of drug formulations based on the synthesis parameters
and raw material characteristics which could enable the opti-
mization of drug manufacturing processes, leading to
improved product quality and consistency.76,77 Machine learn-
ing regression is already employed in many applications for
material synthesis and property prediction like constructing
metal matrix composites, predicting molecular properties of
new materials of nanomaterials.77,78

5. Conclusions

In conclusion, this study implemented and evaluated eight
machine learning regression techniques to find a suitable
method for MNP property prediction for a specific synthesis
process. Support vector regression proved to be the most
suitable method for a small, yet complex data set of 113 data
points. It showed high accuracy of 3.44 nm and robust predic-
tions with narrow distributed errors. Further, it features an easy
incorporation of online learning techniques for improvement
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of the prediction accuracy. Within the synthesis framework the
feasibility of optimizing MNP sizes using support vector regres-
sion was demonstrated. By leveraging the existing synthesis
data, a model was trained to predict the desired process
parameters, enabling the production of MNP with custom-
tailored sizes. The successful implementation of such a model
streamlines the synthesis process, reduce experimental efforts,
and accelerate the development of advanced MNP-based tech-
nologies. This provides a major step towards fully automated
and self-regulated MNP synthesis and beyond.
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