

Cite this: *J. Mater. Chem. B*,
2024, 12, 275

DOI: 10.1039/d3tb90183a
rsc.li/materials-b

Correction: Mitochondria-targeting nanozyme alleviating temporomandibular joint pain by inhibiting the TNF α /NF- κ B/NEAT1 pathway

Qian Bai,^a Yaoyao Zhou,^a Xiaona Cui,^{ab} Haichao Si,^e Tingting Wu,^a Abdul Nasir,^{ac} Heng Ma,^{ac} Junyue Xing,^d Yingying Wang,^d Xiaolei Cheng,^d Xiaojun Liu,^{*b} Shaoyan Qi,^{*b} Zhisong Li^c and Hao Tang^{*d}

Correction for 'Mitochondria-targeting nanozyme alleviating temporomandibular joint pain by inhibiting the TNF α /NF- κ B/NEAT1 pathway' by Qian Bai *et al.*, *J. Mater. Chem. B*, 2023, <https://doi.org/10.1039/d3tb00929g>.

The authors regret the error in Fig. 6 due to a figure compilation error. The corrected Fig. 6 is shown below.

^a Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China

^b Department of Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. E-mail: liuxiaojunzu@163.com, qishaoyan1970@163.com

^c Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China

^d National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China. E-mail: tangpku_zzuhao@zzu.edu.cn

^e Department of Anesthesiology, Nanyang Central Hospital, Nanyang, Henan, China

Fig. 6 Intravenous Mito-Ru MOF injection 30 min after intra-TMJ CFA injection downregulated the TNF α /NF- κ B/Neat1 pathways in a mouse TMD pain model. (A) Single i.v. Mito-Ru MOF injection 30 min after intra-TMJ CFA injection downregulated Neat1 in Sp5C in mouse TMD pain model after 3 d; ** P < 0.01; *** P < 0.0001, two-way ANOVA, N = 18. (B) Single i.v. Mito-Ru MOF injection 30 min after TMJ CFA injection downregulated p-p65 in Sp5C in mouse TMD pain model after 3 d; *** P < 0.0001 vs. CFA + vehicle; two-way ANOVA, N = 39. (C) Single i.v. Mito-Ru MOF injection 30 min after TMJ CFA/saline injection did not alter p65 expression in Sp5C after 3 d; ns P > 0.05, N = 27. (D) Single i.v. Mito-Ru MOF injection 30 min after TMJ CFA injection counteracted the increase in p-p65 immunofluorescence intensity in Sp5C in mouse TMD pain model after 3 d (scale bar = 400 μ m). (E) Statistical analysis of data in (D) *** P < 0.0001 vs. CFA + vehicle group, N = 3, two-way ANOVA. (F) Intra-Sp5C NF- κ B injection in downregulated Neat1 in naive mice; ** P < 0.01 vs. Scramble control, N = 5; t -test. (G) Single i.v. Mito-Ru MOF injection 30 min after intra-TMJ CFA injection downregulated TNF α in Sp5C in mouse TMD pain model after 3 d; *** P < 0.001 vs. CFA + vehicle, N = 4; two-way ANOVA.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

