

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *J. Mater. Chem. A*, 2024, **12**, 24703

Correction: Redox-active conductive metal–organic framework with high lithium capacities at low temperatures

Yogendra Kumar,^a Tae Hyeong Kim,^b Iyan Subiyanto,^{ID ac} Winda Devina,^{ID a} Segi Byun,^{ID a} Subhajit Nandy,^d Keun Hwa Chae,^d Suim Lim,^{ID e} Bumjin Kim,^{ID b} Sanghui Kang,^{ID b} Seong Ok Han,^a Kanghoon Yim,^{ID *e} Jungjoon Yoo,^{ID *b} and Hyunuk Kim,^{ID *ac}

DOI: 10.1039/d4ta90157f

rsc.li/materials-a

Correction for 'Redox-active conductive metal–organic framework with high lithium capacities at low temperatures' by Yogendra Kumar *et al.*, *J. Mater. Chem. A*, 2024, <https://doi.org/10.1039/D4TA01779J>.

The authors regret that on the fifth page of the original article, the sentence beginning 'When the cycling performance of SKIER-5 was tested...' contained an error. The current density referred to should have been '2C (907 mA g⁻¹)', rather than '200 mA g⁻¹'. Similarly, the original caption of Fig. 2(d) referred to 'Cycling stability and coulombic efficiency at 200 mA g⁻¹' for the SKIER-5 sample; this too should be corrected to 'Cycling stability and coulombic efficiency at 2C (907 mA g⁻¹)'.

An error has also been corrected in the supplementary information (SI). In Table S2 on page 8 of the SI, the entry for SKIER-5 which read '700 mA h g⁻¹ after 1600 cycles at 200 mA g⁻¹', previously has been updated to '600 mA h g⁻¹ after 1600 cycles at 2C (907 mA g⁻¹)'. Please refer to the original article web page to access the supplementary information.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aHydrogen Convergence Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea. E-mail: hyunuk@kier.re.kr

^bEnergy Storage Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea. E-mail: jjyoo@kier.re.kr

^cEnergy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea

^dAdvanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea

^eEnergy AI & Computational Science Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea. E-mail: khyim@kier.re.kr