

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *J. Mater. Chem. A*, 2024, **12**, 21466

Correction: Vertically aligned boron-doped diamond nanostructures as highly efficient electrodes for electrochemical supercapacitors

Shradha Suman,^{ab} Dhananjay Kumar Sharma,^c Ondrej Szabo,^c Benedict Rakesh,^{ab} Marian Marton,^d Marian Vojs,^d Andrej Vincze,^e Soumya Prakash Dutta,^{ab} Umapathi Balaji,^{ab} Debidutta Debasish,^{ab} Ramasamy Sakthivel,^{ab} Kamatchi Jothiramalingam Sankaran^{*ab} and Alexander Kromka^{*c}

DOI: 10.1039/d4ta90146k
rsc.li/materials-a

Correction for 'Vertically aligned boron-doped diamond nanostructures as highly efficient electrodes for electrochemical supercapacitors' by Shradha Suman *et al.*, *J. Mater. Chem. A*, 2024, <https://doi.org/10.1039/D3TA07728D>.

The authors regret that the original manuscript contained errors in the content of Sections 2.1 'Preparation of BDD films' and 2.2 'Fabrication of BDD nanostructures'. Additionally, a project number was accidentally omitted from the Acknowledgements. The correct versions of both sections and the Acknowledgements are displayed below.

2.1 Preparation of BDD films

The linear antenna microwave plasma enhanced chemical vapor deposition (LA MW CVD) reactor (SCIA cube 300) was employed to produce the pristine BMCD (designated as 'BMCD_P') and BUNCD ('BUNCD_P') films on an alumina (Al₂O₃) substrate. First, the substrates were cleaned in NH₄OH/H₂O₂ solution, rinsed in deionized water and annealed at 1000 °C for 1 h in air. The substrates were then ultrasonically nucleated in a suspension of nanodiamond powder (5 nm in size) in deionized water. Trimethyl borate (TMBT) was used as the carbon, boron and oxygen source for the film growth.⁴⁰ The 30 h growth was conducted in an H₂/TMBT/CO₂ gas mixture combination with a CO₂ to H₂ ratio of 0.2%. The substrate temperature was maintained at 600 °C, and the pressure was kept at 30 Pa. For the formation of the pristine sample, the flow rate of evaporated TMBT was kept at 1% with a resulting B/C ratio of 312 500 ppm for BMCD_P, and for BUNCD_P, the flow rate was 4% with a B/C ratio of 328 000 ppm. The detailed growth process was described elsewhere.⁴¹

2.2 Fabrication of BDD nanostructures

First, an Au layer of 8 nm thickness was deposited on the BMCD_P and BUNCD_P films. The Au-coated BDD films were then heat treated in an H₂-based microwave plasma at 500 °C for 10 min, yielding self-organized masks arranged in an array of Au nanodroplets on the surfaces of BMCD_P and BUNCD_P. The Au-masked diamond films were subjected to a standard capacitive coupled plasma system (Phantom III, Trion Technology) in a mixture of oxygen gas with tetrafluoromethane (O₂/CF₄ – 60/3 sccm – 5%) to fabricate the desired structures. The pressure was maintained at 150 mTorr and the RF power at 150 W throughout the experiments. Etching was carried out for 6 min. After the RIE process, Au nanodroplets were etched out by a standard wet chemical etching process (HNO₃ : HCl at 1 : 3 n/n). The detailed fabrication process was described elsewhere.⁴¹

Acknowledgements

The authors are thankful for the financial support of the Council of Scientific and Industrial Research, India, *via* Research Grants OLP-106, OLP-116 (CSIR – 23-05) and OLP-128, and the Science and Engineering Research Board, India, *via* Research Grant GAP-336. A. K., D. K. S., and O. S. thank the GACR bilateral project no. 23-04322L and the Czech Nano Lab research infrastructure project no. LM2023051. M. M. and M. V. give thanks to projects of the Slovak Research and Development Agency (APVV-23-0367) and Slovak agency VEGA 1/0631/22.

^aCSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India. E-mail: kjsankaran@immt.res.in

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

^cInstitute of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic. E-mail: kromka@fzu.cz

^dInstitute of Electronics and Photonics, Slovak University of Technology, 81219 Bratislava, Slovakia

^eInternational Laser Centre, Slovak Centre of Scientific and Technical Information (SCSTI), 84104 Bratislava, Slovak Republic

References

40. M. Marton, M. Vojs, P. Michniak, M. Behál, V. Rehacek, M. Pifko, Š. Stehlík and A. Kromka, *Diamond Relat. Mater.*, 2022, **126**, 109111.

41. S. Suman, D. K. Sharma, S. Sain, O. Szabo, S. K. Sethy, B. Rakesh, U. Balaji, M. Marton, M. Vojs, S. S. Roy, R. Sakthivel, K. J. Sankaran and A. Kromka, *ACS Appl. Electron. Mater.*, 2023, **5**, 4946–4958.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

