

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *J. Mater. Chem. A*, 2024, **12**, 5542

DOI: 10.1039/d4ta90040e
rsc.li/materials-a

Correction: An *in situ* growth route towards anti-perovskite Ni_3InN nanoparticles embedded within amorphous silicon nitride

Shotaro Tada, ^{ad} Sakurako Takazawa,^a Norifumi Asakuma, ^a Maxime Cheype,^b Sawao Honda, ^a Ravi Kumar, ^c Samuel Bernard ^b and Yuji Iwamoto ^{*a}

Correction for 'An *in situ* growth route towards anti-perovskite Ni_3InN nanoparticles embedded within amorphous silicon nitride' by Shotaro Tada *et al.*, *J. Mater. Chem. A*, 2024, **12**, 3689–3699, <https://doi.org/10.1039/D3TA06212K>.

The authors apologise for an error in Fig. 6. The graphs for Fig. 6b and c were incorrectly swapped so that they appeared in the wrong position. The corrected figure is shown here.

^aDepartment of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan. E-mail: iwamoto.yuji@nitech.ac.jp

^bUniversity of Limoges, CNRS, IRCCyN, UMR 7315, Limoges, F-87000, France

^cLaboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India

^dDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India

Fig. 6 CO_2 -TPD spectra under flowing He recorded for $\text{Ni}_3\text{InN}/\text{a-SiN}$ nanocomposites: normalized TCD curves of (a) the $\text{Ni}_{0.05}\text{In}_{0.1}\text{-DRZ600}$ sample, (b) bulk Ni_3InN obtained by ammonolysis of an oxide precursor and (c) microporous amorphous SiN derived from $\text{In}_{0.1}\text{-DRZ600}$ synthesized by pyrolysis under NH_3 at 600 °C and (d) CO_2 -mass spectra of the $\text{Ni}_{0.05}\text{In}_{0.1}\text{-DRZ600}$ sample recorded after CO_2 treatment at 150 °C.

In addition, the authors regret a mistake in the text of the manuscript. In the left column on page 3696 the section that begins “*In contrast, the CO_2 -TPD spectra of the bulk Ni_3InN sample (Fig. 6b)...*” and ends “*...which decreases in intensity with increasing T_{CO_2} , indicating CO_2 physisorption behavior.*” should be as shown below:

“In contrast, the CO_2 -TPD spectra of the bulk Ni_3InN sample (Fig. 6b) exhibits no pronounced peak under the same measurement conditions. Interestingly, the CO_2 desorption peak intensity of the $\text{Ni}_{0.05}\text{In}_{0.1}\text{-DRZ600}$ sample increases consistently with increasing T_{CO_2} , suggesting the CO_2 chemisorption behavior (Fig. 6a). In contrast, the $\text{In}_{0.1}\text{-DRZ600}$ sample exhibits a broad CO_2 desorption curve which decreases in intensity with increasing T_{CO_2} , indicating CO_2 physisorption behavior (Fig. 6c)”.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

