Journal of Materials Chemistry A

View Article Online

CORRECTION

Check for updates

Cite this: J. Mater. Chem. A, 2024, 12, 5542

Correction: An *in situ* growth route towards antiperovskite Ni₃InN nanoparticles embedded within amorphous silicon nitride

Shotaro Tada, ^{bad} Sakurako Takazawa,^a Norifumi Asakuma, ^{ba} Maxime Cheype,^b Sawao Honda, ^{ba} Ravi Kumar, ^{bc} Samuel Bernard ^{bb} and Yuji Iwamoto ^b*^a

DOI: 10.1039/d4ta90040e

rsc.li/materials-a

Correction for 'An *in situ* growth route towards anti-perovskite Ni₃InN nanoparticles embedded within amorphous silicon nitride' by Shotaro Tada *et al., J. Mater. Chem. A*, 2024, 12, 3689–3699, https://doi.org/10.1039/D3TA06212K.

The authors apologise for an error in Fig. 6. The graphs for Fig. 6b and c were incorrectly swapped so that they appeared in the wrong position. The corrected figure is shown here.

^aDepartment of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan. E-mail: iwamoto.yuji@nitech.ac.jp

^bUniversity of Limoges, CNRS, IRCER, UMR 7315, Limoges, F-87000, France

^cLaboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India ^dDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India

Fig. 6 CO_2 -TPD spectra under flowing He recorded for Ni₃InN/a-SiN nanocomposites: normalized TCD curves of (a) the Ni_{0.05}In_{0.1}-DRZ600 sample, (b) bulk Ni₃InN obtained by ammonolysis of an oxide precursor and (c) microporous amorphous SiN derived from In_{0.1}-DRZ600 synthesized by pyrolysis under NH₃ at 600 °C and (d) CO₂-mass spectra of the Ni_{0.05}In_{0.1}-DRZ600 sample recorded after CO₂ treatment at 150 °C.

In addition, the authors regret a mistake in the text of the manuscript. In the left column on page 3696 the section that begins "In contrast, the CO_2 -TPD spectra of the bulk Ni_3InN sample (Fig. 6b)..." and ends "...which decreases in intensity with increasing T_{CO_2} , indicating CO_2 physisorption behavior." should be as shown below:

"In contrast, the CO₂-TPD spectra of the bulk Ni₃InN sample (Fig. 6b) exhibits no pronounced peak under the same measurement conditions. Interestingly, the CO₂ desorption peak intensity of the Ni_{0.05}In_{0.1}-DRZ600 sample increases consistently with increasing T_{CO_2} , suggesting the CO₂ chemisorption behavior (Fig. 6a). In contrast, the In_{0.1}-DRZ600 sample exhibits a broad CO₂ desorption curve which decreases in intensity with increasing T_{CO_2} , indicating CO₂ physisorption behavior (Fig. 6c)".

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.