

Showcasing research from Professor Zuotai Zhang's laboratory, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

Efficient and stable ${\rm CO_2}$ capture using a scalable and spontaneous cross-linking amine-functionalized nano- ${\rm Al_2O_3}$ adsorbent

 ${\rm CO}_2$ capture performance of polyethyleneimine-functionalized nano-Al $_2{\rm O}_3$ adsorbent is demonstrated. Nano-Al $_2{\rm O}_3$ spontaneously cross-links amine groups via Lewis acid sites, and the dehydration reaction of primary amines with ${\rm CO}_2$ to form isocyanate is prevented. Thereby the adsorbent exhibits excellent overall performance, including high ${\rm CO}_2$ uptake (195 mg·g⁻¹), fast adsorption kinetics, consistently stable anti-urea cyclic performance (with a mere 0.14% deactivation per cycle), environmentally friendly and scalable production, and competitive cumulative ${\rm CO}_2$ capacity.

