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The oxygen evolution reaction (OER) is a key reaction in the production of green hydrogen by water
electrolysis. In alkaline media, the current state of the art catalysts used for the OER are based on non-
noble metal oxides. However, despite their huge potential as OER catalysts, these materials exhibit

various disadvantages including lack of stability and conductivity that hinder the wide-spread utilization

of these materials in alkaline electrolyzer devices. This study highlights the innovative chemical
functionalization of a mixed copper cobalt hydroxide with the V,CT, MXene to enhance the OER
efficiency, addressing the need for effective electrocatalytic interfaces for sustainable hydrogen
production. The herein synthesized CuCo@V,CT, electrocatalysts demonstrate remarkable activity,
outperforming the pure CuCo catalysts for the OER and moreover show increased efficiency after 12

hours of continuous operation. This strategic integration improved the water oxidation performance of

the pure oxide material by improving the composite's hydrophilicity, charge transfer properties and

ability to hinder Cu
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leaching. The materials were characterized using an array of materials
characterization techniques to help decipher both structure of the composite materials after synthesis

and to elucidate the reasoning for the OER enhancement for the composites. This work demonstrates
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the significant potential of TMO-based nanomaterials combined with V,CT, for advanced innovative
electrocatalytic interfaces in energy conversion applications.
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1. Introduction

Electrochemical water splitting, when combined with solar or
wind technologies, is one potential route to make an alternative
green fuel (i.e. green H,) to replace fossil derived fuels (e.g. oil,
coal and gas) to power our buildings, vehicles or for feedstocks
for important synthetic processes, such as the generation of
ammonia through the Haber-Bosch process. During water
splitting, H, is produced at the cathode and is denoted as the
hydrogen evolution reaction (HER). However, it is the anodic
reaction, the oxygen evolution reaction (OER), which is the most
energy intensive reaction during the water splitting process, as
four electrons need to be transferred to generate one molecule
of O, while the cathodic reaction needs only two electrons to
produce H,.> Therefore, to make the overall process of water
splitting more efficient, the OER needs to become less energy
demanding."

Currently, for the OER, the most studied catalysts in alkaline
media, or for anion exchange membrane electrolyzers
(AEMELs), are based on non-noble metals such as Ni and Co
materials. However, these materials suffer from low conduc-
tivity and a loss in stability over time, which are essential
prerequisites of an OER catalyst. There have been various
studies to mix conductive aids with non-noble metal materials,
however, the aids used are predominantly based on pure carbon
materials such as graphene or carbon nanotubes.® It has been
shown that these carbon based materials somewhat corrode in
alkaline environments (although not as corrosive as in acidic
media) and can also contain metal impurities.** Furthermore,
the utilization of pure carbon supports has shown to decrease
the faradaic efficiency of metal oxide materials for the OER and
decrease the stability of the metal oxide compared to the same
oxide on other supports.®” Recently, there have been reports
emerging on utilising MXene materials as a conductive aid/
support for OER catalysts.?

MXenes are a relatively new family of 2D materials, which are
made up of transition metal carbides and nitrides, produced
from MAX phases by various etching processes.” A MAX phase
has the general formula of M,;AX, where the M is an early
transition metal, the A is an element from group 13 or 14 of the
periodic table, and the X represents a carbon or nitrogen.
During the etching process, carried out in a fluoride ion based
solution, the A-element is removed from the MAX structure,
causing the carbide layers to become terminated by OH™, O,
Cl” or F~ groups, which are subsequently called ‘edge sites’."®
The resulting structure is known as ‘MXene’ with the most
common/first synthesised MXene being Ti;C,T,.>'* MXenes are
known to be highly conductive, hydrophilic and mechanically
durable due to their structures, which are essential properties
for OER catalysts.” However, to date MXenes are not known to
contain active sites for the OER, as no MXenes with metals for
promoting the OER have been successfully synthesised (e.g. Ni,
CO)‘II,IZ

Furthermore, these edge sites on the MXenes are extremely
important. The edge sites can be engineered/tailored to alter the
materials inherent properties and therefore the conductivity,
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hydrophilicity, and the thermodynamic stability of the material
is controllable. However, these edge sites can easily oxidise even
in air, which results in the breakdown of the material into its
respective oxide, e.g. Ti;C,T, will oxidise into TiO,, which in
turn leaves a material with reduced conductivity and hydro-
philicity. Additionally and more importantly, it has been
previously shown that Ti;C,T, oxidises rapidly under OER
conditions to TiO, hence, this material alone is not an appro-
priate OER catalyst."”> However, there are many strategies being
developed to block or ‘cap’ these edge sites to hinder or slow
down the oxidation process.

One way to engineer the edge sites for the OER is to use active
OER materials, first row inexpensive MO,, such as Ni, Fe, Co
and Mn, and anchor them onto the MXene edge sites in order to
hinder the oxidation process. There have been multiple reports
on the manipulation of Ti;C,T, with metal hydroxides/oxides
which show an increase in the OER for the metal oxide/
Ti;C,T, composite.***” For example, Benchakar and co-workers
have reported that a cobalt layered double hydroxide (Co-LDH)/
Ti;C,T, material synthesised by a solvothermal synthesis results
in the promotion of the OER by 50 mV when compared to the
pure Co-LDH catalysts in alkaline electrolyte.”* To date, there
are only few reports on OER metal oxide catalysts with other
MXene materials.'®* In one recent study, Rogach et al. compare
the OER activity of three different MXene supports (Ti;C,T,,
V,CT, and NbCT,) with Co single atoms made by an ice photo-
reduction route.' This study reveals that the V,CT, with Co
single atoms exhibits the lowest OER overpotentials, however,
over a period of 10 hours, this composite results in a loss of
activity. The authors postulate from experimental and theoret-
ical studies that the superior OER capabilities of the V,CT, are
attributed to the re-distribution of the electronic structure of the
Co atoms due to a higher rate of electron transfer.' Further-
more, various studies have suggested that the OER performance
of Co oxides can be improved by the addition of Cu into its
structure in alkaline media.>**** For example, Scott and co-
workers demonstrated that CuCo oxides outperformed Co
oxides in a three electrode cell and in an AEMEL device.”®
Recently, Alishahi and team synthesised a CuCo and a CuCo/
TizC,T, (MXene) catalyst for alkaline OER, which exhibited
overpotentials at 10 mA cm ™2 of 470 and 380 mV, respectively.??
This study showed that the addition of the most common
MXene, Ti;C,T,, is effective in improving the OER activity of
a CuCo based material. To our knowledge, the effect of V,CT,,
the material when combined with Co single atoms showed the
best OER performance compared to the same Co single atoms
on Ti;C,T,, on the OER properties of CuCo materials has not
been investigated."®

In this work, a range of novel CuCo based V,CT, composites
are fabricated through a hydrothermal route and investigated
for the OER. The V,CT, amount varies in the composite mate-
rials to determine the effect of the MXene content on the OER.
These materials are characterized by a suite of techniques to
determine the surface and bulk chemical composition before
and after the OER, which allows for changes in the chemical
composition to be attributed for changes in the OER perfor-
mance of pure CuCo and MXene composite materials.

J. Mater. Chem. A, 2024, 12, 24248-24259 | 24249
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2. Material and methods

2.1. Materials and chemicals

The materials and chemicals used in the current study were
a graphite rod (redox.me), a mercury-mercury oxide (Hg/HgO)
reference electrode (redox.me), a glassy carbon disc electrode
(ALS instruments) and Nafion (Sigma Aldrich). Sodium
hydroxide pellets (=98%, reagent-grade), ethanol (=99%,
reagent-grade), isopropanol (=99%, reagent-grade), Co(CHj;-
CO0),-4H,0 (=99% metal basis, M of 249.08 g mol %),
Cu(CH;C00),-H,0 (=99% metal basis, M of 199.65 g mol %),
V,AIC MAX phase (Jinzhou Haixin Metal Materials, China), NaF
(Lachner), HCI (Lachner), TBAOH (Sigma-Aldrich) and urea
(=99%, ACS reagent, M of 60.06 g mol~ ") were purchased from
Sigma-Aldrich. For sample preparation and dilutions, ultrapure
water with a resistivity of 18.2 MQ c¢m was used.

2.2. Preparation of V,CT,

The exfoliated V,CT, MXene was prepared by removing the Al
layer from its MAX phase V,AIC using a mixed HCl + NaF
etching solution. The detailed experimental process is as
follows: 4.5 g of NaF was stirred and dissolved in 60 ml of
distilled water, followed by the addition of 60 ml of concen-
trated hydrochloric acid. Next, 5 g of V,AIC MAX phase was
slowly added to the above solution and stirred for 1 hour under
an atmospheric environment until no obvious bubbles were
generated. The mixture was then sealed in a stainless-steel
autoclave with a Teflon liner. The mixture was continuously
stirred in a 90 °C oil bath for 3 days. Due to the difficulty in
completely removing Al from the MAX phase, the solid product
from the first etching was subjected to the same etching steps
again. The product was then centrifuged three times with
distilled water to obtain an etched precursor. Subsequently, the
precursor was stirred in 20 ml of 20% TBAOH solution for 24
hours for exfoliation, and then diluted to a 100 ml suspension
and stirred for an additional 24 hours. The suspension was
centrifuged at 10000 rpm and washed three times with an
ethanol/water solution in a 1:4 ratio to remove residual
TBAOH. Finally, centrifugation at 1000 rpm was used to remove
unetched MAX phase or other solid impurities. This process
yielded well-exfoliated V,CT, MXene for further use.

2.3. Preparation of CC1, CC10, CC25, CC50 and the pure Cu,
Co and CuCo materials

CuCo@V,CT, was synthesized through a urea-assisted hydro-
thermal method. In a typical synthesis process, V,CT, was used
from a colloidal solution (1.47 mg ml~*) and then, 5 mmol urea,
1 mmol Cu(CH3COO),-H,0 and 2 mmol Co(CH;COO),-4H,0
were added to the solution, and it was stirred for 30 minutes to
fully dissolve all the compounds. The solution was transferred
into a Teflon-lined stainless-steel autoclave and kept at 120 °C
for 6 h for hydrothermal treatment. After cooling down to room
temperature, the precipitate was collected by centrifugation at
5000 rpm for 10 min, and then repeatedly washed with deion-
ized water (3 x) and ethanol (3x). The sediment was dried at 60 ©
C for 10 h. The collected powder samples were labelled as CC1,
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CC10, CC25, and CC50, for 1, 10, 25, and 50 molar mass% V,CT,
content, respectively. The pure materials, labelled pure Co, pure
Cu and pure CuCo, were synthesized using the same method
without addition of V,CT,.

2.4. Electrochemical measurements

The electrochemical performance of the materials was charac-
terized in a standard three-electrode cell in alkaline aqueous
solution at RT. 1.0 M NaOH was used as electrolyte, prepared
from NaOH pellets. A standard mercury-mercury oxide elec-
trode (mercury/mercury oxide Hg/HgO) was employed as
a reference electrode (RE) and a graphite rod as a counter
electrode (CE). The working electrode was a 3 mm diameter
glassy carbon (GC) disk with a geometric surface area of 0.0707
cm®. The cell was connected to an electrochemical workstation
(PalmSens) and a rotating ring disc electrode (RRDE, ALS-
Japan).

A catalytic ink was prepared for every material by dispersing
10 mg of catalytic powder in 1 ml DI water/isopropanol solution
(1:1) and 8 pL Nafion. The solution was ultrasonicated for
10 min to form a homogenous ink. To reach a catalyst loading of
1.6 mg cm 2, 11.3 uL ink was deposited onto the polished GC
disk and allowed to dry in air at RT. All measurements were
performed in nitrogen saturated 1 mol L' NaOH electrolyte.
Cyclic voltammetry (CV) profiles and linear sweep voltammetry
(LSV) data were acquired between the potential ranges —0.2 and
0.6 Vvs. RHE and 0.0 V and 0.85 V vs. RHE, respectively. First,
each catalyst was subjected to 8 CV cycles in the potential range
at a scan rate of 40 mV s . Polarization and Tafel plot
measurements were performed at a scan rate of 1 mV s ' and
a rotation rate of 1600 rpm. To determine the resistance of the
cell, electrochemical impedance spectroscopy (EIS) was recor-
ded in a frequency range between 1 Hz and 1 mHz, with an
oscillation amplitude of 10 mV in a non-faradaic region. To
determine the charge transfer resistance of the materials under
operation, EIS measurements were conducted in the OER
region at 1.6 V vs. RHE. To test the long term stability of the
catalyst, chronopotentiometry was executed at a constant
current density of 10 mA cm 2 for various times.

3. Results & discussion

3.1. Structural characterization

In this work, the targeted CuCo/V,CT, composites were fabri-
cated by a two-step urea assisted hydrothermal process, Fig. 1A.
In the first step of the process, the V,CT, (MXene) was produced
by etching the V,AIC by in situ exfoliation with NaF and HCI to
produce multi-layer V,CT, which was then delaminated to
achieve V,CT,. The composites were then prepared by adding
the different wt% amounts of V,CT, to an autoclave along with
copper acetate, cobalt acetate, urea and distilled water. The
reactant solutions were annealed in an oven at 120 °C for 6
hours (see experimental section for a more detailed
description).

The concentration of V,CT, in the composite materials were
1, 10, 25 and 50 wt% and from here on the resulting composite

This journal is © The Royal Society of Chemistry 2024
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multilayered delaminated =
HCl + NaF 20% TBAOH Cu,*, Co,*
. 90°C, 3 days - H,0, Urea . ¢
CuCo@V,CT,
V,AIC MAX V,CT, MXene V,CT, MXene R 2
x 120°C, 6h (cc1, 10, 25, 50)

Fig. 1 (A) Schematic of the synthesis procedure of the CuCo V,CT, composites and (B) SEM images of V,CTy, CuCo, CC1, CC10, CC25 and

CC50.

catalysts will be denoted as CC1, CC10, CC25 and CC50,
respectively. Pure Co, pure Cu and CuCo catalysts were also
synthesized under the same reaction conditions but without
addition of V,CT,. Hence, in total eight catalysts were made in
this work. To identify the chemical and structural properties of

the prepared catalysts before the OER studies, the materials
were characterized by SEM, XRD, and XPS.

SEM was carried out on the various catalysts to determine
their morphological characteristics, Fig. 1B. The V,CT, exhibits
typical flake-like dimensions seen for delaminated MXenes,
while the pure CuCo is composed of aggregated material. The

Fig. 2 HAADF-STEM images of V,CTy, CuCo, CC1, CC10, CC25 and CC50.

This journal is © The Royal Society of Chemistry 2024
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CuCo/V,CT, composite materials aggregated material is
predominantly found around the flake-like structures from the
V,CT,. The composite materials do not resemble the morphol-
ogies of the pure Co or Cu -based materials. The pure Co
material exhibits a coarse leaf-like morphology, and the pure Cu
material has a spherical shape morphology (Fig. S17).

To get a more in-depth account of the morphology and
elemental composition of the pure and composite materials,
scanning transmission electron microscopy (STEM) with energy
dispersive X-ray spectroscopy (EDS) mapping was carried out,
Fig. 2 and S2-S7.1 The STEM image of the V,CT, confirms the
flake morphology observed with the SEM and the EDS map
shows that the entire flake consists of vanadium, Fig. S2.T The
CuCo STEM image, Fig. 2, shows that the aggregated material
observed in the SEM consists of flake and rod-like structures.
From the EDS maps of the CuCo sample, Fig. S3,7 the Co and Cu
are present in both structures. For the CC1 and CC10 materials,
both contain flake and rod-like morphologies. The rod-like
structures contain a good distribution of Cu, Co and V while
the flakes have a higher distribution of Co when compared to
Cu and V from the EDS mapping in Fig. S4 and S5.1 From the
STEM images in Fig. 2 of the CC25 and CC50, it is evident that
a foam-like structure is present which is less prominent in the
other composites. From the EDS maps in Fig. S6 and S77 for the
CC25 and CC50 materials, this foam structure contains a higher
concentration of V with the Cu and Co compared to the rod or
flake structures present.

X-Ray diffraction of the pure and composite catalysts was
carried out to determine the crystal structure and to determine
if the addition of the V,CT, to the CuCo had any effects on the
composites final structure, Fig. 3. The pure Co catalyst can be
predominantly indexed to cobalt carbonate hydroxide (ICDD:
04-024-2126, Fig. 3A). The pure Co material exhibits major
peaks at 14.5, 17.4, 24.0, 32.3 and 34.6° which corresponds to
the (020), (021), (022), (023), (102) and (023) reflections of the
C0,(CO;)(OH), while the peak at about 24.8° indicates the

View Article Online

Paper

presence of another Co,(CO;)(OH), phase ie. Co(COj3)os-
OH-0.11H,0.”® Furthermore, the major diffraction peaks at
14.8, 17.4, 24.0, 34.6, 35.4, 36.5 and 38.4° for the mixed CuCo
material can be referenced to the (020), (120), (220), (031), (240),
(330) and the (150) planes of the mineral Kolwezite (Cu*?,
C0),(CO;)(OH),, Fig. 3A (ICDD: 00-029-1416). The additional
peaks at 2Theta values of ~10, 27 and 34° may again indicate
the presence of Co(CO3)y50H-0.11H,0 in the material.*

From Fig. 3B, in relation to the Kolwezite peaks in the
composite materials, there are also some shifts in the 2theta
positions and the intensity of the peaks which shows that the
V,CT, is influencing the Kolwezite crystal structure. For
example, the Kolwezite (220) and (031) reflection at 24 and
35.4°, respectively, decreases with increasing V,CT,. Further-
more, the (220) reflection at 24° changes significantly upon
subsequent V,CT, additions for the materials CC10-50. For the
CC10, this peak is lower in intensity compared to CC1, then the
peak for the CC25 splits into two peaks and then for CC50, only
the newer peak at the lower 2theta value is present.

Furthermore, the diffraction pattern of the pure V,CT, shows
that the V,AlC was fully etched and delaminated into the MXene
counterpart from the presence of the strong (002) and the (004)
reflections at 7.2° and 14.4°.>*** The peak at 37.8° may be
associated with LiF residue left over from the etching proce-
dure.”* The XRD patterns of the CC1-50 are present in Fig. 3B
and all show reflections associated with both Kolwezite and the
V,CT,, however, some diffraction peaks are altered compared to
the pure materials. The (002) peak of the V,CT, in the
composites (CC1-50) is shifted to a higher 2theta value of 11.5°,
indicating a reduction in the interlayer spacing, possibly due to
re-stacking of the single V,CT, flakes upon drying.***” Addi-
tionally, the presence of vanadium oxide materials in the bulk
of the composites can also be ruled out as there are no addi-
tional reflections associated to V,03;, V,05 or V;04 in the XRD
patterns.*

g 2z CuCo
o

(Cu'?, Co),(CO,)(O H),
00-029-1416.pks

Intensity / arb. u.

Intensity / arb. u.
O ;j
(9]
o e

C0,(CO,)OH),
04-024-2162.pks

| ‘ l L 1 gl | “ [TPRNIFTE T

10 15 20 25 30 35 40 45 50
20/°

Fig. 3
reference pattern).
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(A) XRD pattern of pure Co and pure CuCo (B) XRD pattern of V,CTy, CuCo, CC1, CC10, CC25 and CC50. (* = peak not in corresponding
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Fig. 4 Comparative V-L edge and O-K pre-edge XANES spectra
obtained from STXM of few-layered flakes of V,CT, and CC50.

XANES at the VL edge and O K edge (Fig. 4) were acquired on
single flakes of the pure V,CT, and the CC50 using STXM
(Fig. S8A and Bft). STXM is based on transmission detection
which is sensitive to the bulk of probed MXene flakes.?® For the
pure V,CT, and the CC50 materials, the V L-edge consists of 2
major peaks corresponding to L; and L,-edge at 517.6 eV and
524 eV respectively. These peaks are associated with the elec-
tronic transitions from the V 2p3,, and 2p,, core levels to the 3d
orbital. Hence, crystal field splitting of 3d orbital gives rise to t,4
and e, orbitals for both edges (Fig. 4). Fig. S21 shows the
chemical map of V,CT, and CC50 measured at 517 eV peak
absorption energies for VL; edge. A comparison of the VL; edge
tyg/€g intensity ratio shows that there are no significant changes
in V oxidation state between the pure V,CT, (t,z/e, intensity
ratio: 1:0.60) and the CC50 (tyo/e, intensity ratio: 1:0.62)
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material. This would indicate that the V,CT, is not altered in the
CC50 materials. For V,CT, the O K pre-edge originates from
electronic transitions from O 1s to O 2p orbital hybridized
with V 3d orbitals. Overlap of oxygen 2p and vanadium 3d
orbitals results in a set of bonding and anti-bonding orbitals i.e.
t,g and e, orbitals. CC50 shows similar t,, and e, orbital split-
ting to pure V,CT, along with an additional peak at 533.2 which
could be due to the oxide layer formed by CuCo oxide over the
MXene surface.

XPS, Fig. 5, was utilized to evaluate the surface chemistry of
the pure and composite materials to assess if it differs from the
bulk of the materials probed by STXM. The XPS spectra are
shown in Fig. 5A and B. In relation to the pure MXene sample,
the presence of the V-C peak in the Cls region at 282 eV
confirms that the V,CT, structure is preserved after delamina-
tion. For the same sample, the V 2p region also confirms the
presence of V> at a binding energy of about 513 eV, which is
related to V-C bonds, and the presence of V** at 516 eV mostly
associated to V-O bonds on the MXene surface.”” From the V 2p
region, the state of the vanadium for the composites at the
surface is in a V** state.?**' No V** component is detected on the
composite materials. This may be related to the short probing
depth of XPS and the fact that the CuCo materials stand on top
of the vanadium atoms. The surface of V,CT, is highly suscep-
tible to oxidation and oxygen species on the surface are very
common.*” The O 1s peak for the pure MXene can be fitted to
three peaks at 529, 531 and 532 eV which correspond to V-O,
C-V-0 and V-OH bonds. The V-O bonds can be attributed to
surface vanadium oxides, the C-V-O is indicative of oxygen
terminated V,CT, while the V-OH may be present due to OH
terminations on the V,CT,.”” The fact that no change in the
vanadium oxidation state was observed from STXM, which is
bulk-sensitive, confirms that the oxidation concerns mostly the
top layer of the few-layered MXene flakes.
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Fig. 6 Cyclic voltammograms of (A) the pure Cu, Co, CuCo and V,CT, materials and (B) the chemically functionalized hybrid materials CC1,
CC10, CC25 and CC50, recorded at a scan rate of 40 mV in 1 M NaOH. (C) Charges for anodic sweeps and (D) charge of anodic sweep vs. Cu(1)/

Cu(i) % from XPS data.

For the pure CuCo catalyst, the Co 2p and Cu 2p core levels
correspond to Co>* and Cu®" due to the main peaks at 782 and
936 eV, respectively, and the characteristic satellite struc-
ture.*®* Additionally in the C 1s region, the CuCo catalyst
exhibits a metal-carbonate bond around 290 eV and a metal-
oxygen peak in the O 1s region at around 532 eV, which further
confirms the synthesis of a copper cobalt carbonate hydroxide.
Interestingly, upon the addition of V,CT, in the composite,
a partial reduction of the Cu oxidation state from Cu** to Cu'" is
observed at the Cu 2p core level.** Furthermore, the amount of
Cu'* increases with the V,CT, concentration. Additionally, the
ratio of Co: Cu at the surface of the composites increases with
V,CT, which effectively results in the enrichment of the surface
with Co?* in comparison to the Cu®"/** species from the XPS,
Fig. 3C. The amount of vanadium species at the surface also
increases progressively with the concentration of V,CT, in the
composite.

3.2. Electrochemical characterization

The electrocatalytic activity of the four composite materials with
different amounts of V,CT, as well as the pure V,CT,, Cu, Co

and CuCo was investigated toward OER. First, cyclic

24254 | J Mater. Chem. A, 2024, 12, 24248-24259

voltammetry was conducted at a scan rate of 40 mV s~ ' to

investigate the redox transitions of each material (Fig. 6A and
B).

The pure Co catalyst exhibits an oxidation peak at 1.06 V vs.
RHE which can be assigned to the redox transition of Co(u) to
Co(r) (A1).> For the same material, a second oxidation peak can
be observed around 1.43 V vs. RHE, indicating the transition of
Co(m) to Co(wv) (A2).> While the pure Cu material exhibits
a reversible oxidation peak at around 1.40 V vs. RHE, indicating
the transition of Cu(i) to Cu(u) (A3). The pure V,CT, has an
oxidation peak at 1.43 V vs. RHE which can be attributed to
a V(v) to V(v) redox transition (A4) according to Pourbaix
diagrams.* For the mixed metal composite CuCo, an oxidation
peak at 1.08 Vvs. RHE can be attributed to the oxidation of Co()
to Co(m) (A1), which is slightly shifted to higher potentials and
significantly decreases in charge when compared to the pure Co
material. The second peak for the mixed CuCo is observed at
1.44 V vs. RHE which may include the simultaneous transition
of Co(m) to Co(wv) and Cu(i) to Cu(u) (A2 and A3).

In relation to the CC1-50 materials, Fig. 6B, the anodic peak
(A1) for the Co(u) to Co(m) redox transition occurs at similar
potentials however, lower current densities (Fig. S91) compared
to the mixed CuCo (Fig. 6A). Interestingly, an increase in the

This journal is © The Royal Society of Chemistry 2024
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redox capacitance of the grouped A2-A4 peak of about 1.44 V vs.
RHE with increasing V,CT, in the sample is observed (Fig. 6C).
However, the relative amount of V,CT, in the composite
samples is less than in the pure V,CT, hence, the increase in the
redox capacitance for the CC materials maybe be due to various
phenomena. The first reason may be due to the increase in the
vanadium content at the surface of the CC materials, which
promotes electron transfer in the Cu and Co redox species due
to enhanced conductivity, Fig. 5B.*® The second explanation for
the increased redox capacitance could be related to the
increased Co species at the surface which could cause the
increase in charge due to Co(m) to Co(wv) transition, Fig. 6B.
Finally, the third plausible reason for the increased redox
charge could be due to the higher amount of Cu() species with
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increasing V,CT, content, Fig. 6D. The peak at 1.44 Vvs. RHE, as
previously mentioned, can also be assigned to the Cu(i) to Cu(u)
redox transition and if more Cu(r) species are present on the
surface of a material before this redox transition the resulting
redox peak will have a greater charge due to the formation of
Cu(u).

Typical linear sweep voltammograms of the pure and
composite catalysts in 1 M NaOH can be observed in Fig. 7A and
overpotential values at 10 mA cm ™2 (1,,) of the average of three
independent electrodes with standard deviations for each
catalyst are presented in Fig. 7B. The pure V,CT, catalyst
exhibits an average overpotential at 10 mA cm 2 of 420 mV
while the overpotential at the same current density for the pure
CuCo is 360 mV. The chemically functionalized materials all
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Fig. 7 (A) LSV curves of the prepared materials in 1 M NaOH (B) corresponding overpotentials at 10 mA cm™2 (C) Tafel slope plots (D) corre-
sponding Tafel slopes (E) Nyquist plots in OER region and (F) comparison to graphene composites.
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Fig. 8 Stability performance of the pure and CC materials at 10 mA cm™2 over 12 hours.

show lower 7,, values compared to the pure material, which
shows their increased electrocatalytic activity regarding the
OER. For the 1%, 10% and 25% CC materials, the 7, values
become lower, indicating that subsequent additions of V,CT, to
25% improves the OER. With 50% V,CT,, the OER performance
slightly decreases, however the performance is equal to that of
the 10% CC material.

The Tafel slope values for the pure and composite materials
were also calculated and are presented in Fig. 7C. The same
trend for the Tafel slopes values, Fig. 7D, can be observed as in
Fig. 7B for the overpotentials at 10 mA em™ . The Tafel slope
value for the pure CuCo materials is 85 mV dec™' which
decreases to 70 mV dec™* for the CC1, then to 62 mV dec™* for
CC10 and, finally 52 mV dec™ "' for the CC25. This decrease in
Tafel slope value shows that the chemical functionalization of
the V,CT, to the pure CuCo materials allows the OER to proceed
at a faster rate than the pure CuCo. For the CC 50 material, the
Tafel slope increases to 62 mV dec” " which indicates the rate of
the OER in the measured region is slowing down compared to
CC25. This may indicate that there is an optimum amount of
V,CT, which is beneficial to the system for improving the OER,
especially since the same trend is observed for the overpotential
at 10 mA cm ™2 in Fig. 5B.

The Nyquist plots in Fig. 7E and Table S17 show the charge
transfer characteristics of the pure and composite materials
taken at 1.6 V vs. RHE during OER. It is evident that the CC25
and CC50 have similar charge transfer resistances, although the
CC50 has a higher double layer capacitance due to significantly
higher MXene content. The CC10 and CC1 exhibit roughly the
same properties; however, exhibit reduced charge transfer
properties compared to the CC25 and CC50. The pure CuCo
exhibits the most sluggish charge transfer compared to MXene
supported catalysts hence, showing that the V,CT, (MXene)
plays a major role in increasing the charge transfer properties of
the pure CuCo during the OER.

In order to further validate that the enhanced OER perfor-
mance of the V,CT, MXene-containing composites is not only

24256 | J. Mater. Chem. A, 2024, 12, 24248-24259

due to increased surface area or charge transfer properties,
graphene was used as an alternative to the V,CT, in the
synthesis process. Two CuCo/graphene-based (CCG) compos-
ites were prepared by the same hydrothermal route containing
25 and 50% graphene to compare to the CC25 and CC50 to

Fig.9 Contact angle measurements of the pure CuCo, V,CT, and CC
materials.
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determine the overpotential at which these two graphene
composites reach 10 mA cm ™2, Fig. 9. It is evident from Fig. 9
that the graphene composites exhibit similar or higher over-
potential values at 10 mA ¢cm™ > when compared to the pure
CuCo material and the V,CT, MXene composites clearly
outperform their graphene counterpart composites.

Another important parameter for water splitting applica-
tions is the stability of the catalysts under operation for
extended periods of time. The stability tests for the pure Co,
pure CuCo and CC materials in this study were carried out at
a current density of 10 mA ecm ™2 for 12 hours, Fig. 8.

All the pure and composite material activities at the start of
the stability test are improved within the first 1-4 hours when 10
mA cm~” is applied. The pure Co catalyst starts to slightly
decline around 6 hours. Interestingly, for all the materials that
contain Cu, the stability is constant after the 6 hour mark, or the
activity improves. At 12 hours of operation, the activity of the
CC50 shows the best OER activity of ~285 mV at 10 mA cm ™2,
which is retained after 24 hours of operation, Fig. S10.7 It is
evident from the stability tests that the addition of the Cu to the
Co stabilizes the CuCo compared to the Co during the stability
test while the addition of the V,CT, has a significant effect on
the overall activity over prolonged times. The V,CT, is clearly
advantageous in the composite as a pre-catalyst as the CC25/50
composites in this study as it out-performs similar materials
made from Co, Cu and V in the literature, Table S2.}

3.3. Discussion of improved activity for the MXene
composite materials

To elucidate the reasoning behind the improvement of the
composite catalysts, the effect of the MXene on the hydrophi-
licity of the surface was investigated alongside post-mortem XPS
to gain insight to the oxidation states and ICP-OES to determine
dissolution rates of the Co, Cu and V.

First, the hydrophilic nature of the pure and composites
were determined by contact angle measurements, Fig. 9. This is
because hydrophilic materials are advantageous in water
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splitting applications, such as the OER, due to the increased
wettability of the catalyst surface when in contact with the
aqueous electrolyte. V,CT, when synthesized by the in situ
method, which was used in this study, is known to yield
hydrophilic materials in nature due to their OH surface termi-
nation sites.***’

The contact angles of the pure CuCo and composite mate-
rials decreased from 153° to 38.9° in proportion to the
increasing amount of V,CT,, while the pure V,CT, exhibited the
lowest contact angle of 19.6°. The addition of 1% of the V,CT,
lowered the contact angle in comparison to the pure CuCo
materials, however, it was insufficient to change the hydro-
phobicity nature of the catalyst surface, as the angles were
higher than 90°.*® For additions of 10% or more of V,CT,, the
angles were less than 90°, confirming the hydrophilic behavior
of the catalyst surface, which show that the MXene has a role in
making the composites with 10% V,CT, or more hydrophilic in
nature, allowing the catalytic surface better accessibility to the
aqueous electrolyte.

Additionally, post-mortem XPS analysis was conducted to
investigate any changes in the chemical states of the pure CuCo
and the CC50 material (best performing composite due to the
lowest 7 exhibited after 12 hours of stability test, Fig. 8),
Fig. 10A-C. The Cu 2p region shows that the Cu oxide in the
pure CuCo remains unchanged after the OER while the reduced
Cu species in the CC50 has oxidized to Cu(u), Fig. 10A. For both
the pure CuCo and the CC50, the Co species is further oxidized
after the OER, as evident from Fig. 10B. Interestingly, the
vanadium at the surface of the CC50 is no longer detected,
Fig. 10C, and the Co/Cu ratio has significantly increased
compared to before OER. However, the Co/Cu ratio for the CC50
is lower than that of the pure CuCo which may indicate that
copper leaches out of the pure CuCo at a faster rate during the
OER. The lower leaching rate of the Cu/higher amount of the Cu
on the surface of the CC50 may be influenced by the V,CT, in
the pre-catalyst, which itself might be preferentially leached
during OER, as there is no V 2p signal after OER from the XPS,
Fig. 10C.
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Fig. 10 XPS post-mortem analysis for the pure CuCo and CC50 catalysts at (A) Cu 2p (B) Co 2p (C) O 1s and V 2p core levels and (D) ICP-OES

measurements of the electrolyte used after OER stability tests.
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To investigate the leaching effect of the Co, Cu and V during
the OER, Inductively Coupled Plasma Optical Emission Spec-
troscopy (ICP-OES) was carried out on the pure CuCo and the
composite materials after stability tests, Fig. 10D. From the ICP-
OES results, it is clear that for all of the materials, Co leaching
from the electrode into the electrolyte is minimum compared to
the Cu leaching. However, interestingly, the amount of the
V,CT, does have a significant effect on the amount of Cu
leached during the OER. For the composite materials, the
material with only 1% V,CT,, has the highest amount of Cu
leached during the OER, and the Cu leaching decreases with
increasing V,CT,. Furthermore, for the CC50, the materials with
the highest amount of V,CT,, also exhibits the highest amount
of V,CT, leaching. This result confirms that the V,CT, is pref-
erentially leached instead of the Cu postulated from the post
XPS analysis. Hence, the increased performance of the CC50
during the stability tests compared to the other composites may
be a result of more Cu remaining in the CuCo materials in the
case of the CuCo V,CT, composites.

4. Conclusions

A series of CuCo/V,CT, based composites were prepared by
a hydrothermal synthesis method with the V,CT, component
ranging from 0 to 50%. The pure and composite materials were
identified to be hydroxide carbonate materials by XRD. The XRD
showed that for the composite materials, the (002) reflection of
the V,CT, shifted to show smaller interlayer spacings observed
for multi-layered V,CT,, suggesting restacking during synthesis.
The STXM measurements confirm that there are no changes in
the vanadium oxidation state in the bulk of the materials when
comparing the pure V,CT, and the CC50 after synthesis,
showing that no bulk oxidation of the V,CT, occurs during the
hydrothermal synthesis. However, surface oxidation of the
vanadium in the composite materials is observed from the XPS
analysis compared to the pure V,CT,. XPS further revealed that
the Cu(n) oxidation state was reduced with increasing MXene
added to the composite and the Co component compared to the
Cu increased at the surface.

Extensive OER performance analysis was carried out on the
pure and composite samples and the conclusion was that the
CC25-50 materials are the most active for the OER in this study.
This increase in OER activity may be related to the various
changes in CuCo properties due to the V,CT, in the pre-catalyst
including the increase in hydrophilicity of the catalyst surface
and increase in charge transfer properties. Additionally, the
initial increased activity from the LSVs could be attributed to
the interplay of the higher at% of the Co and the reduced Cu
oxidation state leading to an ideal pre-catalyst structure on the
surface as determined by XPS.

The OER activity of the same CuCo materials with graphene
were investigated as well and showed that the enhancement is
not just due to the high surface area or conductivity of the
MXene as the graphene composites were equal to or exhibited
decreased activity for the OER when compared to the pure CuCo
material. Furthermore, all the CC V,CT, composites became
more active for the OER during the stability tests at 10 mA cm >
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which is attributed to the preferential leaching of the V,CT, over
the Cu. Hence, overall, this allowed for a higher concentration
of the CuCo active site to remain on the electrode surface thus
resulting in higher OER performances for the composites with
higher V,CT, i.e. the CC50.
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