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Achieving high-performance and cost-effective Pt-based catalysts with low Pt content and thereby
boosting Pt utilization remains a significant challenge in the field of oxygen and hydrogen
electrocatalysis. The authentic performance of Pt is often hindered by the occupancy and poisoning of
active sites, weak Pt—support interaction, and the degradation of catalysts. To address these issues, we
demonstrate a rational design of a low Pt loaded 3D porous aerogel support through self-assembly and
reduction of a 2D-2D heterostructure comprising MXene (TizC,T,) and reduced graphene oxide (rGO)
via a y-radiolytic synthesis process. The aerogel heterointerface effectively prevents TizC,T, restacking
and aggregation, thereby enhancing the interaction of the electrocatalyst with the electrolyte. Through
precise regulation of the heterojunction interface with a strong metal-support interaction (SMSI), the
Pt@TisC,T,—rGO catalyst demonstrates excellent electrocatalytic performance for the HER, OER, and
ORR. The Pt@TizC,T,—rGO catalyst exhibits efficient ORR activity, with a high onset potential of 0.957 V,
and low overpotentials for the HER (43 mV) and OER (490 mV) at a current density of 10 mA cm™2, as
well as excellent stability against degradation under acidic conditions. Furthermore, we studied the role
of the electronic effects (ligand and strain) induced by SMSI. Spectroscopic analysis confirms that the
observed downward shift in the Pt d-band center, attributed to both charge transfer from the support to
Pt and compressive strain exerted on the Pt lattice, is responsible for the enhanced electrocatalytic
activity. This work successfully offers strategic guidance for charge transfer and strain equilibration in
heterointerfaces toward the rational design of advanced electrocatalysts.
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evolution reaction (OER) for bi-polar metal-air batteries.
Further progress in these and related technologies hinges on
attaining a deeper fundamental understanding of new catalyst
interfaces. Pt-based catalyst materials are most widely utilized
and extensively studied for oxygen and hydrogen electro-
catalysis in both fundamental and applied research. This is
primarily due to their inherent low overpotential for these
reactions and chemical stability working conditions."* Within
this domain, prominent research objectives include: (i) mini-
mizing Pt loading, (ii) optimizing Pt dispersion with smaller
particle size; (iii) enhancing the exposure of individual Pt active
sites; and (iv) developing a stable support material with a large
surface area, chemical stability and excellent electrical
conductivity.”?

In pursuit of the aforementioned goals, one feasible
approach involves utilizing advanced support materials capable
of substantially decreasing the Pt loading without compro-

1. Introduction

Electrocatalysis plays a significant role within the domain of
materials science due to widespread engagement in critical
energy related processes. These processes include the oxygen
reduction reaction (ORR) for fuel cells, the hydrogen evolution
reaction (HER) for green hydrogen production, and the oxygen
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Specific Activity (SA) of the ORR, n and p values obtained using the RRDE, Tafel
plot, collection efficiency, n-value obtained using the KL plot, Turnover
Frequency (TOF) of the HER, XRD of GO before and after radiolysis, SEM and
HR-TEM images and SAED pattern of the Pt@Ti;C,T,—t1GO aerogel, ORR

polarization curves and corresponding K-L plots, peroxide yield, comparison of
OER performance, and quantitative fitting of Fourier-transformed EXAFS in
R-space and k-space. Tabulation of various materials and electrochemical
properties/parameters. See DOI: https://doi.org/10.1039/d4ta02688h

i L. V. and S. B. A. contributed equally to this work.

This journal is © The Royal Society of Chemistry 2024

mising its activity with effective dispersion.** Consequently,
this can result in an improved Pt utilization efficiency. Recently,
there has been a significant increase in research interest in 2D
MXene-based support materials. This is due to their adjustable
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and uniformly exposed lattice planes, which provide additional
catalytic sites, as well as their unique physicochemical proper-
ties and electronic structure. Early studies suggest that the
integration of different 2D MXenes, such as Ti;C,Ty, M0,CT,,
Mo,TiC,Ty, and V,CTy, into Pt catalytic systems effectively
controls the electronic configuration and enhances tolerance to
poisoning, resulting in better catalytic performance.>®

Xie et al. were the first to introduce Pt nanoparticles sup-
ported on Ti;C,T, MXene, serving as a substitute for the
conventional carbon support to enhance the ORR activity.®
Subsequent studies have further validated this work, demon-
strating that Pt undergoes minimal agglomeration when sup-
ported on Tiz;C,T, MXene. Additionally, it retains its
conductivity and improves the ability to adsorb oxygen inter-
mediates during the ORR in both acidic and alkaline environ-
ments.” Furthermore, it has been demonstrated that both the
electronic structure and terminating groups play a vital role in
enabling Ti;C,T, MXene supports to function effectively in the
HER and OER.®* Recent spectroscopic and theoretical investi-
gations have emphasized the significance of the metal d-band
in MXene-supported systems, influencing active sites via elec-
tronic equilibration. This outcome is attributed to strong
metal-support interactions (SMSIs).*°

However, similar to many 2D materials, MXene demon-
strates a pronounced tendency for inter-sheet aggregation
(restacking) via hydrogen bonding and van der Waals interac-
tion among its layers.*>'®'* This proclivity may degrade its
electrocatalytic performance through decreasing the active
surface area and thus leading to mass transport limitations.
Coupling MXene with diverse active components, viz. 0D, 1D,
and 2D nanomaterials, through a heterostructure approach can
overcome these limitations.>*>'* Within the realm of 2D mate-
rials, the heterostructure formed by MXene and graphene oxide
(GO) or reduced GO (rGO) has garnered significant attention in
the field of electrocatalysis. Wang et al. demonstrated that
a Mo,CT, MXene-rGO heterostructure, modified with Pt,
exhibited a 1.5 times larger electrochemically active surface
area, 1.9 times higher mass activity, and 33.6% improved
durability for the methanol oxidation reaction (MOR)."* A
Ti;C,T,-rGO heterostructure, synthesized through layer-by-
layer assembly and dip coating techniques, exhibited
enhanced electrocatalytic efficiency as illustrated by Reveen-
dran et al., for the OER, HER, and MOR."®

Moving beyond conventional heterostructure assembly, the
integration of MXene into three-dimensional (3D) aerogel
frameworks with the inclusion of Pt opens up an intriguing
prospect for improving catalytic performance.’® The intended
outcome of this MXene 3D aerogel heterostructure is to increase
the internal specific surface area (enabling more active sites)
and induce high porosity (conducive to an improved mass
transfer rate). To the best of our knowledge, there is only one
report illustrating the enhanced performance of 3D rGO-
Ti;C, T, aerogel supports for Pt towards the MOR compared to
conventional Pt/C catalysts."> Nevertheless, further in-depth
analysis correlating geometric and electronic properties
through the SMSI effect would be a value addition towards
enhanced performance of this heterostructure. Furthermore,
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apart from the MOR, it would be interesting to understand the
performance of this catalyst towards the ORR, HER, and OER,
through an integrated approach of electro-analysis.

With this motivation, we introduce a distinctive one-pot
synthesis method involving y-ray-mediated technology to form
a 3D porous aerogel heterostructure, integrating Pt into the
Ti;C,T,—rGO framework. Previous studies from our group have
already established that the y-radiolysis method serves as
a cleaner and effective reduction method of metal salts on
catalyst supports.>'”'®* Moreover, this method does not require
the addition of any other reducing chemicals and avoids the
generation of undesirable by-products on the catalyst surface.
In the present work, y-radiolysis not only reduces the metal salt,
as mentioned previously, but also induces the co-reduction of
GO to rGO, accompanied by the self-assembly to form the 3D
Ti;C,T,-rGO framework. This approach additionally ensures
the uniform distribution of Pt within the interwoven 3D
network.

In this study, the ORR, OER, and HER were chosen as proof-
of-concept reactions to assess the electrocatalytic characteristics
of the resulting Pt@Ti;C,T,-rGO aerogel catalyst. By virtue of its
unique structural advantages as well as strong synergetic
coupling effects, the prepared Pt@Ti;C,T,—rGO aerogel catalyst
exhibited enhanced electrocatalytic performance in oxygen and
hydrogen electrocatalysis, which are apparently superior to
those of conventional Pt/C catalysts. Through systematic spec-
troscopy analyses, we have unveiled that the surface properties
and reactivity of the Pt@Ti;C,T,~rGO aerogel are intricately
influenced by the geometric and electronic structure modifica-
tions. These alterations result from the “ligand effect” initiated
by SMSI and the “strain effect”, achieved by Pt lattice mismatch,
in conjunction with d-band theory.

It is a well-documented fact in the literature that the elec-
trochemical activity of a Pt-based catalyst can be altered by
tuning the d-band center through various approaches, such as
alloying, changing particle size, introducing strain through
single atom doping, substitution, and intercalation
processes.>* This study highlights that the heterostructure
approach causes a downshift in the Pt d-band center, driven by
lattice strain and ligand effects, contributing to an enhance-
ment in electrocatalytic performance. Therefore, this work
represents the first report of its kind, which unveils the strategic
development of heterostructured Pt@Tiz;C,T,—rGO aerogel
electrocatalysts, showcasing the interplay of ligand and strain
effects that lead to improved activity and durability in both
oxygen and hydrogen electrocatalysis.

2. Experimental section
2.1 Materials

All the chemicals and solvents of analytical grade were
purchased commercially and utilized without any further puri-
fication. Titanium aluminum carbide MAX phase powder
(Ti3AlC,), potassium hexachloroplatinate(v) (K,PtClg), Nafion
117 (5 wt%) and Pt/C (10 wt%) were procured from Sigma
Aldrich. The etchant hydrofluoric acid (HF) (40.0%) and
graphite powder were obtained from Loba Chemie Pvt. Ltd.

This journal is © The Royal Society of Chemistry 2024
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Solvents including ethanol (>99.9%) and dimethyl sulfoxide
(DMSO) (>99.7%) were purchased from SD-Fine chemicals,
while isopropanol was procured from High Purity Laboratory
Chemicals (HPLC). Milli-Q water was utilized for the prepara-
tion of all aqueous solutions.

2.2 Methodology

Scheme 1 illustrates the formation of the 3D Pt@TizC,T,—rGO
aerogel framework, involving the following steps. (a) Synthesis
of 2D Ti;C,T, nanosheets from commercial Ti;AlC, powder by
a wet etching method; (b) synthesis of GO nanosheets from
commercial graphite through a modified Hummers' process;*
and (c) synthesis of 3D Pt@Ti;C,T,-rGO frameworks via a vy-
radiolysis process. Detailed procedural steps for each stage are
given below.

2.2.1 Synthesis of 2D Ti;C,T, and GO nanosheets. Ti;C,T,
nanosheets were synthesized using a wet acid etching and
delamination process from bulk MAX Ti;AlC,. In a typical
procedure, 1.0 g of TizAlC, was continuously stirred in 10 mL of
HF (40%) solution for 48 h at room temperature to facilitate the
etching of aluminum (Al) layers from Ti;AIC,. Following this, the
resultant product underwent subsequent washing and centrifu-
gation with deionized water and ethanol until the supernatant
reached pH ~ 6-7. The product thus obtained was introduced
into 20 mL DMSO, stirred, and subjected to sonication for 20 h,
resulting in delaminated Ti;C,T, MXene nanosheets. After
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centrifugation and washing, the final Ti;C,T, powder obtained
was dried at 50 °C for 10 h. Graphene oxide (GO) was obtained
from commercial graphite powder via a modified Hummers'
method.” The details of the synthesis process are provided in
S1.1 The concentration of the GO solution was assessed through
filtration, drying, and weighing of the GO film.

2.2.2 +y-Radiolysis assisted synthesis of the 3D Pt@Ti;C,-
T,-rGO aerogel architecture. The assembly of the 3D Pt@Ti;C,-
T,—1GO aerogel architecture, with different Ti;C,T, : rGO feeding
ratios (1:3,1:1, and 3: 1), was accomplished through a straight-
forward one-step vy-radiolysis method. During the radiolytic
synthesis, approved Standard Operating Procedures (SOPs) were
ensured in handling radiation facilities with a ®°Co source. The
typical synthetic pathway, with a TizC,T, : rGO feeding ratio of 1:
1, proceeds as follows: 5 mM stock solution of K,PtCls was mixed
with Ti;C,T, (2.5 mg mL ") and GO (2.5 mg mL~") nanosheets in
a solution containing 18.0 mL water and 2.0 mL isopropanol
using ultrasonication for 15 min. The reaction vessel was then
sealed with a silicone lid and degassed in an inert environment.
Subsequently, it was exposed to a 100 kGy dose from a ®°Co source
at a dose rate of 15 Gy min ' to obtain a Pt@Ti;C,T,~rGO
hydrogel. (The details of the dose rate calibration with Fricke
dosimetry are provided in ESI S2t). The obtained hydrogel
underwent successive washes with water and ethanol, followed by
freeze-drying at —60 °C (with pressure <10 Pa), resulting in the
formation of a 3D Pt@Ti;C,T,-rGO aerogel. This resultant dried
product served as a catalyst in electrochemical reactions.

=N

2D-Ti,C,T, MXene
Gamma

Chamber

1-
irradiation

Hydrogel

Pt@Ti,C,T, TG

(b)
1. Oxidation

2. Exfoliation

Graphene-Oxide (GO)

Freeze-drying
I,

Aerogel

Highly porous

framework Generation

Scheme 1 Graphical illustration outlining: (a) synthesis of 2D TizC,T, nanosheets from TizAlC, using wet etching method; (b) synthesis of GO
nanosheets from natural graphite through a modified Hummers' process and (c) synthesis of 3D Pt@TisC,T,-rGO aerogel framework via y-

radiolysis process.
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2.3 Characterization

2.3.1 Material characterization. The phase structure of the
catalyst was determined using X-ray Diffraction (XRD) utilizing
Cu Ko radiation (A = 1.5406 A) in step scanning mode, conducted
on a Rigaku Ultima IV instrument. The Raman spectra were
recorded with a confocal-Raman spectrometer (o-3R Model).
633 nm radiation from a 35 mW air-cooled argon ion laser was
used as an excitation light source. A Micromeritics Gemini 2375
instrument was used to conduct N, adsorption-desorption
isotherm measurements for the aerogel samples. Before the
adsorption measurements, all samples underwent degassing at
150 °C for 2 h under a N, atmosphere. The specific surface areas
were calculated using the Brunauer-Emmett-Teller (BET) model.
Additionally, the pore-size distribution was determined using the
Barrett-Joyner-Halenda (BJH) model based on the desorption
isotherm data. Morphological analysis was carried out using
Field Emission Scanning Electron Microscopy (FE-SEM) (FEI
Nova NanoSEM 450), High Resolution-Transmission Electron
Microscopy (HR-TEM), and High-Angle Annular Dark Field
Scanning Transmission Electron Microscopy (HAADF-STEM)
(TALOS F200S G2). Elemental distribution within the catalyst
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was determined using energy-dispersive X-ray spectroscopy (EDS)
coupled to TEM. Metal loading in the catalysts was quantified via
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) on an
AGILENT 7800 ICP-MS instrument. The electronic structure of
the catalyst was analyzed using X-ray Photoelectron Spectroscopy
(XPS) conducted on a Thermo Scientific Ke. UK Machine with Al
Ko (1486.6 €V) at a resolution of 0.1 eV. Pt L; and Ti K-edge X-ray
absorption spectroscopy (XAS) experiments, including both X-ray
absorption near edge spectroscopy (XANES) and extended X-ray
absorption fine structure (EXAFS) measurements, were per-
formed on the scanning EXAFS beamline (BL-09) at Indus-2 SRS,
Raja Ramanna Centre for Advanced Technology (RRCAT), Indore,
India (the details of this analysis are provided in S37).

Elaborate descriptions of the electrochemical characteriza-
tion methods are provided in the ESI (S4-S117).

3. Results and discussion

3.1 Chemical and physical characterization of the
Pt@Ti;C,T,—rGO aerogel

Fig. 1a-f reveal a panoramic view illustrating the efficient
exfoliation and delamination of ultrathin Ti;C,T, MXene from
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Fig.1 SEMimages of (a) TisAlC, MAX phases, (b) exfoliated TizC,T, and (c) delaminated TizC,T, MXenes and (d)-(f) respective magnified images.
(9) TEM image of a few layers of TizC,T, MXene. XRD pattern of (h) bulk TizAlC, in comparison with exfoliated and delaminated TisC,T, MXenes,
indicating the peak shift, and (i) corresponding magnified image showing the peak shift after TizC,T, MXene formation.
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the solid, dense 3D Ti3AlC, structure. Initially, an accordion-
shaped Ti;C,T, MXene was obtained by selectively etching the
Al layer using HF from the block-like laminated structure of
TizAlC,.* Further delamination resulted in the formation of
several TizC,T, layers, each measuring 1-2 um in size (see
Fig. 1g and S17). The AFM images of the Ti;C,T, MXene nano-
sheets (Fig. S11) show an average thickness of around 2.7 nm,
indicating that the nanosheets are composed of either single or
double layers, which confirms the effectiveness of the exfolia-
tion and delamination process. XRD patterns in Fig. 1h and i
further confirm the successful transformation of Tiz;AlC, to
Ti;C,T, MXene nanosheets by the disappearance of the stron-
gest diffraction peak at 38.7° corresponding to the (104) plane of
the Al layer from the Ti;AlC, MAX phase.">* Additionally, the
downshift from 9.6 to 6.9° and the broadening of the (002) basal
plane peaks of Ti;C,T, indicate an increase in the interlayer
distance (from 9.3 to 13.4 nm) and a reduction in the thickness
of Ti;C,T, MXene layers. Furthermore, the average crystallite
size of the TizAlC, MAX phase and Ti;C,T, MXene reduced from
32.7 to 6.6 nm after etching, intercalation and delamination
processes (the summary of the d(;00) XRD peaks is provided in
Table S1f). These changes indicate the successful trans-
formation of solid dense TizAlC, to ultrathin Ti;C,T, nano-
sheets. Additionally, XPS and FTIR analyses offered a detailed
understanding of the surface composition and functional
groups, such as Ti-T,, -OH, and -F, shedding light on the
chemical environment and potential reactivity of delaminated
Ti3C,T, (detailed analysis is presented in Fig. S2 and S37).

GO was selected as the spacer precursor due to its layered
configuration similar to Ti;C,T,, featuring a large number of
hydrophilic functional groups and good solution processability.
The successful chemical oxidation and exfoliation of graphite
into GO were confirmed by the shift of the (002) peak in XRD
(Fig. S41) towards a smaller angle of 11.8°, indicating an
increase in d-spacing from 0.342 to 0.881 nm (Table S2t).2°
Furthermore, the FTIR spectrum of GO (Fig. S5t) confirms the
successful oxidation of graphite, revealing various oxygen-
containing functional groups. These groups enhance its
hydrophilic nature and chemical reactivity. The SEM and AFM
images (Fig. S61) of the GO nanosheets reveal a lateral dimen-
sion of 3-5 pm and a thickness ~2 nm for monolayers to a few
layers. Both Ti;C,T, MXene and GO sheets are negatively
charged when dispersed in water with zeta potentials of —40.46
and —37.95 mV, respectively. Therefore, they can form a stable
and uniformly mixed colloidal solution after ultrasonic treat-
ment and the subsequent radiolysis process.

During radiolysis, y-radiation cleaves water molecules to
produce both reductive (e,q.”, H,, and H') and oxidative ("OH,
H;0", and H,0,) species (eqn (1)).}2!

y-radiation

H,O € +Ha+ H +"OH + H;0" + H,0, + OH~

1)

‘OH is the prominent oxidizing species with redox potential
E° ("OH/H,0) = +2.8 Vg, while €,q. and H' are the active and
strong reducing agents with redox potentials of E® (H,O/e,q. ") =

This journal is © The Royal Society of Chemistry 2024
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—2.87 Vyup and E° (HY/H') = —2.3 Vyug, respectively.’” Addi-
tionally, "OH can be scavenged efficiently by (CH;),CHOH to be
converted into reductive radicals [(CH;),C"OH] (E° ((CH3),CHO/
(CH;),C'OH) = —1.8 Vyug), generating an exclusively reducing
environment in the reaction mixture.

(CH3)2CHOH + 'OH — (CH3)2C'OH + H,0 (2)

These reductive species play a dual role of reducing GO to
rGO?2 and converting [PtCl]>~ ions into Pt!°! nanoparticles (eqn
(3) and (4)). It also efficiently triggers the self-assembly and
gelation of TizC,T, and rGO nanosheets through van der Waals
interactions and hydrogen bonding.

[PtClg]*™ + 2e,q.~ — [PtCL*” +2C1I" (E°=0.68V)  (3)
[PtCL* + 2e,q.~ — Pt +4Cl (E° =0.75V) (4)

Moreover, in situ generated Pt nuclei get readily integrated
with unsaturation in the 3D framework of the Ti;C,T,-rGO
surface to form a Pt@Ti;C,T,—rGO hydrogel. The subsequent
freeze drying process yielded the Pt@TizC,T,—rGO aerogel
architecture without disrupting the porous architecture.

The crystalline and chemical structures of the Pt@Ti;C, Ty~
rGO aerogel catalyst were characterized by XRD and Raman
spectroscopy. Fig. 2a shows the XRD pattern of the Pt@TizC, Ty~
rGO aerogel, along with control samples Ti;C, Ty, GO, Pt@rGO
and Pt@Ti;C, Ty, obtained after radiolysis. The diffraction peaks
at 7.2, 18.1, 27.4, and 60.5° were assigned to the crystal planes
(002), (004), (006), and (110) of TizC,T,, respectively. A weak
peak at 25° is attributed to the formation of TiO,, resulting from
the mild oxidation of Ti;C,T, by oxidative species ("OH, H;0",
and H,0,) (eqn (1)) formed during radiolysis.”* The conversion
of GO to rGO during the radiolysis process is evident from
a broad peak at 23.1° corresponding to the (002) plane of rGO.**
Primary diffraction peaks corresponding to both Ti;C,T, MXene
and rGO were identified in the Pt@Ti;C,T,—rGO aerogel, sup-
porting the prospective self-assembly of Ti;C,T, and rGO.
Additionally, in the Pt@Tiz;C,T,-rGO, Pt@rGO, and Pt@Ti;C, Ty
samples, three characteristic peaks were evident at 26 = 39.8,
46.3, and 67.5°, corresponding to the (111), (200), and (220)
planes of the cubic Pt nanocrystals, respectively (JCPDS 87-
0646).7%

Fig. 2b shows the Raman spectrum of the Pt@Ti;C,T,~tGO
aerogel and the control samples as described in XRD analysis.
The Raman spectrum of the Pt@Ti;C,T,—rGO aerogel displays
a combined feature of the fingerprint signals of Ti;C,T, MXene
and rGO in a range of 120-750 and 1300-1600 cm ™, respec-
tively.> The peak at 270 cm ™ is attributed to the A;, symmetry
out-of-plane vibrations of Ti and C atoms. The signals at 414
and 622 cm™ ' were assigned to the E, group vibrations resulting
from the in-plane (shear) modes of Ti, C, and surface functional
groups of TizC,T,.>* Two strong peaks at 1346 and 1594 cm ™'
are assigned to the D and G bands of graphitic carbon from
rGO, respectively."” No discernible shift in the Raman peaks of
the Pt@Ti;C,Tx-rGO aerogel is observed relative to pristine
samples, suggesting that the self-assembly process does not
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Fig. 2 (a) X-ray diffraction pattern, (b) Raman spectra, (c) N, adsorption—desorption isotherms, and (d) pore size distribution curve of (i) TizC,T,,

(i) rGO, {iii) Pt@TizC,T,, (iv) Pt@rGO and (v) Pt@TizC,T,~rGO.

change the chemical structure of Ti;C,T, and rGO. The intensity
ratio of D and G bands (Ip/Ig) is used to evaluate the extent of
defects in samples. Apparently, the I/Ig value for Pt@TizC,T,—
rGO (1.17) is higher than that for Pt@rGO (1.09) and rGO (0.84).
This observation underlines a higher defect density in Pt@Tis-
C,T,—1GO interactive layers."> Therefore, Raman analysis of
these samples suggests the formation of a heterostructure
through self-assembly of Ti;C,T, MXene and rGO nanosheets.

Furthermore, XPS measurements of the Pt@Ti;C,T,-rGO
architecture reveal the presence of Pt, Ti, C, O, and F (Fig. S7aft).
The Ti 2p spectrum (Fig. S7bt) shows six peaks: Ti-C 2p;,, and
Ti-C 2p3), at 461.5 eV and 455.3 eV, respectively; Ti-X 2p,,, and
Ti-X 2p;3, at 459.8 eV and 456.1 eV, indicating sub-
stoichiometric titanium carbide or oxycarbides; and Ti-O 2p,,
and Ti-O 2pj3), at 463.68 eV and 457.8 eV.”** The slight upward
shift in Ti 2ps, binding energy suggests strong electronic
coupling between TizC,T, and rGO. The C 1s spectrum (Fig.
S7ct) shows peaks for C-C/C=C (284.5 eV), C-O (286.5 eV),
C=0 (287.5 eV), and O-C=0 (288.8 eV), indicating functional
groups such as epoxides, hydroxyls, and carboxyls, with
observed shifts due to interactions between rGO and Ti;C,T,.>
Fig. S7dt presents the Pt 4f spectrum of Pt@TizC,T,-rGO,
showing two doublet pairs. Peaks at 71.0 and 74.4 eV corre-
spond to metallic Pt°, while peaks at 72.0 and 76.9 eV indicate
Pt**. The lower binding energies of these peaks in Pt@Ti;C,T,~
rGO compared to Pt@rGO and Pt@Ti;C,T, highlight a strong
electronic interaction between Pt and Ti;C,T,—rGO.® This
interaction enhances the stability of Pt and facilitates electron
transfer from Ti;C,T,-rGO to Pt nanoparticles, reflecting
changes in the electronic structure and bonding due to the
heterostructure formation.”

The N, adsorption-desorption analysis was carried out to
further investigate the porous features and specific surface area
of the prepared samples. All adsorption-desorption isotherms
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(Fig. 2c) correspond to the combination of typical type II and
type III behaviour according to IUPAC classification, indicating
the presence of meso- and macro-pores in the structure."*° The
isotherms of Pt@Ti;C,T,—rGO, Pt@rGO, and rGO exhibit
a distinct hysteresis loop of type H3, validating the existence of
slit-like pores between nanosheets.>® The pore size distribution
of the samples was calculated from the desorption branch using
the Barrett-Joyner-Halenda (BJH) method, as shown in Fig. 2d.
Pt@Ti;C,T,—rGO displays a hierarchical porous structure, with
meso- and macro-pores. This porous architecture plausibly
originated from the interspaces between Ti;C,T, and rGO
nanosheets formed in the self-assembly process during radiol-
ysis. The Brunauer-Emmett-Teller (BET) surface area of the
Pt@Ti;C,T,—rGO aerogel was calculated to be in the range of
125.32-101.21 m* g~ ', which is significantly larger than that of
bare TizC,T, (13.23 m* g~ ') and rGO (96.56 m> g~ ). The BET
surface area, pore size and volume of all the samples are
summarized in Table S3.7 The existence of such a hierarchical
porous structure and substantial surface area allows the catalyst
to facilitate effective mass transfer at the active sites, thereby
lowering diffusion resistance and expectedly boosting catalytic
activity.

Fig. 3a illustrates the fluffiness of the aerogel, able to rest
effortlessly on a dandelion. The calculated density of the
prepared samples ranged between 23 and 30 mg cm . It should
be noted that after radiolysis and freeze-drying, the sample
surface remained intact. The morphology and nanostructures
of the 3D Pt@Ti;C,T,—rGO architecture were examined by FE-
SEM, TEM, and HAADF-STEM (all the following results are
shown for the sample Pt@Ti;C,T,—rGO 3:1). As can be seen
from SEM images in Fig. 3b-d, the Pt@Ti;C,T,~rGO aerogel
displays a 3D crosslinked framework of numerous nanosheets,
with Ti;C,T, MXene wrapped in the large nanosheets of rGO.
This unique configuration not only prevents the restacking or
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Fig. 3 (a) Photograph of the Pt@TizC,T,—rGO 3:1 aerogel placed on a dandelion, suggesting the featherweight density of the sample. (b)—(d)
SEM images and (e)-(g) HR-TEM images (inset shows the particle size distribution histogram of Pt over Pt@TizC,T,—rGO 3: 1) and (h)-(i) HAADF-
STEM images and the corresponding elemental maps of Ti, C, Pt, O and F for Pt@TizC,T,—rGO 3: 1.

re-aggregation of TizC,T, and rGO but is also expected to
enhance the permeation of electrolyte into the interior active
metal sites during electrocatalysis. TEM images in Fig. 3e-g
clearly reveal that Pt nanoparticles have a rough spheroid-like
morphology with size ranging from 2 to 6 nm, which are well
dispersed within the Ti;C,T, and rGO matrix with no much
aggregation. The Gaussian fitting of the size histogram for
approximately 30 different Pt particles resulted in an average
particle size of 4.90 nm (see the inset of Fig. 3f and g). The HR-
TEM image of Pt reveals well-resolved lattice fringes with an
interplanar distance of 0.227 nm indexed to the (111) plane (Fig.
S8at). The selected area electron diffraction (SAED) patterns
(Fig. S8b and ct) displayed clear diffraction rings of the (006),
(103), (105), and (110) planes of TizC,T,, along with the (111),
(200), and (220) planes of fcc crystals of Pt. These observations
align with the results obtained from XRD analysis. These find-
ings collectively imply a robust connection between Pt and the
Ti;C,T,—rGO support, while also revealing the polycrystalline
structure of the catalyst.

The HAADF-STEM image, along with the corresponding EDS
elemental mapping, provides additional insights into the het-
erostructure of the Pt@Ti;C,T,~t1GO aerogel. The larger rGO
nanosheets enveloping the smaller Ti;C,T, nanosheets are well
confirmed by the HAADF-STEM image in Fig. 3h. The EDS
elemental mapping (Fig. 3i) of Pt@Ti;C,T,~rGO indicates an
even distribution of the characteristic elements Ti, F, and O
from Tiz;C,T,, along with the C element from rGO and TizC,T,.
Furthermore, the Pt nanoparticles exhibit excellent dispersion
across these Ti;C,T,~rGO nanosheets, highlighting their

This journal is © The Royal Society of Chemistry 2024

effective support. This suggests that the binding of Pt to the
porous TizC,T,-rGO heterostructure can enhance the conduc-
tive pathways between the 2D/2D layers, which is anticipated to
increase catalytic activity by promoting efficient charge transfer.

3.2 Electrocatalytic performance of the Pt@Ti;C,T,~tGO
aerogel catalyst

Motivated by the intriguing structural features, we investigated
the ORR activities of the Pt@Ti;C,T,~rGO aerogel catalyst
featuring different ratios of Ti;C,T,~rGO support (1:3,1:1, and
3:1) using the Rotating Disk Electrode (RDE) and Rotating Ring
Disk Electrode (RRDE). The Pt content of all the samples was
calculated by ICP-MS measurement and kept constant within
the range of ~7-9 wt% (Table S47). Accordingly, Pt/C with low Pt
content (E-TEK 10 wt% Pt) was chosen as the benchmark for
comparison. Fig. 4a shows CV (Cyclic Voltammetry) curves for
Pt@Ti;C,T,-rGO, Pt@Ti;C,T,, Pt@rGO and Pt/C in an O,-
saturated 0.1 M HClO, solution. All the samples displayed the
essential features of the Pt surface viz. hydrogen adsorption/
desorption (0.05-0.35 V) and formation/reduction of Pt oxide
(0.6-1.2 V), resulting in the commonly recognized “butterfly”
shape.>®

Previous investigations have confirmed that hydrogen
adsorption/desorption behaviours are influenced by the surface
atomic arrangement of Pt. In fact, the CV curve for clean Pt (111)
exhibits broad symmetrical features, while a well-defined redox
peak is observed for the Pt (100) surface.?”*® Here, all catalysts
exhibit similar features in the hydrogen adsorption/desorption
region to Pt/C, except the Pt@Tiz;C,T,~rGO 3:1 -catalyst.
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Fig.4 (a) Cyclic voltammetry curves in O,-saturated 0.1 M HCLO, at a scan rate of 100 mV s, (b) ORR polarization curves of 1600 rpm at 10 mV
s7% (c) Tafel curves obtained from polarization curves in (b) for Pt@TizC,T,—rGO 1: 3, Pt@TizC,T,—rGO 1: 1, Pt@TizC,T,—rGO 3: 1, Pt@TizC,T,,
Pt@rGO, and Pt/C catalysts. (d) RRDE polarization curve of Pt@TizC,T,—rGO 3 : 1 at different rotation rates; (e) number of electrons transferred by
Pt@TizC,T,—rGO 3:1 and Pt/C determined using the K-L plot and RRDE method; (f) accelerated durability test (ADT) for Pt@TizC,T,—rGO 3:1

and Pt/C before and after 10k cycles.

Notably, the Pt@Ti;C,T,—rGO 3:1 catalyst presents a small
redox peak at 0.31 V in the “hydrogen desorption region,”
characteristic of the Pt (100) surface. The volume fraction of Pt
crystallites with (100) orientation was computed by integrating
the intensity ratio between the (111) and (220) peaks (details are
provided in ESI Table S57).>” From the table, it is inferred that
Pt@Ti3C,T,—rGO 3:1 has a higher fraction of (100) sites
compared to other compositions. Therefore, the Pt within
Pt@Ti;C,T,-rGO 3:1 is enclosed by the (100) surface in addi-
tion to the (111) plane, resulting in the observed additional peak
in the CV.>”?® These results suggest that Pt anchored to an
optimized combination of Ti;C,T, and rGO heterostructures
could expose more abundant (111) and (100) surfaces that are
active towards the ORR.

The electrochemically active surface areas (ECSAs) of all the
catalysts derived from hydrogen under the potential desorption
(HUPD) area (details given in S5T) are summarized in Table S6.}
Among them, Pt@Tiz;C,T,-rGO 3:1 demonstrated the highest
ECSA (80.12 m*> g™ ), suggesting effective dispersion of Pt on i,
thereby providing the largest number of active sites for the
reaction. A discernible positive shift in cathodic peak potential
is observed in the CV curve during the reduction of oxygen
species adsorbed on the Pt@Ti;C,T,—rGO 3 : 1 catalyst, relative
to Pt/C. This suggests that Pt@Ti;C,T,~rGO 3:1 reduces the
desorption free energy for Pt-O, Pt-OH, or Pt-O, species,
probably due to the participation of the Ti;C,T,-rGO hetero-
structure support. Consequently, this enhances their avail-
ability during the ORR.
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Fig. 4b displays the ORR polarization curves of all the cata-
lysts recorded at 1600 rpm. The onset (Eqpsec) and half-wave (E;,
») potentials, derived from Fig. 4b, follow the order: Pt@Ti;C,-
T,-1GO 3:1 > Pt@Ti3C,T, > Pt@Ti;C,T,—rGO 1:1 > Pt@Ti;Cyp-
T,-rGO 1:3 > Pt/C > Pt@rGO. This result suggests that
Pt@Tiz;C,T,—rGO 3 :1 is the best among them with the highest
Eonset and Eq ), of 72 and 47 mV respectively, higher than those of
commercial Pt/C. Moreover, Pt@Ti;C,T,-rGO 3:1 displayed
a higher mass transport limiting diffusion current density of
—6.98 mA cm 2, signifying efficient diffusion and transport of
reactants. Additionally, the higher intrinsic electrocatalytic
activity of the Pt@Tiz;C,T,-rGO 3:1 catalyst was confirmed by
its higher mass and specific activities (details are given in S6t)
of 0.132 mA ugp * and 0.146 mA cm ™2 compared to Pt/C, 0.021
mA pgp ' and 0.097 mA cm >, respectively. All the parameters
that quantify the catalytic efficiency of the investigated catalysts
in the ORR have been evaluated and included in Table S6.1 The
optimal catalytic performance of Pt@TizC,T,-rGO 3:1 arises
from the well-suited ratio of Tiz;C,T,~rGO (3:1). This ratio
achieves a harmonious combination of the 3D porous hetero-
structure and optimized Pt electronic structure, leading to the
observed increment of activity.

To quantify the ORR efficiency of all catalysts, Linear Sweep
Voltammetry (LSV) curves were studied at different rotation
rates (Fig. S9t). Based on the Koutecky-Levich (K-L) equation
(details are given in S77) for the diffusion controlled region,
a series of plots were obtained showing a linear relationship
between j* and w~*'? over the potential range of 0.2-0.6 V (inset
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of Fig. S9t). The K-L plot of all catalysts indicated first-order
reaction kinetics, demonstrating that the rate of the ORR is
predominantly governed by mass transport.” The electron
transfer number (n) was calculated to be in the range of 4.1-4.6
from the slopes of K-L plots, indicating that the ORR proceeds
via a four-electron pathway. Herein, the ‘n’ value obtained is
slightly larger than that of Pt/C (3.98-4.0), the theoretical value
(~4) and other reported values.>*** This is probably attributed
to the accumulation of O, within the macropores of the aerogel
framework, which can influence the kinetics of the ORR process
and potentially lead to deviations from the expected electron-
transfer number.*” Fig. 4c shows a plot of mass transfer cor-
rected current density (ji) from LSV experiments vs. over-
potential for all the samples. From all plots, the Tafel slope
values were calculated to be ~120 mV dec ™. This slope value
suggests the presence of an oxide-free Pt surface with single
electron transfer as the rate determining step.***

To obtain a more comprehensive understanding of the ORR
pathway, the best performing Pt@Ti;C,T,~rGO 3 : 1 catalyst was
further characterized using the RRDE (Fig. 4d), by monitoring
the formation of intermediate peroxide species (HO, ) (details
are given in S8 and S9t). On the basis of the disk and ring
currents, the n values for Pt@Ti;C,T,-rGO 3:1 fell within the
range of 3.92 to 4.12 across the potential range of 0.2-0.6 V,
similar to that of Pt/C (3.80-3.91) (Fig. 4e). This confirms that
the reaction proceeds predominantly via a four-electron mech-
anism, in line with the results determined from K-L plots. The
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calculated yields of H,O, for the Pt@Ti;C,T,~-rGO 3 :1 and Pt/C
electrodes are less than ~6% and ~4% respectively, in the
potential range of 0.2-0.6 V (Fig. S10t). The higher electron
transfer number and lower H,O, production yield observed for
Pt@TizC,T,—rGO 3:1 indicate a greater contribution of the
parallel reactions compared to Pt/C.**

To assess the electrochemical stability of Pt@Ti;C,T,—rGO
3:1, accelerated durability tests (ADTs) were conducted.
Following 10 000 consecutive potential cycles, Pt@TizC,T,-rGO
3:1 exhibited a minimal negative shift of 18 mV in E, , (Fig. 4f).
This remarkable durability surpasses that of Pt/C, which expe-
rienced a shift of 30 mV under similar testing conditions. These
results again highlight the superior stability of Pt@TizC,T,-rGO
3:1.

Moreover, the methanol tolerance of a cathode material is
a critical factor in alcohol fuel cells. Fig. S111 compares the
methanol tolerance of Pt@Ti;C,T,—rGO 3:1 and Pt/C using
chronoamperometry for the ORR in O,-saturated 0.1 M HCIO,.
When methanol was introduced at 1500 s, the Pt@Ti;C,T,—rGO
3:1 catalyst showed only a slight current density fluctuation
before stabilizing. In contrast, the commercial Pt/C catalyst
showed a significant current density increase and took longer to
return to its original level. This indicates that Pt@TizC,T,-rGO
3:1 has better methanol tolerance compared to Pt/C.

In rechargeable batteries, a single electrode has to play
a dual role in both the OER and the ORR.** In such situations,
only Pt can deliver optimum performance towards these
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Fig. 5 (a) OER polarization curves in N,-saturated 0.1 M HClO,4 at
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1600 rpm and (b) corresponding Tafel plots of Pt@TisC,T,—rGO 1:3,

Pt@TizC,T,—rGO 1:1, Pt@TizC,T,—rGO 3:1, Pt@TizC,T,, Pt@rGO, and Pt/C catalysts derived from (a). (c) Chronopotentiometric response of

Pt@TizCoT,—rGO 3:1 and Pt/C at 10 mA cm™2. (d) Overall LSV curves
activities.
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of Pt@TizC,T,—rGO 3:1 and Pt/C showing their bifunctional ORR/OER
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reactions. With this motivation, we have investigated the elec-
trocatalytic OER performance of Pt@Ti;C,T,—rGO catalysts in
N,-saturated 0.1 M HClO, using the RDE. From the polarization
curve in Fig. 5a, it can be noted that Pt@Ti;C,T,~t1GO 3:1
showed the lowest onset potential (~1.58 V vs. RHE) among the
other tested counterparts. As expected, Pt@TizC,T,~rGO 3:1
outperformed by achieving the lowest overpotential of 490 mVv
(at a current density of 10 mA cm™?), which is 42, 90, 150, 151
and 185 mV less than that achieved by Pt@Ti;C,T,—rGO 1:1,
Pt@Ti3C,T,—1rGO 1: 3, Pt@Tiz;C,T,, Pt@ rGO and Pt/C, respec-
tively (Fig. S127). For further analysis, LSV data were fitted into
the Tafel equation and are plotted as shown in Fig. 5b. The
relatively low Tafel slope value for Pt@TizC,T,—rGO 3:1
(165.3 mV dec™ ") reflected its intrinsic facile kinetics towards
the OER.

The electrochemical stability of Pt@TizC,T,~rGO 3 : 1 and its
comparison with Pt/C towards redox degradation was assessed
by chronopotentiometry for several hours. The stability curve
shown in Fig. 5c for Pt@Ti;C,T,-rGO 3 : 1 and Pt/C reveals their
ability to endure uninterrupted electrolysis, ensuring long-term
stability for over 10 hours. The experimental results manifest
that the Pt@Ti3;C,T,—rGO 3:1 catalyst exhibits a better OER
activity and stability in acidic medium. This enhanced perfor-
mance can be attributed to the catalyst's efficient charge
transfer capabilities, which are facilitated by the heterointerface
between the 3D-interconnected network structures of the aero-
gel framework.
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The overall bifunctionality of the oxygen electrode is esti-
mated from the potential difference (AE) between the ORR at
a current density of —3 mA cm > and the OER at a current
density of 10 mA cm™2.>* The acidic ORR/OER bifunctionality
of Pt@Ti3C,T,~rGO 3:1 and Pt/C is shown in Fig. 5d. Pt@Ti;-
C,T,—rGO 3 :1 exhibited smaller AE (0.910 V) compared to Pt/C
(1.192). The excellent ORR/OER bifunctional catalytic perfor-
mance of Pt@Ti;C,T,—rGO 3 :1 may be ascribed to the combi-
nation of its structural advantages, including highly dispersed
Pt nanoparticles, which allow efficient adsorption and activa-
tion of H,O or oxygen species and a 3D porous framework for
enhanced electron and mass transport.

In addition to the ORR and OER, the activity of the Pt@Tis-
C,T,~1GO catalyst was investigated towards the HER in N,-
saturated 0.1 M HCIlO,. Fig. 6a displays the polarization curves
of all tested catalysts. It is observed that Pt@TizC,T,-rGO
catalysts exhibited significantly superior HER activity compared
to their counterparts and commercial Pt/C catalysts. The
Pt@Tiz;C,T,—rGO 3 : 1 catalyst exhibited a lower onset potential
(—1.4 mV) and lower overpotential of 43 mV at 10 mA cm ™ (this
current density was chosen as a performance metric for the
HER) (Fig. 6b).

The linear regions of polarization curves in Fig. 6¢ are fitted
with the Tafel equation, and the Tafel slope provides insights
into the reaction mechanism and kinetics of the HER. In acidic
solution, the HER proceeds through three possible elementary
steps: (i) H;0" + e~ — H,gs + H,0 (Volmer reaction, b = 120 mV
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Fig. 6 (a) HER polarization curves, (b) histograms of onset potential and HER overpotential at a current density of 10 mA cm™2, (c) Tafel fitting
plots derived from data in (a), and (d) turnover frequency (TOF) per Pt site towards the HER at an overpotential of 20 mV for all the developed
catalysts. (e) Chronoamperometry plots of Pt@TizC,T,—rGO 3: 1 and Pt/C recorded under a constant applied potential of —0.1V vs. RHE for 10 h
(current variation due to bubble formation and release has been depicted in the inset).
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dec ™), (ii) H;O" + Haqs + € — H, + H,0 (Heyrovsky reaction,
b =40 mV dec™ ") and (iii) Hags + Haas — H, (Tafel reaction, b =
30 mV dec'). The HER reported in an acidic solution proceeds
via either the combination of Volmer-Heyrovsky or Volmer-
Tafel mechanisms. As the amount of rGO content in the
Pt@Ti3C,T,—rGO catalyst increases, the Tafel slope shows
a gradual increase from 30 to 40 mV dec™ ', which signifies
a transition in the rate-limiting step from the Volmer-Tafel to
the Volmer-Heyrovsky mechanism. These results suggest that
the rate-limiting step is associated with an increase in proton
discharge when a small amount of Ti;C,T, is present in the
aerogel heterostructure (Pt@TizC,T,—rGO 1:3), whereas in
Pt@Ti3C,T,—rGO 3 : 1, the HER proceeds through the recombi-
nation of two adsorbed hydrogen atoms. Therefore, the lower
Tafel slope of Pt@TizC,T,-rGO 3:1 (30.6 mV dec') in
comparison with Pt/C (82.4 mV dec ') signifies faster reaction
kinetics and improved H, generation efficiency under the given
experimental conditions.

The property enhancement of Pt@Ti;C,T,~rGO over the
other tested catalysts was further highlighted by the compari-
sons of turnover frequency (TOF) as shown in Fig. 6d and Table
S7.71 TOF represents the number of hydrogen molecules evolved
per active site per second®” (details are given in S11t). The TOF
values for the Pt@Ti;C,T,—rGO catalysts at an overpotential of
20 mV were ~12 s~ per Pt site, representing a significant
increase compared to the TOF values of Pt/C, which was esti-
mated to be 6.5 s~ per Pt site. This demonstrates that the
Ti;C,T,—rGO heterostructure support facilitates full participa-
tion of Pt with a high adsorption/desorption rate in the HER.%”

To assess the catalytic stability of Pt@TizC,T,-rGO 3:1,
chronoamperometry was performed at a potential of —0.1 V and
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compared with that of Pt/C (Fig. 6e). At the onset, a transient
response was observed for both catalysts, characterized by the
rapid increase in current, followed by the attainment of a steady
state. This may be attributed to the initial activation of the
catalyst surface, followed by a steady and sustained catalytic
activity. The high signal to noise ratio observed (inset Fig. 6¢) in
the obtained data suggests rapid H, gas bubble formation and
release at the electrode-electrolyte interface, resulting in a rise
and fall of current. Moreover, the higher current density of
Pt@Tiz;C,T,—rGO 3:1 suggests that it is a more effective and
stable catalyst for the HER compared to Pt/C. These results
demonstrate that the Ti;C,T,~rGO aerogel architecture plays
a crucial role in facilitating the exposure of catalytically active
sites in Pt nanoparticles. A comparison of the catalyst with
others from the literature was also performed, revealing that
Pt@Ti3C,T,—rGO 3:1 exhibited comparable or better perfor-
mance. Details are provided in Tables S8 and S9.}

3.3 Origin of the enhanced electrochemical performance of
the Pt@Ti;C,T,—rGO catalyst

To comprehend the contributions of the Ti;C,T,~rGO sup-
ported Pt catalyst to oxygen and hydrogen electrocatalysis in
acidic medium, we correlated the electrochemical activity with
the surface electronic structure using XPS and XAS measure-
ments. Fig. 7a shows the Pt 4f core level spectra of Pt@TizC,T,~
rGO (1:3,1:1 and 3 :1) and Pt/C. The Pt 4f spectrum of all the
catalysts consists of multiple chemical valences of Pt° and Pt**
in the corresponding spin orbital coupling states of Pt 4f,,, and
Pt 4f5/,. Comparing the relative intensities of Pt° and Pt*" of all
the catalysts, it is evident that the peaks associated with Pt° are
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Fig. 7 (a) XPS of the Pt 4f region of (i) Pt@TizC,T,—rGO 1: 3, (i) Pt@TizC,T,—rGO 1: 1, (iii) Pt@TizC,T,—rGO 3: 1 and (iv) Pt/C. Normalized XANES
at (b) the Pt Lz edge and (c) the Ti K-edge for all the developed catalysts along with the control samples (Pt-foil, Pt/C, Ti-foil and TiO,). (d)
Schematic illustration of the charge transfer mechanism facilitated by the difference in work function (¢) between Pt and the TizC,T,—rGO
support. (e) Illustration of charge transfer induced downshift in the Pt d-band of the Pt@TizC,T,—rGO catalyst.
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considerably stronger in Pt@Ti;C,T,~rGO than in Pt/C (values
are summarized in Table S10t). This indicates the beneficial
role of Pt° in catalytic performance, as observed during the
ORR/OER/HER. Furthermore, the Pt 4f peaks in Pt@Tiz;C,yT,—
rGO samples were downshifted by ~0.3-0.5 eV relative to those
of Pt/C. This suggests a lowered affinity of 4f electrons for Pt in
the Pt@Ti;C,T,—rGO catalysts, possibly resulting from partial
electron transfer from the support to Pt.*”** The extent of shift
increases with increasing Ti;C,T, content in the order Pt@Ti,-
C,T,—1GO 1: 3 < Pt@Ti;C,T,—rGO 1:1 < Pt@Ti;C,T,~rGO 3 : 1.
These results again underline the electronic interaction
between Pt and the support, significantly affected by the Ti,-
C,T,:rGO ratio. Therefore, the notable electron transfer evident
in Pt@Ti;C,T,—rGO 3 : 1 due to the profusion of Ti;C,T, relative
to rGO is duly attributed to the strong metal-support interac-
tion (SMSI) effect.>®*

To further unveil the electronic properties and reconfirm the
SMSI of Pt@Ti;C,T,—1rGO 3 : 1, Pt L;-edge XANES measurements
were performed. The spectrum was plotted and compared with
those of Pt foil and Pt/C as the control samples (Fig. 7b). The
spectrum of Pt@Ti;C,T,—rGO is closer to that ofPt-foil than to
Pt/C, indicating a higher metallic character of Pt species. This
result aligns with the XPS analysis shown in Fig. 7a. The rising
edge of the absorption spectra in the Pt L; energy level often
known as the “white line” (WL) is associated with an electron
transition from 2p;, to a vacant 5d orbital.** Generally, alter-
ation in WL intensity is influenced by the Pt electronic structure
(d-band vacancy).** Upon careful analysis, the WL intensity
shows a decline in the order: Pt/C > Pt@TizC,T,-1rGO 1:3 >
Pt@Ti;C,T,~rGO 1:1 > Pt@TisC,T,~rGO 3:1 > Ptfoil. This
confirms relatively more electron density at Pt in the Pt@Ti,-
C,T,-1GO 3:1 catalyst, due to electron transfer from TizC,T,~
rGO to Pt, compared to the transfer from C to Pt in Pt/C. This
result is attributed to the SMSI of the Pt@Ti;C,T,—rGO 3:1
catalyst, thereby leading to higher activity and stability observed
during electrochemical reactions.

Further evidence supporting this charge transfer can be
discerned through the Ti K-edge of the XANES spectra (Fig. 7¢).
The dipole-forbidden weak pre-edge (~4960-4980 eV) indicates
1s — 3d quadrupole transitions associated with the cen-
trosymmetry of the Ti species.*>** The lower intense peak of the
Pt@Ti;C,T,—rGO catalyst indicates the formation of distorted Ti
species. The post-edge peak (~4980-5020 eV) consisting of a WL
arises from the 1s — 4p transition, offering insights into the
average oxidation state since the outer p-orbitals are highly
sensitive to electronic structural changes. As the oxidation state
increases, the adsorption peak shifts to higher energy
values.*®*** Here, the observed energy shifts are noted to be in
the sequence” TiO, > Pt@TizC,T, > Pt@TizC,T,—rGO 1:3 >
Pt@Ti;C,T,~rGO 1:1 > Pt@Ti;C,T,~rGO 3:1 > Ti foil, which
suggests that the valence state of Ti in the Pt@Tiz;C,T,—rGO
catalyst ranges between zero and positive tetravalency. The
observed lower oxidation states in the TizC,T,~rGO supported
Pt catalyst, compared to Pt@Ti;C,Ty, can be attributed to the
electron transfer characteristics of rGO, demonstrating the
evident synergy between the heterojunctions of rGO and
TizC,T.
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The inferences drawn from XPS and XANES results were
corroborated by the electron transfer mechanism facilitated by
the difference in work function (¢) between Pt and TizC,T,~1GO.
From the literature, Pt has a ¢ of 5.84 eV,* while the ¢ values of
TizC,T, and rGO were reported to be ~4.8-5.0 (ref. 46) and
~4.5-4.6 eV, respectively.”’ If the Fermi level (Eg) of the elec-
trons in the support is larger than that of the metal, then the
electrons tend to transfer from the support to the metal.*® The
measured ¢ for the Ti;C,T,~rGO support is 4.9 eV (see the
details of the measurement technique in S12 and Fig. S137).
Consequently, significant electron transfer is anticipated to
occur from the Ti;C,T,~rGO support (with lower ¢ and higher
Eg) to Pt (with higher ¢ and lower Eg), in order to equilibrate
their respective Ey, as shown in Fig. 7d and e.

The aforementioned charge transfer from the support to Pt,
confirmed by XPS and XANES measurements, and its conse-
quential impact on the observed electrocatalytic performance
can be elucidated through d-band theory proposed by Hammer
and Norskov.* The transfer of charge results in an increased
electron density around the Pt atoms, leading to a subsequent
downshift of the Pt d-band center (e4) with respect to the Fermi
level (Eg) (as shown in Fig. 7e). Hence, any such perturbation in
the electronic configuration due to charge transfer leads to an
electronic effect, viz. “ligand effect”.*® This effect can directly
influence the adsorption affinity of oxygen/hydrogen interme-
diates [(O*/*OH/*OOH) for the ORR/OER and (H* for the HER)]
on the surface of an electrocatalyst during oxygen and hydrogen
electrocatalysis.”* The aforementioned analysis also indicates
that the Pt ¢q, and thereby the electrocatalysis pertaining to
oxygen and hydrogen (ORR/OER/HER) on Pt anchored onto the
Ti;C,T,—rGO support, can be deliberately controlled by suitably
choosing the nature of the composition of Ti;C,T, and rGO.

In addition to charge transfer, the modulation in the elec-
tronic structure of electrocatalysts also results from lattice
strain, a phenomenon known as the strain effect.*®**° Such strain
induced by hybrid support systems featuring heterointerfaces
has received limited attention within the realm of electro-
catalysis. Nonetheless, this phenomenon is a pivotal factor
influencing catalytic activity. To scrutinize the influence of
lattice strain in Pt@TizC,T,-rGO, EXAFS analysis has been used
as a promising tool for comprehending the intricate structure
within a lattice.

The raw background-subtracted k*-weighted Pt Lj-edge
EXAFS spectra (shown in Fig. S147) exhibited well-resolved data
quality and a high signal-to-noise ratio for the Pt@TizC,T,-rGO
catalyst with distinct EXAFS oscillations extending up to 16 A™*.
The k*-weighted Pt Lj-edge Fourier-transformed-EXAFS (FT-
EXAFS) R-space (radial-space) spectra are shown in Fig. 8a.
From the reference spectrum (Pt foil and Pt/C), the peaks sited
at around (2.57, 3.65, 4.54, and 5.09 A) and ~1.59 A represent
the contribution of Pt-Pt bonds (first, second, third and fourth
coordination shells, respectively) and Pt-X (X = C/O) to the
EXAFS oscillations, respectively.® The FT characteristics of the
Pt@Ti3C,T,—rGO (1:3, 1:1 and 3 :1) catalyst closely resemble
those of Pt-foil, albeit with a comparatively lower intensity. This
suggests that the samples are predominantly characterized by
a metallic Pt phase, identified by the fcc structure with small Pt
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Fig. 8 Fourier transform-EXAFS (FT-EXAFS) oscillations of (a) the k®-weighted Pt Lz edge and (b) the Ti K-edge. (c) Wavelet transforms (WT) of
Pt@TizC,T,—rGO, Pt-foil and Pt/C for reference. (d) Schematic illustration of the effect of compressive strain on the bandwidth and the center of

the d-band of Pt@TizC,T,—rGO with reference to Pt/C.

crystallite size uniformly distributed within the hetero-
structure.*»**> Moreover, in Pt@Ti;C,T,-rGO samples, the scat-
tering peak at ~2.41 A and ~1.6 A may be assigned to Pt-Pt/Ti
and Pt-C/O bonds, respectively. This again underlines the
unambiguous interaction of Pt with Ti;C,T, and rGO, respec-
tively. Interestingly, the EXAFS oscillations of Pt@Ti;C,T,~-tGO
showed a shift towards the lower R direction, which may be
attributed to the lattice distortion of Pt caused by the formation
of metal-support interfaces due to the SMSI effect. Conse-
quently, this suggests the possible compressive strain of Pt in
the Tiz;C,T,~rGO heterostructure.

Additionally, this was corroborated by the Ti coordination
environment determined by Ti K edge FT-EXAFS (Fig. 8b). As
evidenced, the broad peak at ~1.3-1.6 A depicts the Ti-O bond,
while the 2.55 A in Ti foil is attributed to direct Ti-Ti
bonding.**** Apparently, Pt@Ti;C,T,—rGO displays coordina-
tion peaks at ~2.48-2.55 A, which are ascribed to Ti-Pt and Ti-
Ti scattering.*® Moreover, a slight positive shift in these peaks
corresponds to an increase in the bond length, attributed to
strong interactions between Pt and the Ti sites of the support.
This again underlines the SMSI effect between Pt and the
Ti;C,T,—rGO support through Ti sites.

Furthermore, Fig. S151 shows the best fitting of the Pt Ls-
edge FT-EXAFS data for the catalyst, and the associated fit
parameters are detailed in Table S11.f The coordination

This journal is © The Royal Society of Chemistry 2024

number (N) of Pt-Pt bonds in Pt@Ti;C,T,-rGO catalysts (N = 8-
9) is smaller compared to that of the standard Pt-foil (N = 12).
This is attributed to the higher proportion of Pt sites in the
heterointerfaces of the Ti;C,T,~rGO support.*® The Pt strain is
intricately linked to the Pt-Pt bond length (Rp._p,) derived from
the EXAFS analysis, providing a means to monitor intraparticle
strains within the sample.*® The Pt-Pt bond length (Rp._p¢) in
Pt@Ti;C,T,TGO 3:1 (Rpepe = 2.731 A) is ~1.5% and ~1.2%
shorter than that in Pt/C (Rpepe = 2.771 A) and Pt foil (Rpe_pe =
2.765 A). This inference suggests a more robust electronic
interaction between Pt and the Ti;C,T,—rGO support.* It clearly
reveals the generation of minute compressive stress on the Pt
lattice within the Pt@Ti;C,T,—rGO catalyst as a result of SMSI. A
closer examination of Pt (111) facets in the XRD pattern further
validates this, as the Pt@Ti;C,T,-rGO catalyst exhibited a posi-
tive shift to the higher angle side (lower d-spacing) (Fig. S167).
This shift points to a lattice contraction, which is attributed to
the generation of a compressive strain within the hetero-
structure. Based on the changes in the lattice constant (shown
in Table S127), the calculated magnitudes of overall compres-
sive strains are ~1.7% for Pt@Ti;C,T,-rGO with respect to Pt/C,
aligning well with the EXAFS data.

This was further corroborated by the analysis of Wavelet-
Transformed EXAFS (WT-EXAFS), enabling simultaneous reso-
lution in both k-space (wavevector-space) and R-space. This
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approach furnishes details regarding atomic dispersions and
bonding conditions.*® The WT-EXAFS contour plot in Fig. 8c
illustrates intensity maxima for Pt foil around (R: 2.6 A; k: 8.3
A™"), indicating the presence of Pt-Pt contributions. In contrast,
the WT signal derived from the Pt-Pt contribution of Pt@Ti;-
C,T,~rGO 3: 1 shifted to lower R and k-space (R =2.4 A; k= 7.8
A™"), indicating lattice distortion induced by the closely inter-
acting metal-support interfaces. In the case of Pt/C, an intense
signal is observed at (R = 5.1 A; k = 1.5 A™?), corresponding to
Pt-C/O bonding attributed to O backscattering. This observa-
tion further substantiates the claim of its high oxidized state
(Fig. 7b).

Hence, the combination of strain or lattice mismatch intro-
duced on the surface of Pt@Ti;C,T,—rGO is also identified as
a contributing factor in enhancing the observed electrocatalytic
activity. This can also be effectively elucidated using d-band
center theory, particularly its correlation with the adsorption
energies of oxygen-containing intermediates.*** As depicted in
Fig. 8d, the compressive strain causes an increase in the Pt d-
band width, leading to a shift of ¢4 away from Er in order to
preserve the d-band filling level. It is well documented that the
compressive strain-induced downward shift of ¢4 reduces the
adsorption of surface poisoning species, thereby weakening the
interaction with surface adsorbates.** Accordingly, with
a downward shift of &g, Pt@Ti;C,T,—rGO exhibits a greater
ability to remove generated reaction intermediate species [(O*/
*OH/*OOH) for the ORR/OER and (H* for HER)] compared to
Pt/C (Fig. 8d), thereby contributing to the improved ORR/OER/
HER performance noted in this study.

Therefore, the synergy between electronic interaction
induced by both ligand and strain effects contributes to the
downshift of &4 at the heterointerface within the porous aerogel
framework. This collectively boosts the electrocatalytic activity
and durability of Pt@Ti;C,T,—rGO for hydrogen and oxygen
electrocatalysis. However, it should be noted that there are also
studies suggesting that an upshift in ¢4 (increase in d-band
vacancies) can also contribute to improved catalytic
activity.”>*® Hence, there is still room for discussion regarding
the characterization of the electronic state of Pt to optimize
electrocatalytic activity. Research in this direction is in progress
in our laboratory.

4. Conclusions

In summary, our study introduces a highly active and low Pt
content 3D Pt@Ti;C,T,—rGO aerogel catalyst synthesized via
a one-step y-radiolytically induced reduction and self-assembly
process. The Pt@Ti;C,T,-rGO catalyst showcases enhanced
electrocatalytic performance towards the ORR, OER, and HER.
outperforming the benchmark Pt/C in terms of lower over-
potentials, improved stability and better reaction kinetics. The
improved electrocatalytic efficiency can be attributed to the
combined beneficial effects of the porous aerogel framework,
which aids in ion transport and diffusion, and the inter-
connected heterointerface, which provides numerous pathways
for charge transport. This study underlines that the strong
metal-support interaction (SMSI) at the interface of the
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Pt@Ti3C,T,—rGO heterostructure significantly improves the
electronic properties of Pt active sites, making them thermo-
dynamically favorable for both oxygen and hydrogen electro-
catalysis. Through spectroscopic analysis, we established the
combined interplay of ligand and strain effects, which effec-
tively fine-tune the energy of the d-band center of Pt sites,
thereby enhancing the electrocatalytic activities. In conclusion,
we offer herewith a novel approach for designing high-
performance support structures in the realm of electrocatalysis.
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