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Our study explores the current state of machine learning (ML) as applied to predicting and designing organic

photovoltaic (OPV) devices. We outline key considerations for selecting the method of encoding

a molecular structure and selecting the algorithm while also emphasizing important aspects of training

and rigorously evaluating ML models. This work presents the first comprehensive dataset of OPV device

fabrication data mined from the literature. The top models achieve state-of-the-art predictive

performance. In particular, we identify an algorithm that is used less frequently, but may be particularly

well suited to similar datasets. However, predictive performance remains modest (R2 y 0.6) overall. An

in-depth analysis of the dataset attributes this limitation to challenges relating to the size of the dataset,

as well as data quality and sparsity. These aspects are directly tied to difficulties imposed by current

reporting and publication practices. Advocating for standardized reporting of OPV device fabrication data

reporting in publications emerges as crucial to streamline literature mining and foster ML adoption. This
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comprehensive investigation emphasizes the critical role of both data quantity and quality, and highlights

the need for collective efforts to unlock ML's potential to drive advancements in OPV.
1 Introduction

Early in the development of OPV devices, it was discovered that
bulk heterojunction (BHJ) device active layers led to higher
power conversion efficiencies (PCEs) than the simpler planar
heterojunction.1 Since then, extensive work has been devoted to
optimizing the morphology of BHJ active layers with various
processing conditions (e.g., solvent, concentration, solvent
additives, thermal annealing, etc.).2–4 Consequently, it is well-
understood that the device fabrication procedure (e.g., pro-
cessing solvent, spin coating speed, annealing temperature)
plays an important role in the morphology of the OPV active
layer because the process of lm formation is kinetically
limited.5 The importance of morphology with respect to OPV
device performance has been studied extensively,2,3,5 and plays
a role in processes including exciton diffusion,6 charge sepa-
ration and transport,7 and device stability.8,9 However, com-
prehending the intricate correlations between diverse materials
and device fabrication parameters, and their collective inu-
ence on the nal device performance poses an enduring chal-
lenge. This intricacy stands as a formidable barrier, impeding
the accurate prediction of OPV device performance and
contributing to the laborious and costly nature of the produc-
tion processes.

Given the many complex relationships and processes that
ultimately determine OPV device performance, the potential of
machine learning (ML) to accelerate the development of OPV
materials and devices has emerged as a tantalizing promise. ML
techniques could allow scientists to quickly screen potential
combinations of donor (D) and acceptor (A) materials, or
suggest the most appropriate device fabrication parameters for
a given combination of materials. Previous efforts in using ML
to predict the PCE of OPV devices have been focused exclusively
on the donor and acceptor materials. Notably, the Harvard
Clean Energy Project10–12 and others13–19 have used DFT-
computed molecular descriptors to predict PCEs. A similar
approach has recently incorporated genetic algorithms in an
effort to design high-performing non-fullerene acceptor-based
(NFA) devices.20–22 Others have generated one-hot encodings
based on human intuition regarding molecular substructures.23

However, the most accurate models to date are those that have
used high-throughput domain-specic descriptors.17,24–30

Notably, the only device fabrication parameter to have been
incorporated so far is the donor : acceptor (D : A) ratio.17 Others,
which – as discussed above – are known to play an important
role in determining PCE, have not been explored yet.

In this work, we critically assess the state of ML for pre-
dicting PCE of OPV devices. We have curated a dataset of
molecular structures, experimental device fabrication parame-
ters and device performance, and evaluate the effect of various
structural representations, ML algorithms, and device fabrica-
tion parameters on model performance. We also discuss diffi-
culties related to gathering the dataset, as well as the
f Chemistry 2024
considerations related to using experimental data from the
literature, which is applicable to many materials domains
outside of OPV.
2 Results & discussion
2.1 Data curation

In this section, we describe some of the most salient aspects of
data curation. However, further details are provided in the
Methods section. Broadly, the lack of uniform reporting stan-
dards and machine-readable data posed a signicant challenge
to compiling a large and complete dataset of OPV device fabri-
cation and performance.

To compile our dataset, we began with the dataset of 565
devices in Wu et al.,23 which only contained donor and acceptor
names, short circuit current density (JSC), open circuit voltage
(VOC), ll factor (FF), and PCE (Fig. 1). We rst evaluated the
quality of the data by comparing reported PCE values with
values calculated from the product of JSC, VOC, and FF:

PCEcalculated = JSC × VOC × FF (1)

and agged points with a relative difference greater than 0.01,
i.e. where:

jPCEreported − PCEcalculatedj > 0.01 × PCEcalculated (2)

The threshold of 0.01 was chosen arbitrarily. It reects that if
the reported and calculated PCE values were within 1%, we are
relatively certain that any inconsistencies were only due to
minor rounding errors. This allowed us to quickly identify data
points with incorrect or nonsensical entries. To gather the
fabrication data for the 565 devices, we reviewed the 277 orig-
inal reports from which the dataset was initially constructed
and extracted information from the 565 individual devices. To
accurately extract the desired parameters, each paper was
checked by multiple scientists. We found a number of dupli-
cates, unreliable reports or incorrect references in the original
dataset, which were eliminated, leading to the 558 devices in the
nal dataset.

We associated every donor and acceptor name with
a molecular structure in the form of a SMILES (Simplied
Molecular Input Line Entry System) string. This proved partic-
ularly challenging because of the diversity of polymer and NFA
names, as well as frequent overlaps between material names.
Due to the lack of a standardized naming convention for
conjugated molecules and polymers, there are cases where
numerous entries were ambiguously labeled as “P1”, despite
having markedly distinct structures. On the other hand,
research groups will sometimes use different names for the
same molecular structure. For example, IT-F appears as F-ITIC,
ITVfIC, ITIC3, and ITIC-F. In these instances, duplicate labels
were replaced with a consistent name for the purpose of clarity.
J. Mater. Chem. A, 2024, 12, 14540–14558 | 14541
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Fig. 1 Flowchart describing the steps involved in curating the first dataset of OPV device fabrication data, and testing and validation of
representations and models. Eoptg : optical excitation gap energy, ETL: electron transport layer, SMILES: simplified molecular-input line-entry
system, RF: random forest, ANN: artificial neural network, HGB: histogram gradient boosting, R2: coefficient of determination.
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Finally, representing molecules with SMILES strings is limited.
Polymers cannot be easily represented as the repeating, statis-
tical entities that they actually are. While this is an active area of
research,31–34 we simply encoded the structure of the monomer.
Additionally, regioregularity – which is a factor for both poly-
mers and NFAs – is not easily represented in SMILES notation.
For example, IT-F and other NFAs with mono-substituted end
groups are usually obtained as a mixture of three isomers, the
populations of which play a role in determining PCE.35–38

However, SMILES forces us to choose a single isomer.
To select lm and device fabrication parameters, we

considered fundamental processes in OPV, such as light
absorption and exciton formation, exciton migration, charge
separation, and charge migration to the electrodes. Each of
these processes is inuenced by specic parameters related to
the donor, acceptor, and active layer casting conditions that can
be directly controlled by the researcher. The selection of
parameters aimed to capture the relevant information for these
processes. These parameters included donor and acceptor
material properties (HOMO, LUMO, Eoptg ), D : A ratio, solvent,
total solids concentration, additive (and concentration), active
layer thickness, thermal annealing temperature, hole transport
layer (HTL), electron transport layer (ETL), hole mobility, and
electron mobility. Other well-studied device performance char-
acteristics such as effective mobility, Langevin prefactor, and
Voc vs. ln(I) slope were not reported with enough consistency to
be included in the dataset.

In extracting material properties (HOMO, LUMO, Eoptg ), we
observed that multiple values were reported for the same
material. This may arise from a variety of factors: differences in
purity, dispersity (in the case of polymers), measurement
method, or measurement error.39 Using the reported values
would result in data points with the same molecular represen-
tation (i.e. molecular structure) having multiple different
property values. Accounting for such variation in a ML model is
nontrivial, and disentangling variations from experimental
noise and differences in material composition was not possible.
14542 | J. Mater. Chem. A, 2024, 12, 14540–14558
For materials with variation in the reported material properties,
the mean was taken as the corresponding feature value. Some
materials had identical values reported multiple times. Upon
further investigation, this repetition was due to multiple papers
citing a single source-oen from the literature describing the
synthesis of the material. If the repetition is greater than 10
times, only one of the entries is used in the calculation of the
mean. Upon further investigation, it was determined that this
was due to papers citing a single source (oen the material
property values reported in the paper describing the initial
synthesis). If the value was repeated more than ten times, we
automatically discounted nine of the entries when tting.

Extracting active layer and device fabrication details oen
required digging through the paper's supporting information or
references. D : A ratios were not consistently reported, requiring
reviewers to refer to the paper's Methods section in order to
calculate them from the total solids concentrations of the
individual (D and A) solutions. Additionally, some papers re-
ported either active layer thickness or spin coating speed, as
they are related. Thus, the reporting of these parameters was
inconsistent across papers. For optional fabrication features
(solvent additive and concentration, thermal annealing
temperature and time) it was assumed that if they were not
reported, they were not used.
2.2 Structural representations

Machines cannot directly interpret molecular structure. There-
fore, it is necessary to represent molecules and their structure in
a machine-readable format. Choosing an appropriate repre-
sentation is crucial to achieving accurate and interpretable
models. We examined several methods for representing mole-
cules in this task (Fig. 2). The simplest such approaches
represent a molecule with a binary value (one-hot encoding,
OHE) or with values corresponding to material properties. OHE
encodes the presence of a molecule in a data point as a binary
(true–false) bit in a vector wherein the position of each bit
corresponds to a unique molecule, but provides no information
This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Schematic representation of different structural encodings of
the common donor polymer PTB7-Th.
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about the identity or properties. When representing molecules
simply with their material properties, we chose energetic
quantities that are known to be relevant in OPV applications:
HOMO and LUMO energy levels, the HOMO–LUMO energy gap
(EHL

g ), and the optical excitation gap (Eoptg ).40 However, these
descriptors still lack any information about molecular struc-
ture, which is relevant to solubility, solid-state packing and
microstructure. Some information about molecular structure
and physical properties can be encoded using Mordred
descriptors, a set of computed numerical values describing two-
and three-dimensional molecular properties, such as constitu-
tional, topological, and electronic features.41

Alternatively, molecules can be decomposed into substruc-
tures, or fragments, which are then encoded as arrays.
Extended-connectivity ngerprints (ECFP) effectively capture
local structural information and are a common chem-
informatics tool for modeling structure–activity relationships
and calculating structural similarity. ECFP breaks down
molecular structures into circular topological ngerprints
around each atom up to a set maximum radius and hashes the
presence or absence of the substructure into a bit vector of set
length – similar to OHE but for substructures. ECFP includes
additional atomic characteristics including “heavy” atom count,
valence minus the number of hydrogens, atomic number,
atomic mass, atomic charge, the number of implicit and explicit
hydrogens, and whether the atom is part of a ring.42 BRICS
decomposes molecules into fragments of varying size based on
common retrosynthetic and drug-like substructures, which are
then encoded as arrays of varying length.43 This representation
makes it possible to identify common substructures and
analyze their impact on the overall molecular properties.
This journal is © The Royal Society of Chemistry 2024
Recently, the polymer-unit ngerprint (PUFp) has also been
introduced as a way to provide a more explainable ngerprint-
based representation for conjugated molecules.44

Molecular structure can naturally be represented by a graph
where atoms are the nodes and bonds are the edges. However,
encoding the graph is also non-trivial. Several line notations
(string-based representations) have been developed for this
purpose, wherein atoms are represented by specic characters
and the bonds can be either explicit or implicit. SMILES
captures both the topology and connectivity of atoms, enabling
programmatic comparison and manipulation of molecular
structures.45 SELFIES (Self-Referencing Embedded Strings) is
a new system aimed at generative models in particular.46 Unlike
SMILES which can have many invalid strings, every string of
SELFIES characters is inherently valid. Recently, graph neural
networks (GNN) have demonstrated state-of-the-art perfor-
mance on chemical regression tasks.47–50 Molecules are repre-
sented as graphs; node and edge features are vectors associated
with each atom or bond, describing properties of the node (i.e.
atomic number, hybridization, aromaticity etc.) or edge (i.e.
bond order, conjugation, stereochemistry). Global features
contain information about the entire molecule. The GNN then
aggregates the features for each node based on the graph
connections into messages, which are then used to learn
updated nodes and edges. The global node allows for message-
passing between all the nodes in the graph, pooling the edge
and node features into global features, and can be thought of as
a node that is connected to all other nodes.51 A nal aggregation
layer takes the updated graph and outputs the nal prediction.
In addition, the embeddings generated by GNNs can be fed into
other model architectures. To generate the graph embeddings,
the GNN is trained to predict a relevant set of properties. During
training, the GNN generates a learned representation (latent
space) that captures information about the relationship
between molecular structure and the target property. This
representation, which is extracted from the embedding layer of
the network, can then be used by another ML model to predict
a separate target.48,52,53
2.3 Model selection

Another crucial aspect of building accurate models for pre-
dicting the properties of OPV devices is the choice of ML algo-
rithm. Key considerations include whether the algorithm is
appropriate for the task at hand (e.g., supervised, unsupervised,
or reinforcement learning; classication or regression), the size
of the dataset, whether information about the model's uncer-
tainty is required, the algorithm's computational cost, and its
interpretability. In this context, we evaluated eleven ML algo-
rithms, which can be classied within ve broad categories:
non-parametric, linear, kernel-based, tree-based, and deep
learning (DL). Each algorithm has its own strengths, limita-
tions, and assumptions. The choice of algorithm depends on
the specic characteristics of the dataset, the nature of the
problem, and the desired output. Researchers should carefully
evaluate and select the most suitable model for their specic
application in the context of OPV devices.
J. Mater. Chem. A, 2024, 12, 14540–14558 | 14543
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Model performance can be quantied based on a number of
different parameters including R2 score (coefficient of deter-
mination), root mean square error (RMSE), and mean absolute
error (MAE). These metrics all capture different aspects of
model performance. However, we have observed that the
correlation coefficient (R) is occasionally reported instead of the
R2 score, and as the sole performance metric.23,24,28–30 This is not
a robust metric since R only captures the linear correlation
between true and predicted values while the R2 score quanties
the deviation of the model prediction from the ground truth.
However, while R is less strict in evaluating the model perfor-
mance, a model with high R score may indicate modest success
in training, and can still provide predictions that approximate
the ground truth up to some correction term. In order to gain
a better statistical understanding of the variability in model
performance, cross-validation should be performed. This
provides information on the variability of the model with
different train and test sets. We achieve this by carrying out 5-
fold cross-validation from seven independent random seeds
which provide 35 different train and test set combinations.
Given that the random seeds are independent, we can deter-
mine variability based on the standard error of the mean.
Finally, it is also important to carefully apply feature scaling so
as not to overestimate the model's performance. The training
set features should be scaled rst, ensuring a standardized
feature space that the models can learn from, and then that
scaling should be applied to the test set features. If all features
are scaled together, this can result in data leakage between the
train and test sets, implicitly encoding information about the
train set into the test set, providing overestimates on the model
performance.54,55

Linear methods are the simplest: they assume that there is
some linear relationship between the input features and the
target value, which can be used to predict the target value based
on a linear combination of the input features. One of the
greatest advantages to linear regression is the interpretability of
the model: linear effects are easy to quantify, and to describe. As
expected, multiple linear regression (MLR) is only useable with
relatively low dimensional input data (material properties),
where it achieves an R2 score of 0.35 ± 0.03. Linear models are
not able to effectively handle binary (OHE, ECFP) or sequence-
based (SMILES, SELFIES) features.

Non-parametric models such as k-nearest neighbors (KNN)
make no assumptions about the distribution of data from
which a sample is drawn. The algorithm computes the distances
from the nearest number of datapoints (k) around the new
datapoint (i.e. test set) to predict the property of the new data-
point. The distance algorithm and k can be user-dened or vary
based on the local density of points. KNN is simple and versatile
but can be computationally expensive for large datasets.56 While
KNN is most oen used for classication tasks, it can also be
employed for regression. In regression, KNN predicts the
average target value of the k nearest points in the training set.
Because the KNN algorithm simply predicts the average of the
nearest data points, it performs remarkably well across many
different representations. In fact, its performance is compa-
rable to or better than much more complex models in the cases
14544 | J. Mater. Chem. A, 2024, 12, 14540–14558
of OHE (R2 = 0.31 ± 0.03), material properties (R2 = 0.43 ±

0.03), SMILES and SELFIES (R2 = 0.41 ± 0.03 and 0.41 ± 0.04,
respectively), and even graph embeddings (R2 = 0.43 ± 0.03).

Kernel methods apply a non-linear transformation (e.g.
radial basis function, polynomial, sigmoid, etc.) to the input
features, known as the kernel trick, which can then be used in
many different algorithms. Support vector regression (SVR) uses
this approach to nd an optimal hyperplane in the same or
higher dimension that maximizes the margin (distance)
between the hyperplane and the nearest data points while also
minimizing the prediction error. SVR is effective for handling
high-dimensional or non-linear data and outliers. However, it
does not scale efficiently for very large datasets. Kernel ridge
regression (KRR) is a regularization technique that takes
advantage of the kernel trick in order to learn a linear rela-
tionship in the kernel space, and a non-linear relationship in
the original space similar to SVR. Unlike SVR, KRR uses
a squared error loss while SVR calculates the loss from the
distance between the test set and the decision boundary of the
hyperplane which is determined by the user (i.e. epsilon).
Gaussian process regression (GPR) also uses the kernel trick,
but it takes a Bayesian approach. GPs are probabilistic models
that learn the probability distribution (posterior) over all data
points. A prior distribution, typically a Gaussian distribution,
over all possible functions to model the data must be specied,
with the covariance of the distributions determined by the
kernel function. The updated distribution or posterior distri-
bution incorporates information from the prior distribution
and the dataset using Bayes' theorem which is then used to
make predictions on new, unseen data points. It is particularly
useful for small datasets and can capture complex relationships
with uncertainty estimates. The biggest disadvantage of GPs is
the high computational demand which remains a challenge for
high-dimensional and large datasets. In general, KRR and GPR
are out-performed by other methods on all representations
except for ECFP, where the Tanimoto kernel57 can be employed,
leading to good predictive performance (R2 scores of 0.52± 0.02
and 0.56 ± 0.02, respectively). On the other hand, SVR is
comparable to the top methods for most representations,
including R2 scores of 0.53 ± 0.03 with ECFP and 0.56 ± 0.03
with Mordred descriptors.

Decision trees are commonly used for both classication and
regression. Decision trees are interpretable and versatile,
making them valuable for a wide range of applications in data
analysis and prediction. They work by recursively partitioning
the data into subsets based on feature values, ultimately leading
to a tree-like structure where each leaf node represents a pre-
dicted outcome. However, they are prone to overtting since
every data point can be explained with sufficient tree depth.
This can be mitigated by using ensemble methods and carefully
selecting the model parameters such as tree depth. We evaluate
a number of different ensemble tree-based methods including:
random forest (RF), gradient boosted trees (XGBoost),58 natural
gradient boosting with uncertainty estimation (NGBoost),59 and
histogram gradient boosting (HGB), the implementation of
which is inspired by LightGBM.60,61 Tree-basedmethods are able
to handle non-linear relationships within the feature space,
This journal is © The Royal Society of Chemistry 2024
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perform automatic feature selection,62 and can be interpreted
by analyzing the decision boundaries established by the trees.
RF is an ensemble of decision trees trained on various boot-
strapped subsets of the entire dataset, with features randomly
selected for branches within the trees. A nal prediction and
uncertainty is attained by consensus of the ensembles. XGBoost
is an optimized implementation of gradient boosting that
sequentially combines many weak individual predictive models
to form a strong nal ensemble predictive model, with each
subsequent model trained to correct the errors of the previous
models. However, this comes with trade-offs in the form of lack
of interpretability, trial-and-error hyperparameter tuning, and
higher computational cost. NGBoost is similar to XGBoost, also
learning the errors of previous trees through boosting, but
predicts the parameters of a distribution rather than the
regression value directly. NGBoost is useful when uncertainty
estimation is desired and offers better interpretability through
the analysis of the predicted distributions. HGB regression is
much more efficient by virtue of rst binning the input features
and building the trees off of bins rather than oating point
values. As a result, the number of split candidates and the
computational cost are signicantly reduced. As an added
benet, one of the bins is reserved for missing values, which is
very useful for incomplete datasets as will be discussed below.
The tree-based methods discussed above are almost indistin-
guishable in terms of predictive performance, except for
XGBoost which performs slightly worse. Most importantly, tree-
based methods perform best with ECFP (between R2 = 0.58 ±

0.02 and 0.59 ± 0.02), and Mordred descriptors (between R2 =

0.56 ± 0.03 and 0.6 ± 0.03) because ECFP and Mordred
descriptors extract relevant chemical and molecular features
unlike other molecular representations such as SMILES or one-
hot encodings.

We also evaluated two common DL model architectures:
multi-layer perceptron (MLP) neural networks (NN) and GNNs.
MLPs are versatile and powerful models that have been shown
to be capable of learning complex relationships between the
input features and target variables. These models are made up
of multiple interconnected layers of neurons with non-linear
activation functions (e.g. ReLU, sigmoid, tanh). The weights
and biases of the neurons are optimized over many iterations
using gradient descent and backpropagation via the connec-
tions between neurons to minimize the loss function (mean
squared error). However, they require careful architecture
design, parameter tuning, and large quantities of training data.
GNNs are neural network architectures designed to handle data
that can be represented in the form of a graph. GNNs can
effectively learn relationships and patterns in molecular struc-
tures because local features can be inuenced by distant atoms
and bonds through message-passing.47,50,63 Here we utilize the
GraphNets architecture for GNN prediction, and the ChemProp
message passing networks for generating the molecular
embeddings.48–50,64,65

The tree-based models (RF, HGB, XGB, NGB) signicantly
outperform the DL models (i.e.MLP and GNN) because they are
insensitive to irrelevant features and can learn irregular func-
tions.62 Given the small size of our dataset, the limitations of DL
This journal is © The Royal Society of Chemistry 2024
models are pronounced. DL models can easily overt to a small
training set by learning from spurious correlations of irrelevant
features and predict inaccurate output values.

The best DL model (MLP trained on ECFP, R2 = 0.46 ± 0.04)
performs well because the ECFP representation extracts rele-
vant features from the molecular structure,42 making the
inherently challenging task of learning the most relevant
features from sparse and low quantity data less difficult for the
MLP algorithm. In addition, DL models are biased towards
smooth functions which make it challenging for the model to
learn from tabular data and discrete data, as is the case with this
dataset.62 Interestingly, while the GNN regressor struggled due
to the size of the dataset, the graph embeddings extracted from
the GNN embedder combined with a tree-based or kernel-based
prediction model outperformed the direct prediction of PCE
from the graph.

Independent of model choice, the best representations are
found to be material properties, ECFP, Mordred descriptors,
and graph embeddings (model performance in Table S1†). OHE
is a good baseline representation in that if the same model
performs worse with a new representation, it is likely that the
new representation is uninformative. OHE performs poorly
across all of the models because none of the chemical,
substructural, or atomic characteristics are captured. We nd
that most representations perform signicantly better than
OHE. While the PUFp representation provides model perfor-
mance comparable to the material properties representation
(Table S2†), it suffers from a lack of generalizability since the
PUFp workow creates a ngerprint that is specic to the
dataset.44 However, when only including fabrication conditions,
the nature of which will be detailed in Section 2.4, the difference
is very small. This suggests that fabrication conditions alone are
not very informative. None of the models that were evaluated
were able to take advantage of the sequence information in
SMILES and SELFIES, explaining their poor performance.
Models such as long short-term memory (LSTM) networks may
be useful. However, the dataset is likely too small for the LSTM
network to accurately learn the syntax and grammar of string-
based representations in addition to accurately learning the
complex relationships between the representation and
properties.66,67

Despite the modest R2 scores, we nd that our top-
performing models (RF and HGB) either match or surpass the
state of the art for other similar OPV datasets (Fig. S2†).22,29 In
particular, we achieve better predictive performance (R2 = 0.5 ±

0.03) using only ECFP and the material properties available in
the dataset in comparison to the performance (R2 = 0.4) ach-
ieved when using computed descriptors.22

We also explored the ability of multi-output models for
predicting PCE. While the most common approach is to predict
PCE as the single output, PCE can also be predicted as the
product of its components – JSC, VOC, and FF (eqn (1)). We
selected three models: two that natively support multi-output
regression in scikit-learn (RF, HGB), and an articial neural
network (ANN) made in PyTorch, which is similar to the MLP
described above (further details available in Methods). The
models were trained concurrently on PCE, JSC, VOC, and FF.
J. Mater. Chem. A, 2024, 12, 14540–14558 | 14545
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Fig. 3 Heatmap of model performance for predicting PCE from themolecular structure of the donor and acceptor materials as measured by the
R2 score. Tree-based models (RF, XGBoost, HGB, and NGBoost) perform best on a dataset of this size (558 points). Structural representations
based on ECFP and Mordred descriptors perform best across the board. Numbers in each cell correspond to the average R2 score of the model
over seven independent five-fold cross-validations ± the standard error of the mean. Gray cells correspond to models that were not tested or
failed to yield reasonable results (0 # R2 # 1). Heatmaps for the RMSE, MAE and R (for comparison to other published works only) scores are
presented in Fig. S1.†
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Model scores for PCE prediction were calculated using eqn (1)
from the predicted JSC, VOC, and FF (Fig. S3†). Ultimately, model
performance was not signicantly different between directly
predicting PCE (Fig. 3) and predicting PCE from JSC, VOC, and
FF. However, we observed that all models were able to predict
JSC much better than VOC, despite heuristics suggesting a strong
correlation between VOC and LUMOA–HOMOD,68 which suggests
that this problem is worth further investigation.
2.4 Introducing fabrication features

Empirically, device fabrication parameters are known to play
a role in determining the PCE of OPV devices.2,3 The same can
be observed in our dataset. The most common donor and
acceptor combination is PBDB-T and ITIC with 11 occurrences.
The PCEs of the PBDB-T:ITIC devices range from 7.3% to 11.2%,
a signicant difference for top-performing devices in different
papers.

Encoding scalar device fabrication features such as energy
levels, annealing temperature or the D : A ratio is straightfor-
ward. However, encoding categorical features is more chal-
lenging. In the case of OPV device fabrication, these are (i)
solvent, (ii) solvent additive (if used), (iii) the hole transport
layer, HTL, and (iv) the electron transport layer, ETL. Similarly
to the donor and acceptor materials, these categorical features
could be encoded using one-hot encoding or as labels. However,
14546 | J. Mater. Chem. A, 2024, 12, 14540–14558
as seen with OHE of the active layer materials, these encodings
are not informative for a ML model. The HTL and ETL were
encoded with their energy levels, as determined from literature
reports (Table S3†). The solvent and solvent additive were
encoded with physicochemical descriptors obtained from the
HSPiP database (Table S4†).69

The features beyond molecular structure were split into four
broad categories: material properties (as in Fig. 3), lm fabri-
cation parameters (fabrication), device architecture, and elec-
trical characterization. As discussed in greater detail below,
a small number of features (total solids concentration and spin
coating speed in particular) were missing frommany of the data
points (Fig. 4a). These features were excluded in order to
maximize the size of the dataset on which the models were
trained (Fig. 4b and S4†). Data points with missing values were
only provided to the HGBRmodels, while those data points were
removed for all other models. Consequently, the datasets
provided to all algorithms except HGBR are ca. 95% of the size
of the HGBR model's dataset (Fig. 4b), which we do not regard
as being a signicant difference when comparing the HGBR
models to all others.

The correlation between each set of features and the output
variables were evaluated using both Pearson's correlation
coefficient (R) and Spearman's rank correlation coefficient (r). R
is a measure of the extent to which two variables are linearly
correlated, while r is a measure of rank correlation (i.e. the
This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Top: percentage (left) and amount of data (right) missing from key categories. Bottom: relative (left) and absolute (right) dataset sizes of
subsets of processing parameters.
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extent to which two variables are correlated through some
monotonic function). Feature correlations (R and r) with PCE
are relatively low (Fig. S5–S8†). Only some of the material
property features show moderate correlation with PCE (jRj > 0.3
or jrj > 0.3): donor HOMO and LUMO, and all acceptor prop-
erties (HOMO, LUMO, HOMO–LUMO gap, and optical gap).
These stronger correlations are expected from what is known
about the function and design of OPV devices. Of the processing
and device architecture features only active layer thickness and
spin coating speed show weak correlation with PCE (jRj > 0.15 or
jrj > 0.15). There is also only moderate correlation at best (jRj#
0.28 and jrj# 0.25) between the selection of solvent and solvent
additive with PCE. There are two potential explanations for this.
First, the identity and physical properties of solvents and
solvent additives are known to strongly inuence the
This journal is © The Royal Society of Chemistry 2024
performance of OPV devices through a number of factors (e.g.,
material solubility and rate of evaporation).4,5 Second, it is
possible that there is also a degree of spurious correlation
between solvent or solvent additive and PCE because higher-
performing materials are more oen dissolved in particular
solvents.

Although the KRR and GPR models with ECFP structural
representations, which used the Tanimoto kernel, performed
well, we were not able to evaluate their performance when
device fabrication features are included. Although mixing
different kernels is possible, it is unclear whether it would be
meaningful and how the weights would be learned.52,57 The
Tanimoto kernel calculates distance based on all 4096 ECFP
features while device fabrication feature distances would be
J. Mater. Chem. A, 2024, 12, 14540–14558 | 14547
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Fig. 5 Heatmap of model performance as measured by the R2 score for predicting PCE from molecular structure and various subsets of OPV
device fabrication parameters. Numbers in each cell correspond to the average R2 score of the model over seven independent five-fold cross-
validations ± the standard error of the mean. Heatmaps for the RMSE and MAE scores are presented in Fig. S9.†
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calculated one at a time. As such, assigning correct weights
would be non-trivial.

Instead, we evaluate top-performing algorithms with ECFP
and Mordred representations (the best molecular representa-
tions from the previous step): SVR and the tree-based algo-
rithms (RF, HGB, XGBoost, NGBoost). When combined with
device fabrication parameters, Mordred descriptors slightly
outperform ECFP for encoding molecular structure of the donor
and acceptor materials on average (Fig. 5), however the differ-
ence is not statistically signicant. For example, the perfor-
mance of RF models increases from R2 = 0.58 ± 0.03 to R2 =

0.60 ± 0.02.
Additional features do not signicantly increase performance

over the models simply trained on molecular structure. Perfor-
mance of all tree-based models except HGB degrades by ca. 0.01–
0.02 betweenmodels trained onmolecular structure andmaterial
properties compared to models trained on molecular structure
and the fabrication subset of features. This can be attributed to
the fact that the material properties features do not contain
missing data and are closely tied to molecular structure. That is
not the case for the other features in the fabrication and device
architecture subsets. Furthermore, adding the device
14548 | J. Mater. Chem. A, 2024, 12, 14540–14558
architecture subset of features signicantly decreases model
performance for all but HGB across both ECFP and Mordred
molecular descriptors. This may be related to the imbalanced
selection of HTLs and ETLs in OPV device fabrication.

Empirically, device fabrication parameters are known to be
important factors in OPV device performance. The lack of
improvement in model performance when including these
features suggests that it may be due to the quality of the training
data. The top-performing model is HGB trained on Mordred
descriptors and any of the device fabrication feature subsets (R2

= 0.61 ± 0.03). This may be due to the fact that HGB can handle
missing data points, and therefore is capable of learning input
feature–target relationships even from data points with missing
features (e.g. total solids concentration and spin coating speed).

The top ML model architecture, HGB, using Mordred
descriptors for molecular structure and trained on all available
features achieves an R2 score of 0.61 ± 0.03. The model
predictions are poor for data points where the true PCE is below
5%. Predictions in this range are as high as ca. 12%. This is to
be expected because this range is under-represented in the
dataset and therefore the model sees fewer examples on
average. A similar phenomenon can be observed in the high-
This journal is © The Royal Society of Chemistry 2024
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PCE tail of the distribution. In both cases, predictive errors tend
toward the points with the highest density in the dataset (ca.
10% PCE). Additionally, there are no predictions near the
maximum PCE (15.71%). The same phenomena are observed
for models with different molecular representations and data
(Fig. S10†).

Notably, a model trained on Mordred descriptors and the
device architecture subset of features (Fig. 6) is not signicantly
better than the same model trained on only Mordred descrip-
tors, which achieves a R2 score of 0.6 ± 0.03 (Fig. 3). This
suggests that the models' performance is limited by the quality
of the underlying data.

Finally, we evaluated the performance of the HGB model
when including features related to charge carrier mobility:
log(hole mobility) and log(electron mobility) from space charge-
limited current (SCLC) diode measurements, as well as the ratio
of the two. The resulting model performance is signicantly
better (R2 = 0.68 ± 0.02, Fig. S11†) than anything else reported
in the literature. However, including these values does not make
a lot of sense from a practical perspective. In order to predict the
PCE of a device, one would already need to have measured the
hole and electron mobilities. This involves fabricating a device
with a modied electrode architecture, and is therefore less
efficient than simply measuring the device's performance
experimentally.
2.5 Handling missing values in real-world data

Datasets gathered from historical or literature sources are oen
imperfect. One of the most common drawbacks is incomplete
Fig. 6 Scatter plot of predicted PCE from the top model (HGB trained
on the device architecture subset of features). Data is aggregated over
all five folds of each of the seven randomly seeded cross-validation
splits. The opacity of the hex-binned cells corresponds to the count of
predictions within each cell. The dashed line represents ideal
predictions.

This journal is © The Royal Society of Chemistry 2024
reporting of values, or missing values. Our datasets face
a similar challenge in that most of the processing and device
fabrication features are missing data. As seen in Fig. 4, the
missing values are spread among a large percentage of the data
points such that only 14% of datapoints79 have all of the
features that were considered (i.e., excluding polymer molecular
weights and charge carrier mobilities). While roughly half of the
features are not missing many values (less than 4%), total solids
concentration, spin coating speed, and thickness features
(active layer, HTL, ETL) are missing signicant amounts of data.
The lack of active layer, HTL, and ETL thickness data is
understandable given the difficulty of measuring thickness on
the tens to hundreds of nanometers scale. However, not
reporting total solids concentration (21% missing, 115 data
points) and spin coating speed (52% missing, 292 data points)
cannot be easily excused as these are fundamental and easily
obtained experimental parameters when fabricating OPV
devices.

To address the issue of missing values, we can try to impute
data. Imputing can help to ll in missing data based on various
statistical treatments and assumptions about its distribution.
We explored imputing data using some of the most common
imputation techniques: mean, median, most-frequent,
uniform- and distance-KNN, and iterative. The simplest
imputing strategies are mean, median and most-frequent,
which replace missing values with the mean, median and
mode of the available data, respectively. Mean imputing is most
useful when the standard deviation of the distribution is rela-
tively small and data is missing at random. On the other hand,
median imputing is more suitable for distributions where there
are outliers because it is less sensitive to them. Finally, most-
frequent (or mode) imputing is not suitable for imbalanced
distributions, as is the case for some of the features in our
dataset. In KNN-based imputing strategies, missing values are
completed using the mean of the k (usually ve) nearest
samples in the dataset. They leverage the similarity between
instances and are effective when data points with similar attri-
butes tend to have similar outcomes. The distance between
samples can be measured in two ways. Uniform KNN imputing
assigns equal weights to all neighboring points, whereas
distance-based KNN imputing weighs neighbors by the inverse
of their distance. Therefore, closer points will have a greater
inuence than those that are more distant. Iterative imputation,
also known as multiple imputation, is an advanced technique
that involves an iterative process to ll in missing values. The
process is usually based on modeling the relationships between
features, and iteratively rening the imputations. Multiple
imputations are combined to provide a more robust estimate of
the missing values, considering the uncertainty associated with
the imputations. The downside of iterative imputing is that it is
computationally expensive and does not scale well.

While imputing data can be a valuable technique to enhance
the quality and completeness of a dataset, it can also be
unproductive (no change in model performance) or even
counterproductive (degraded model performance). If the
proportion of missing data is large (30–40%), imputing may
lead to inaccurate results. It may also be counterproductive in
J. Mater. Chem. A, 2024, 12, 14540–14558 | 14549
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instances where there is a pattern to which data is missing, or
where missing data is associated with specic characteristics or
factors because the ML model can potentially learn from such
correlations. Finally, imputation may be challenging in datasets
with intricate dependencies between variables, as is likely the
case for OPV materials and devices. Ultimately, imputing data
did not change model performance in any measurable way
(Fig. S12†). This suggests that themodels are limited not only by
the quantity of data, but also by their quality.
2.6 Analyzing the dataset

Device performance. A zeroth order approximation of the
quality of the dataset can be easily obtained by simply exam-
ining the distribution of target value, PCE. The average of the
PCE values in the dataset is 8.43 ± 3.09% and the median is
9.02%, with maximal andminimal values of 15.71% and 0.01%.
This covers a large range of the PCE values reported in the
literature with the data skewed more toward large values.
However, the PCE values top out at 15.71%, which can be
explained by the age of the included papers. The distributions
of values that make up the PCE equation are similar, although
VOC values are distributed more normally (Fig. S13†). To ensure
the accuracy of the original PCE data, we calculated the number
of PCE values that deviated from the PCE calculated from the
analytical equation. We found that 101 (18.1%) of original PCE
values deviated by more than 1% multiplied by the calculated
PCE. This allowed us to quickly identify problematic data
points, which were most oen due to human errors in data
entry: either FF × 100, or data was taken from the wrong device.
Those points were amended, and the calculated PCE was used
as the nal target variable.

Materials properties. There are 143 unique donor polymers,
and 261 unique acceptor molecules. As seen from the heatmap
in Fig. S14,† there are four common donors (PTB7-Th, J71,
P3HT, and PBDB-T) and three common acceptors (ITIC, ITIC-
4F, and m-ITIC). This is consistent with the eld's general
approach to materials design: scientists either design a donor
or acceptor, and then that material is tested with a well-
understood and easily available benchmark material.
However, this results in sparsity and imbalance within the
literature. Additionally, most combinations of materials are
unexplored, and the D : A combinations that are present in the
dataset mostly occur once or twice. Only for pairs of the most
common materials (e.g., PTB7-Th and ITIC) are there a signi-
cant number of duplicate reports.

Donor material energy levels (HOMO, LUMO) and energies
(Eoptg , EHL

g ) do not t cleanly within a distribution (Fig. S15†)
primarily due to the low number of unique molecular structures
(143), while the same features for acceptors form smoother
distributions due to the larger number of unique molecular
structures (261). In both cases, over-represented materials are
clearly visible by the large counts in material property values.
Additionally, it should be noted that measuring energy levels of
materials is oen imprecise, and that there are known issues
with the most common technique, cyclic voltammetry (CV).39

Polymer properties are much less frequently reported. We were
14550 | J. Mater. Chem. A, 2024, 12, 14540–14558
only able to nd 202 values of Đ (36% of the dataset), 185 forMn

(33%), and 106 forMw (19%). Few papers even mention polymer
molecular weight or dispersity, andmany that do simply refer to
a previous paper where the value was initially reported. The
molecular weights and dispersities of commercial materials are
barely reported.

Active layer processing.Here, the dataset begins to reect the
true degree of imbalance in the literature data (Fig. S15†). This
can be attributed to human propensity for round numbers,70–72

as well as picking the most convenient option. For example,
although the D : A ratio is incredibly easy to vary, the most
common values are 1 and 0.5 (i.e., 1 : 2 D : A). Similarly, only
three solvents (CF, CB, o-DCB) and only two solvent additives
(CN, DIO) make up the vast majority of entries. Consequently,
relatively little of the solvent property space has been sampled
(Fig. S16 and S17†).

Total solids concentration is most oen 20 mg mL−1 even
though there are reports of concentrations between 6 mg mL−1

and 37.5 mg mL−1 (Fig. S15 and Table S5†). Additionally, data
points are concentrated around round numbers such as 10, 15,
20 and 25 mg mL−1. Unfortunately, 115 entries did not have any
information about total solids concentration (or individual
solution concentration fromwhich we could calculate total solids
concentration). This hole in the dataset is particularly egregious
since it is one of the easiest numbers to report. The fact that 21%
of the entries do not have this data suggests that we as
a community of editors and reviewers are not paying close
enough attention to the reproducibility of published data. The
same can be applied to another parameter that can be recorded
with ease: spin coating speed. The two most common values are
2000 rpm and 3000 rpm. However, only 48% of entries (266) re-
ported spin coating speeds even though the entries in this dataset
are restricted to those devices fabricated by spin coating. The
same biases are also evident in the distributions of annealing
temperature and time, although these data are reported more
regularly. Finally, although the distribution of active layer thick-
ness values is quite smooth and uniform, the values are centered
at 100 nm, with the mode being exactly 100 nm. This is statisti-
cally unlikely, and is characteristic of either rounding from
human bias, inaccurate measurements, or both.

Device architecture. The same bias in variable selection is
observed in the distribution of HTL layers, where MoOx and
PEDOT:PSS make up the vast majority of interlayers (Fig. S15†).
The choice of ETL is only slightly more varied with Ca, PDINO,
ZnO, and PFN-Br making up the vast majority of ETLs. As with
solvents and solvent additives, the consequence of these selec-
tions is that relatively little of the interlayer or energy level range
has been explored. However, this is likely due to the relative
difficulty of nding appropriate interlayer materials compared
to solvents and additives. Reporting of interlayer thicknesses is
sparse (360 for HTL, 256 for ETL) and biased toward round
numbers (10, 20, 30 nm) as well.

3 Conclusions

We have curated a rst-of-its-kind dataset of OPV device
performance, molecular structures, and comprehensive device
This journal is © The Royal Society of Chemistry 2024
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fabrication parameters, with 558 data points. Assembling the
dataset proved to be a signicant challenge due to the hetero-
geneity of data reporting practices in the literature, namely the
lack of consistent reporting requirements for device fabrication
details and a lack of consistent reporting formats. We then
explored a variety of molecular structure encoding methods
(from one-hot encoding to graph embeddings) and ML models
(from MLR to GNN), and discussed the advantages and disad-
vantages of each choice.

We found the HGB model, a gradient-boosted decision tree-
based algorithm, to be best at predicting PCE from molecular
structure, and from molecular structure and device fabrication
features. Despite modest R2 scores of ca. 0.6, this reects the
state-of-the-art predictive performance for PCE. The same HGB
algorithm outperformed models trained on a dataset almost
twice the size (ca. 1000 data points) of ours,22 and matched the
performance of models when trained on a dataset more than
double the size of ours (ca. 1300 data points).29 The performance
of the HGB algorithm may be in part attributed to its ability to
extract maximal information by incorporating missing values –
of which there are many – with its binning strategy.60

There are a number of ways in which model performance
could be improved. Firstly, the “big p, small n” problem – where
the number of variables or features (p) is much larger than the
number of observations or data points (n) – might be overcome
by simply adding additional data points. The quality of the
dataset could also be improved by including more varied device
fabrication procedures for each material combination. The
current iteration of the dataset primarily includes only the top
performing device from each donor : acceptor combination
found in a paper. However, there are oen others that may
provide additional information despite lower PCE values.
Furthermore, most reported PCE values correspond to the best
single device, and not an average of multiple replicates, due to
current reporting practices.

Our ndings underscore the challenges stemming from
mining literature data and inherent data quality issues.
Although recent advances in literature mining with large
language models are promising, the ultimate problem is one of
data quality and not quantity.73–75 Standardizing data reporting
in OPV-related publications becomes crucial. Establishing
minimum reporting standards will streamline literature mining
and enable the adoption of ML methodologies within the OPV
domain. There has long been discussion in the literature about
standards for reporting PCE measurements.76–80 While there are
currently no standards or requirements for reporting how OPV
devices are made, similar steps forward have recently been
proposed for inorganic phosphors81 and perovskite
photovoltaics.82

There is much that can be learned from the ongoing
discussions within the organic chemistry literature by recog-
nizing the similarities between predicting OPV device perfor-
mance and predicting reaction yields in organic chemistry
sheds light on shared complexities. Both domains face chal-
lenges involving two molecular structures as input features,
processing variables, sparse data, non-smooth response
surfaces, and biases in reported data, notably the
This journal is © The Royal Society of Chemistry 2024
underreporting of negative results.70,83–86 Acknowledging these
parallels emphasizes the broader challenges in predictive
modeling within chemistry-driven domains. Addressing these
challenges necessitates enhanced dataset quality and size, and
standardized data reporting.85,87,88

This comprehensive understanding highlights the pivotal
role of data quality, underscores the importance of standard-
ized reporting practices, and emphasizes the collective effort
required to enhance dataset quality and modeling techniques,
ultimately unlocking the full potential of ML in driving inno-
vation within the OPV and broader chemistry domains.

4 Methods

All data, code, and gures pertaining to this work are publicly
available in a GitHub repository: https://github.com/aspuru-
guzik-group/Beyond-Molecular-Structure-ML-for-OPV-
Materials-Devices.

4.1 Encoding molecular structures

The molecular structures in the original dataset were provided
as two large ChemDraw les.23 To automatically extract SMILES
strings, the ChemDraw les were rst converted to structure-
sata les (.sdf), which could then be converted into a pandas
dataframe by RDKit's Chem.PandasTools module. However, the
labels corresponding to each structure could not be maintained
during the conversion. As a result, structures were manually
cross-referenced to the ChemDraw les and against the litera-
ture. Through this process, we found many identical structures
with different labels, and different structures with the same
labels.

In the le, sidechains were shortened to numbered R groups
(e.g. R1, R2), each of which corresponded to a different structure.
Automatic R group replacement as implemented in RDKit's
ReplaceSubstructs was not possible because SMILES and
SMARTS cannot process the presence of different R groups. To
automate the sidechain assignment process, we developed
a method that uses placeholder metal atoms. Each R group was
mapped to a placeholder metal atom and to the corresponding
SMILES string. First, the R groups in the SMILES strings were
replaced with the corresponding metal atoms. Then, the metal
atoms were replaced with the full sidechain in the resulting
RDKit Mol object using RDKit's ReplaceSubstructs function.
Finally, the cleaned structure was returned as a canonicalized
SMILES string.

4.2 Structure verication

When cleaning the data, we found errors in the structural
assignments of the original ChemDraw les, as well as in our
original conversion from ChemDraw to SMILES. One of the
most common errors were misassigned sidechains. Given the
dataset's size (558 data points with 143 unique donors and 261
unique acceptors), we implemented a semi-automated cleaning
procedure. Structures with multiple unique labels were identi-
ed automatically. Tanimoto similarities were calculated for
each pair of unique donor or acceptor labels. When the
J. Mater. Chem. A, 2024, 12, 14540–14558 | 14551
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Tanimoto similarity was unity, we reviewed the structures
manually. Most oen, the samemolecular structure was labeled
with different names – a common issue in the literature. In
those cases, we selected a principal label and replaced all
occurrences with that label. Incorrect structures or incorrect
sidechain assignments had to be veried manually because no
suitable automated solution was identied. For this, we wrote
a script to iterate through each unique SMILES, display the
structure, check it against the structure in the associated paper
(by DOI), and apply corrections if necessary.
4.3 Gathering device data

Data are not reported consistently across the literature, whether
that be format, completeness or location in the manuscript.
When extracting data from papers, certain steps were taken as
precautions or to maximize the amount of data extracted. Below
we provide as thorough a description as possible of our proce-
dure in order to record possible sources of error, and to guide
readers.

Broad caveats. � We frequently found that different values
were reported in the main text and ESI,† with little information
available to determine the correct value. We either selected
a value that was most logical based on our expertise, or took the
average of the two values if they were close.

� Certain features were oen simply reported as ranges (e.g.,
spin speed, thicknesses, etc.). In these instances, we entered the
average of the minimum and maximum values.

Material properties. � HOMO and LUMO energies measured
by ultraviolet photoelectron spectroscopy (UPS) were priori-
tized, followed by cyclic voltammetry.39

� When LUMO energies were not directly reported, HOMO +
Eoptg was accepted.

� EHL
g was calculated from the difference between the tted

HOMO and LUMO energy values.
� HOMO/LUMO: identical donor and acceptor molecules

had variable HOMO/LUMO levels from paper to paper. Thus,
both previous papers from the same research group or widely
accepted universal UPS measurements were utilized in place of
the omitted/variable values. Furthermore, when values for
Eoptg were not reported, values were extracted by extracting the
absorption onset from gures using WebPlotDigitizer (https://
automeris.io/WebPlotDigitizer/).89

� Information about polymer molecular weight was very
challenging to obtain. Mw, Mn and Đ are not consistently re-
ported. Oen, we were required to follow a trail of references
through a group's publications to nd the original synthesis,
and assumed that the molecular weight distribution of the
polymer was the same in subsequent reports.

� If two of Mw, Mn and Đ were reported, the third value was
calculated.

Active layer fabrication. � D : A ratios were not always re-
ported, but could oen be calculated based on the reported donor
and acceptor concentrations. Additionally, when papers reported
data from multiple devices with different D : A ratios, they oen
reported a range of D : A ratios (e.g., 1 : 1.1 to 1 : 1.6). In this case,
we took the center of the range of weight ratios (e.g., 1 : 1.35).
14552 | J. Mater. Chem. A, 2024, 12, 14540–14558
�When solvents were presented as amixture, they were oen
reported as a percentage by volume (% v/v). From this, a ratio of
the two solvents presented was calculated (e.g., 15%, v/v =

6.667 : 1).
� When recording reported solvent additives, some papers

would include the additive, but not provide the additive
percentage. In these cases, the solvent additive was included,
while the concentration (%) was omitted, resulting in an
incomplete data point.

� If a solvent system was reported as a ternary mixture (e.g., o-
DCB : CB : DIO 1 : 1 : 0.3), the minority solvent was recorded as
an additive and its concentration was calculated from the ratio.

� If active layer thickness for a particular device was not re-
ported in a paper, we substituted the thickness of a similar
device in the same paper if the total solids concentration and
spin coating speed were the same. Otherwise, the data point was
omitted.

Device performance characterization. � Hole and electron
mobilities were oen not reported or reported inconsistently.
HOD or EOD mobilities were recorded only if measured for the
blend, and not for single material devices.

� Reports of charge extraction by linearly increasing voltage
(CELIV)90 measurements for the “faster carrier” were excluded
as this did not specify whether hole or electron mobility were
recorded.

� From each set of parameters of VOC, JSC, FF, we calculated
the PCE with the formula PCE = VOC × JSC × FF. When
comparing these with reported values within the dataset, we
looked for errors > 1% of the PCE values. In these cases, we
compared the values in the dataset and those in the relevant
paper. We oen found that values had simply been mis-
reported. The most common errors were: (i) inconsistent
reporting of FF as either a percentage or a fraction (i.e. a 100-
fold discrepancy in FF), (ii) values reported for a different
device, or (iii) reported PCE had rounding errors. Because of
these discrepancies, we chose to use our calculated PCE instead
of the reported PCE values.
4.4 Cleaning fabrication data

The weight ratio of donor to acceptor materials in OPV formu-
lations is most commonly reported as “donor : acceptor”, e.g. 1 :
1. The ratios were recorded using this convention when gath-
ering the data. To convert this feature into a scalar value, we
calculated the ratio of donor to acceptor. For example, 1 : 1.5
would be encoded as 0.667.

To reduce the number of incomplete data points, we
replaced annealing temperatures and times, as well as solvent
additives with default values. Devices that were not annealed
were assigned default annealing temperatures of 25 °C and
times of 0 minutes. Formulations that did not use a solvent
additive were assigned a solvent additive label of “_” and an
additive concentration of 0%.

Common donor and acceptor materials were assigned many
different energy level values in the dataset. However, ourmodels
have no way of accounting for that variability, which can arise
from a number of possible sources.39 To standardize the
This journal is © The Royal Society of Chemistry 2024
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reported energy levels, we t Gaussian distributions to any
material with two or more unique energy level values, and
replaced them with the tted mean. However, certain materials
were reported to have the same exact energy level in multiple
papers. Upon further investigation, we found that this is due to
works simply reporting a value from another paper. In instances
where the same energy level value occurred more than ten times
for a given material, we only counted it once when performing
the Gaussian tting.
4.5 Pre-processing

Molecular encodings (one-hot, SELFIES, BRICS, ECFP) and
descriptors (Mordred) were generated from canonical SMILES.
One-hot encodings were generated using Scikit-Learn's One-
HotEncoder class. SELFIES strings were generated using the
SELFIES package's encoder.46 BRICS representations were
generated using RDKit's Chem.BRICS module.91 ECFPs were
generated separately for the donor and acceptor and concate-
nated together using RDKit's GetMorganFingerprintAsBitVect
method.91 To be able to fully disambiguate molecules with
identical conjugated cores only differing by sidechain length,
we used ECFP10 ngerprints with 2048 bits (Table S6†). Mor-
dred descriptors were generated using the Mordred Python
package.41 All Mordred descriptors with null values or for which
the variance in the dataset (donor and acceptor molecules) was
zero were removed. Graph embeddings were generated by
training a GNN to predict the HOMO, LUMO, and Eoptg for each
molecule and then extracting the resulting global feature before
the nal prediction layer. These embeddings implicitly contain
information about the structural and optoelectronic properties
of the molecules, which are then appended together for the
prediction task.

SMILES, SELFIES, and BRICS are alphanumeric representa-
tions of variable length, incompatible with ML models. There-
fore, they must be tokenized (i.e., converted into numeric
representations) and “padded” so that all vectors are of the same
size. Tokenizing creates a mapping between the unique symbols
in a representation and integer values. The mapping is used as
a reference for encoding each individual molecule. In order to
achieve a consistent length across the dataset, the tokenized
sequences were adjusted to the length of the longest sequence by
post-padding with the appropriate amount of zeros.

When training exclusively on molecular structures repre-
sented by ECFP, the Tanimoto kernel was used for KRR and GP
models.

As described in Fig. 4b and S4,†models trained onmolecular
structure and processing parameters were supplied with
specic subsets of the features, and data points with any
missing values were dropped. Data points with missing values
were not removed from the training set of the HGB models.
When descriptors were used for solvent additives, devices in
which solvents additives weren't used were substituted with
zeroes, except for the HGB models in which case they were le
as missing values.

Certain models such as MLP are sensitive to the scale of
feature values. To mitigate this, we applied min–max and/or
This journal is © The Royal Society of Chemistry 2024
standard scaling using Scikit-Learn's MinMaxScaler and Stand-
ardScaler. In the case of GPs, all features were scaled using the
uniform QuantileTransformer. Scaling was also applied to the
target values. Typically, target values were subjected to standard
scaling, except in the case of MLP model architectures where
min–max was also used. Crucially, the features were scaled based
on the values in the training set. Scaling training and test sets
together introduces data leakage into the model, which results in
overestimation of model performance.54,55
4.6 ML model optimization and evaluation

The multioutput ANN was built using PyTorch consisting of 1
input, 1 embedding, 2 ortholinear layers and 1 output layer with 3
output nodes for each target variable. The GNN predictionmodel
was built using Tensorow and Sonnet, using the GraphNets
architecture.48,51,92 For the graph embeddings, two separate
networks were used for the donor and acceptor molecules, before
the nal embedding was appended to give a prediction, similar to
work done in Greenman et al.93 The embedder GNNs, based on
the ChemProp architecture,50,65 are trained to predict the HOMO,
LUMO, and optical gap energies from the molecular graphs, and
the embeddings are the global pooled features before the nal
prediction layer. The multi-output GNN model was trained using
the mean squared loss averaged over the properties, until early
stopping was reached at the minimal validation loss, with a 85/15
train/validation split. The GP model was built using GPyTorch,
with the Tanimoto kernel for the bit-vectors (i.e. ngerprints, and
one-hot encoding based features), and the radial basis function
kernel for all other features.52,94

Model performance was evaluated with 5-fold cross-valida-
tion.54 In addition, we used seven different random seeds for 5-
fold splitting. In this way, we generated 35 different training
and test sets.

Models that were deemed to be more sensitive to hyper-
parameters (KNN, MLP) were subjected to an inner loop of
Bayesian hyperparameter optimization using the Bayes-
SearchCV class of Scikit-Optimize before being trained on the
full training set.95 The Bayesian cross-validation search
performs 5-fold cross-validation on the training fold and
Bayesian optimization to estimate the ideal model hyper-
parameters efficiently. The hyperparameters from the best
model in the inner loop were used for the model trained on the
full training set. Ranges for hyperparameter optimization were
selected based on common values and expert intuition.

To assess overall model performance, we evaluated average
R2, root-mean-square error (RMSE), mean absolute error (MAE),
and Pearson correlation coefficient (R) over the 35 test sets.
Variation in model performance was assessed based on the
standard error over the 35 test sets with a sample size of 7 (the
number of independent seeds). Predictions, scores and parity
plots for all models can be found in the GitHub repository.
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