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In addressing the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) in lithium—sulfur
batteries, we developed a novel heterostructure combining 1D carbon nanotubes (CNTs) grown on a 2D
sheet of graphitic carbon nitride (g-CsN4) to improve conversion reaction kinetics and LiPS adsorption
capacity. The high pyridine N content in g-CsN,4 facilitates homogeneous Li ion deposition and enhances
affinity between Li and N atoms. Extensive experimental characterization and density functional theory
(DFT) calculations validated the interaction between g-C3zN4-CNT/S and LiPSs. In pouch cell evaluation,
the hybrid g-C3zN4-CNT/S cathode, with ~70% sulfur loading, demonstrated outstanding rate
performance, delivering ~895 mA h g~* at 0.1C and retaining ~500 mA h g~* even at 1.5C under lean
electrolyte conditions (E/S ~5 ul mg™). Long-term stability over 250 cycles, with a capacity retention of
86% and a coulombic efficiency (CE) of 90.4%, was achieved, even with an elevated sulfur loading of 6.2
mg cm™2. Post-mortem investigation using X-ray photoelectron spectroscopy (XPS) and electrochemical

Received 8th February 2024 . ) . .
Accepted 15th May 2024 impedance spectroscopy (EIS) elucidated surface chemistry changes and elemental composition
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Introduction

Developing reliable energy storage and conversion technologies
is essential in the face of the growing energy crisis and climate
change."” Meeting the increasing demand for portable elec-
tronic devices and electric vehicles necessitates advanced,
affordable, lightweight, and durable rechargeable batteries.?
Lithium-ion batteries (LIBs) have long been favored because of
their high power/energy density and extended service life,
making them promising for various applications.** However,
conventional LIBs are nearing their theoretical energy density
limits and cannot keep up with escalating energy demands.® As
a potential solution, lithium-sulfur batteries (LiSBs) offer
significant cost reduction and a substantial boost in energy
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density, approximately 2600 W h kg™, three to five times higher
than that of commercial LIBs based on intercalation reac-
tions.”® Sulfur, a low-cost and abundant cathode material,
further enhances the appeal of LiSBs, showcasing advantages
for large-scale applications compared to traditional LIB cathode
materials such as LiFePO,, LiMn,0,, LiCoO,, etc.® Despite these
advantages, LiSBs face challenges such as rapid capacity loss
and low coulombic efficiency (CE), hindering their commer-
cialization.' The poor conductivity of sulfur and its lithiation
products (Li,S/Li,S,) results in sluggish reaction kinetics,
leading to issues during charge-discharge cycles.'* Soluble
lithium polysulfides (LiPSs) formed as reaction intermediates
contribute to irreversible capacity loss, low CE, and Li anode
corrosion.”” Additionally, the substantial volume expansion
(~80%) during cycling causes structural collapse and signifi-
cantly reduces cathode activity."® Addressing these challenges
requires the design of suitable S-hosting materials to enhance
cathode conductivity and limit polysulfide dissolution.
Recently, cathode hosts with strong physical and chemical
interactions toward LiPSs have improved capacity retention by
suppressing the shuttle phenomenon and improving redox
kinetics.™** A template-based method was employed to
synthesize a composite host of macro/mesoporous carbon and
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defective TiO, nanoparticles, showcasing a high capacity
(1420 mA h g~* at 0.2C) and cycling ability (65.6% retention at
0.2C over 60 cycles).”* Additionally, tin disulfide (SnS,) nano-
sheets were anchored onto nitrogen-doped hollow carbon with
mesoporous shells, forming a bipolar dynamic host with
a capacity of 947.4 mA h g~ ' at 0.2C.** Among the various host
matrices explored in the past few years,"”® graphitic carbon
nitride (g-C3N, or g-CN), a semiconductor material with a 2D
structure akin to graphene, exhibits promising potential for
improving Li-S battery performance.? Recent studies highlight
g-C3N,'s catalytic activity, stability, cost-effectiveness, and
environmental friendliness, making it an attractive additive for
Li-S batteries. The heptazine units in g-C;N,, containing high
levels of pyridinic N, enable homogenized Li ion deposition and
a strong affinity between Li and N atoms.*"** Benefiting from
the inherent high charge polarity and abundant polysulfide
binding site, g-C;N, manifested remarkable electrocatalytic
performance toward converting polysulfides during the charge/
discharge process in LiSBs.”* Novel approaches, such as
nitrogen-deficient g-C;N, heterostructures developed through
magnesiothermic denitriding technology,* have demonstrated
significant improvements. These structures achieved
a discharge capacity of 650 mA h g~ at 4C with low-capacity
decay after 400 cycles. Similarly, g-C3N,/g-C3N, hetero-
junctions® adjusted the electron cloud structure, providing an
initial discharge capacity of 1200 mA h ¢~ " and maintaining 464
mA h g after 150 cycles. Other techniques, like the ethanol-
assisted spray drying method, produced rGO/g-C;N,/CNT
microspheres,”® offering enhanced electrode conductivity and
stable cycling performance. 3D porous graphene@g-C3;N,
hybrid sponges,” as sulfur host materials, exhibited high
specific capacity and excellent rate capability, thanks to their
porous network structure. While these examples showcase g-
C;N,'s effectiveness as a sulfur host, many strategies have
simply mixed carbon materials and g-C;N, without considering
their mutual impact. Consequently, there is a pressing need for
a simple, efficient, and low-cost synthesis technique to produce
a network structure hybrid with superior Li-S battery
performance.

Leveraging a cost-effective melamine precursor and
a straightforward pyrolysis process, we synthesized low-cost 2D
sheet-like nitrogen-rich g-C;N, and composited it with multi-
walled 1D CNTs to form a heterostructure. This design not
only accommodates sulfur volume expansion during lithiation
but also acts as a physical barrier, preventing polysulfide
diffusion from the cathode. The enriched N-sites in g-C3N, serve
as adhesion sites for polysulfides, establishing a ‘physical-
chemical’ dual-confinement for enhanced confinement.?® The
interlinked hierarchical network of 1D CNTs on 2D g-C3N,
promotes rapid electron/Li" transport and structural integrity,
ensuring swift reaction kinetics and long-term cycling stability.
The g-C3N,-CNT/S composite exhibits outstanding perfor-
mance, demonstrating a high specific capacity and exceptional
cycling stability with a mere 0.053% capacity decay per cycle
over 250 cycles and an impressive capacity retention of 90.4% at
a 0.1C rate. Notably, the pouch cell has no sign of performance
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decay even at a folding angle of 180°, showcasing its potential
for practical applications.

Experimental section

Materials

Melamine (99.99%), N-methyl-2-pyrrolidone (NMP), lithium
bis(trifluoromethane) sulfonimide (LiTFSI), 1,3-dioxolane
(DOL), 1,2-dimethoxyethane (DME) and lithium nitrate (LiNOj;)
were purchased from Sigma. Conducting carbon (CC, Super
C45), polyvinylidene fluoride (PVDF) as the binder, Al foil
(cathode current collector), Cu foil (anode current collector),
a tri-layered (PP/PE/PP) 25 um thick separator (Celgard 2325),
and tabs (Al and Ni) were purchased from MTI (USA). Pure
lithium foil (100 pm) as an anode, lithium sulfide (Li,S 99.99%),
and CNTs (multi-walled) were purchased from Nanochemazone
(Canada). All the materials were used as received without
further treatment.

Synthesis of cathode active materials

g-C3N, powder was synthesized via thermal polymerization of
melamine. In a typical process, the melamine (5 g) was heated
to 600 °C at a ramp rate of 5 °C min~" for 4 h in a covered
ceramic crucible. After cooling to room temperature, the
resulting light-yellow solid was ground to yield bulk g-C3N,
powder, which was further dispersed in deionized water (90 mL)
and sonicated for 4 h to obtain delaminated g-C;N, NSs. The g-
C3N, and CNTs (in a 2 : 3 weight ratio) were combined in a glass
vial with 20 mL of deionized water and sonicated for 4 h. The
resulting product was filtered and dried at 60 °C overnight,
yielding g-C3N,-CNT. For sulfur-based composites, pure g-C;N,
and g-C3N,-CNT composites were individually ground with
sulfur (3 : 7 weight ratio) for 1 h and heated at 160 °C for 15 h to
produce g-C;N,/S and g-C3;N,-CNT/S composites, respectively
(Scheme 1).

Material characterization

Crystalline structures were analyzed using a Philips P.W. 1830
powder X-ray diffractometer with a CuKa-ray source (10-70°
scan range). The microstructure and morphology were exam-
ined with a JEOL 2010 transmission electron microscope and
QUANTA FEG 250 scanning electron microscope equipped with
an energy-dispersive X-ray spectrometer (EDS). Fourier Trans-
form Infrared (FTIR) spectroscopy was performed from 500 to
4000 cm ™" on a Tensor 27 instrument. Carbon defects were
assessed using Raman spectroscopy (Bruker Senterra Infinity 1).
The chemical and electronic states of the surface were investi-
gated via X-ray photoelectron spectroscopy (XPS, PerkinElmer
Phi 5500 ESCA spectrophotometer). The Brunauer-Emmett-
Teller (BET) surface area and pore size were determined by N,
adsorption/desorption measurements (Quantachrome Nova
1200 Analyzer) after degassing the sample under vacuum at 150
°C for 2 h. The sulfur content in composite materials was
measured by thermogravimetric differential scanning calorim-
etry (TGA, Q50) with a 5 °C min ™" heating rate from 25 to 600 °C.
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Scheme 1 Schematic illustration for the synthesis of the g-C3N4-CNT/S nanocomposite.

Conductivity measurements were performed on sheets (10 x 20
mm) using the Ossila four-point probe technique.

Lithium-sulfur battery assembly

Slurry preparation. The cathode slurry comprised 80 wt%
active materials (AM: g-C3N,/S or g-C3N,-CNT/S), 10 wt% con-
ducting carbon (CC: Super C45), and 10 wt% PVDF binder in
NMP. For slurry preparation, 4 g AM was ball-milled with 0.5 g
CC for 30 minutes at 500 rpm. Simultaneously, 0.5 g PVDF was
mixed with 5 mL NMP at 50 °C until a transparent viscous
solution formed. The pre-mixed AM/CC was gradually added to
this viscous solution in several batches, creating a uniform
slurry that was stirred overnight at 40 °C. The slurry underwent
homogenization using a dual-shaft planetary mixer under
vacuum for 30 minutes to eliminate trapped air bubbles.

Electrode preparation. The wet slurry was coated onto Al foil
using a tape casting machine with a 10 cm long doctor blade at
a low coating speed of 6 mm s~ ", followed by overnight vacuum
drying at 60 °C. The resulting dried sheet underwent calen-
daring to enhance tap density and eliminate vulnerable pores.
Using a semi-automatic slitting machine (MTI, USA), sheets
were cut into electrodes measuring 56 mm (/) x 43 mm (w) with
the average areal sulfur loading varying from ~4-6.5 mg cm™>.

Pouch assembly and cell aging. The single-coated cathode
sheets (Scheme 2) were Z-stacked with double-sided metallic Li
anode sheets (54 mm (/) x 41 mm (w)) and separated by a tri-
layer (PP/PE/PP) separator (25 um thickness, Celgard 2325) in
an argon-filled glove box with H,O and O, contents below
0.1 ppm. The electrolyte, comprising 1 M LiTFSI and 2 wt%
LiNO; in a 1:1 vol. ratio of 1,3-dioxolane (DOL) and 1,2-dime-
thoxyethane (DME), had a volume maintained at 5 uL mg "
sulfur. Sealed pouch cells were pressed for 2 h under an Ar
atmosphere and then transferred to a vacuum oven for 12 h at
50 °C for aging.

Electrochemical measurements. Galvanostatic charging/
discharging profiles for the prepared pouch cells were recor-
ded using an 8 Channel Battery Analyzer (MTI, USA) within
a cut-off voltage range of 1.8-2.8 V. Cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) were performed
on an Admiral Instruments Squidstat Plus potentiostat. CV

15816 | J Mater. Chem. A, 2024, 12, 15814-15828

plots covered a potential range of 1.6-2.8 V with a scan rate
varying from 0.05 to 1 mV s~ '. EIS curves were obtained under
open circuit potential, in a frequency range of 2 mHz-0.5 Hz, at
an excitation potential of 10 mV, and 20 points per decade.

Polysulfide adsorption tests

The absorption behaviors of active materials towards poly-
sulfides were assessed by immersing them in a Li,Ss solution,
chosen as the representative of polysulfides. For Li,S¢ solution
preparation, Li,S and sulfur powders (1:5 molar ratio) were
added to a DOL and DME solution (1:1, v/v) under vigorous
stirring at 60 °C for 24 h in an Ar-filled glovebox. The concen-
tration of the resulting Li,Se solution was 5 mmol L™ L. Before
the polysulfide adsorption test, pure g-C3N, and g-C3N,-CNT
hybrids were dried at 60 °C under vacuum for 12 h. Subse-
quently, g-C;N, and g-C3N,-CNT hybrids with an equal weight
(20 mg) were immersed in a 5 mL Li,Ss solution for static
adsorption over 12 h. The color variation of the supernatant
over time was observed, and the adsorption capability of g-C3N,
and g-C;N,-CNT to Li,Se was tested via UV-vis spectroscopy. A
blank Li,Se solution served as the reference.

Computational details

The electronic structure calculations used the Vienna ab initio
Simulation Package (VASP) with projector-augmented wave
(PAW) pseudopotentials.®®?3® The Perdew-Burke-Ernzerhof
generalized gradient approximation (GGA-PBE) is employed to
capture the exchange-correlation potentials.®® A plane wave
cutoff energy of 470 eV was set, enhancing the accuracy of our
electronic structure calculations. To address van der Waals
(vdw) interactions, the DFT-D3 method developed by Grimme
was systematically incorporated into all calculations. The
application of the DFT-D3 (ref. 32) method included the use of
a zero-damping function, further contributing to the accuracy
and reliability of our computational results. The geometry
relaxation of all structures is meticulously conducted until the
Hellmann-Feynman forces acting on each atom reach a value
below 1072 ev A~*. Simultaneously, total energy convergence is
rigorously pursued until it reaches 10™* eV. To adequately

This journal is © The Royal Society of Chemistry 2024
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Scheme 2 Schematic for the structure of the pouch cell demonstrating the arrangements of electrodes and separator.

sample the Brillouin zone, a regular I"-centered k-point mesh is
utilized with a grid that is 3 x 3 x 1.** The initial optimization
involved separate adjustments of the unit cells for the g-C3N,
and CNT surfaces. Subsequently, supercells of dimensions 2 x
1 x 1 are constructed for each system, accompanied by the
introduction of a vacuum region of approximately 30 A around
each supercell in the z-direction. LiPSs and Sg molecules are
also individually optimized before being placed on the surfaces.
Further simulations involved the strategic placement of Sg and
LiPS molecules on both g-C;N, and the heterostructure formed
by combining g-C3N, and CNT (g-C3N,-CNT). A comprehensive
relaxation of the Sg/LiPSs + g-C3N, and Sg/LiPSs + g-C3N,-CNT
configurations is then carried out using the above-mentioned
computational parameters.

In the pursuit of identifying the energetically most favorable
configurations of Sg/LiPSs, we theoretically investigated the
adsorption of Sg/LiPSs molecules on both g-C;N, and g-C3N,-
CNT surfaces. Our exploration encompassed a thorough
examination of various possible orientations and configura-
tions of the Sg/LiPS molecules. The energetically most stable
configurations for each LiPS and Sg molecule are considered for
binding energy studies. The binding energy (E}, in eV) of each
LiPS and Sg molecule on the g-C;N, surface and g-C;N,-CNT
composite surface is calculated using the following equation:

Ey = Es + Eg.c,N/g-C,N,-CNT — Es+g.c,N/g-CN,-CNT (1)

where S = Sg/Li,S, and n = 1, 2, 4, 6, 8. Eg represents the total
optimized energies of the isolated Sg/Li,S, molecules, and E,.
c.N,/gc,N,-cnt denotes the total optimized energies of g-C3N, and
g-C3N,-CNT surfaces. Esig.cnye-cN,-cnT 1S the total optimized

This journal is © The Royal Society of Chemistry 2024

energy of the S + g-C3;N, and S + g-C3N,-CNT configurations (i.e.,
the energetically most favorable configurations).

The Gibbs free energy (AG) of the sulfur reduction reaction:
the reaction Gibbs free energy of Sg and Li,S,, on g-C3N, and g-
C;3N,-CNT composite surfaces was calculated by using the
following equation:

AG = AEy, — (AZPE + TAS) (2)

where AEgq represents the difference between products and
reactants computed by DFT calculation, AZPE and TAS are the
difference of the zero-point energy (ZPE) and entropic contri-
bution, respectively. The AEy is obtained from the corre-
sponding VASP computation, while the ZPE, enthalpy, and
entropy contributions are computed from vibrational frequency
calculations and using the Vaspkit* tool at 300 K. A detailed
discussion on this can be found in the ESI.}

Results & discussion
Active material characterization

The XRD patterns in Fig. 1a depict the crystalline characteristics
of as-prepared g-C3Ny, g-C3N,/S, and g-C3N,4-CNT/S. Pure g-C3N,
exhibits a low-angle reflection peak at ~13°, indicative of lattice
planes parallel to the c-axis.*>*® Additional peaks at 27.9° result
from the periodic stacking of heptazine layers in the nano-
sheets.’”*® In the g-C;N,-CNT/S spectrum, peaks at 26.3° and
42.7° correspond to the hexagonal graphite structure in CNTs
along the (002) and (100) directions.* The well-aligned diffrac-
tion peaks of the orthorhombic sulfur phase (JCPDS card no. 08-
0247) in both g-C3N,/S and g-C3;N,-CNT/S confirm the

J. Mater. Chem. A, 2024, 12, 15814-15828 | 15817
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Fig.1 Forg-CsN4 g-C3N4/S, and g-C3N4-CNT/S: (a) XRD patterns, (b) FTIR spectra and (c) Raman spectra; TEM images for (d) g-C3sN4 and (e) g-
C3N4-CNT/S materials; (f) SEM images for g-C3N4-CNT/S; (g) color mapping of g-C3zN4-CNT/S demonstrating the uniform distribution of C, N,

O, and S elements.

crystalline nature of sulfur in the g-C;N, or g-C3N,-CNT host.
FTIR spectra in Fig. 1b reveal the characteristic features of g-
C;3N,, 2-C3Ny/S, and g-C3N,-CNT/S. The absorption band at
790 em ™" signifies the out-of-plane skeletal bending modes of
tri-s-triazine cycles, confirming the presence of g-C;N,.*%*
Bands at 1270 and 1540 cm ™! correspond to the C-N stretching
and CN heterocycle stretching modes of g-C;N,, respectively.**
The broad band between 2950 and 3480 cm ™' indicates the
stretching modes of terminal -NH groups at defect sites of the
aromatic ring, and signals from S-H stretching modes
(2347 em™') align with reported observations.** The Raman
spectra in Fig. 1c were recorded for g-C;N,, g-C3N,/S, and g-
C;N,-CNT/S to assess the degrees of graphitization. Peaks
around 706, 768, and 1230 cm ' correspond to the breathing
modes of the s-triazine ring in g-C3N,.** Distinct Raman peaks
at 1417 and 1577 cm " represent the D band and G band,
indicative of defects in disordered carbon and the in-plane
vibration of graphitic layers, respectively.*® The I/l intensity
ratios decrease slightly with the addition of sulfur, which may
be ascribed to the reduced disorder because of S particle
encapsulation into void interlayers and defective sites of g-
C;3N,.*® The results further signify a higher degree of the crys-
talline graphitic structure with improved electronic conduction,
aligning with the XRD pattern in Fig. 1a. The porosity of g-C3Ny,
2-C3N,/S, and g-C3N,-CNT/S was studied through N, sorption

15818 | J Mater. Chem. A, 2024, 12, 15814-15828

curves (Fig. S1f), indicating a type-IV nitrogen adsorption-
desorption process with an H3 type hysteresis loop, suggesting
mesopores. The BET surface area decreases from 82 m” g~ for
pure g-C3N, to 64 and 49 m” g~ " for g-C3N,/S and g-C3N,-CNT/S,
respectively, indicating successful impregnation of CNT and
sulfur in pure g-C;N, pores. Given that sulfur and Li,S,/Li,S are
insulators, good conductivity is crucial for the sulfur matrix.
The conductivity of g-C3N,-CNT/S, probed by the four-point
probe method, ranges between 10> and 10™* S em ™", signifi-
cantly higher than that of g-C;N, materials, which falls between
10" and 107" Sem ™.

The morphologies of the prepared active materials were
investigated via TEM and SEM, complemented by elemental
mapping. The TEM image in Fig. 1d displays g-C;N, with loose
morphology, featuring 2D nanosheets resulting from gas
release during thermal polymerization. In contrast, the TEM
image of g-C3N,-CNT/S (Fig. 1e) reveals 1D CNTs on 2D g-C3N,
sheets, with a clustered surface exhibiting wrinkles, curls, and
sparse sulfur agglomerations. Abundant porosity benefits sulfur
encapsulation, effectively accommodating volume variations
during cycling. SEM images in Fig. 1f depict a well-maintained
interlaced CNT network structure without noticeable sulfur
agglomeration after sulfur diffusion into g-C;N,-CNT, indi-
cating good sulfur dispersion in g-C3N,-CNT/S. Elemental
mapping in Fig. 1g vividly illustrates uniform C, N, and S

This journal is © The Royal Society of Chemistry 2024
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dispersion  throughout g-C3N,-CNT/S, with mappings
completely following the shapes of the samples confirming
uniform sulfur deposition on g-C3N,-CNT surfaces. From these
results, we conclude that in situ growth of 1D CNTs on 2D g-
C;3N, sheets constructs a cross-linked 3D conductive network,
chemically bonded in the g-C;N,-CNT composite. This hybrid
system provides an efficient electron transport path via CNTs,
acting as a loading platform with N-containing functional
groups to trap sulfur particles. The highly integrated g-C;N,-
CNT/S with N-containing functional groups exhibits strong
LiPS confinement, ensuring excellent cycling performance.
Sulfur loading, a crucial LiSB performance index,*” was calcu-
lated through the TGA of the g-C;N,-CNT/S composite. In
Fig. S2,t the significant weight loss between 200 and 340 °C
corresponds to sulfur evaporation, yielding a 68.6% sulfur
content in g-C3N,-CNT/S, consistent with the experimentally
added 70% sulfur.

XPS was utilized to delve deeper into the chemical bonding
of the g-C3N,-CNT/S composite. In Fig. 2, XPS survey spectra
exhibit peaks at approximately 161.9, 226.4, 283.6, 397.7 eV, and
532.1 eV, assigned to S 2p, S 2s, C 1s, N 1s, and O 1s binding
energies, respectively. The fitted curve of C 1s spectra of the
hybrid g-C;N,-CNT composite presents five peaks: -C-C- at
282.6 eV, conjugated -C=N—/—C=C- at 284.6 eV, S-C/C-N at
285.5 eV, and -S-C=N at 288.4 eV.*® The red shifting of -C-C-
from the usual 284 £ 0.5 eV could be due to the increase in
electronic density around carbon, which causes the binding
energy of -C-C- to shift to lower values. The computational
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simulations by Priyanga et al.*® suggest that the valence band
(VB) originates from the P, orbitals of nitrogen atoms, while the
conduction band (CB) arises from the P, orbitals of carbon
atoms.* Consequently, the process of reduction and oxidation
occurs at carbon and nitrogen atoms, respectively. This
phenomenon stems from nitrogen's higher electronegative
potential compared to carbon.* A 286.8 eV binding energy of g-
C;3N,4-CNT is related to the C=0 groups and originates from the
CNTs after thermal annealing.®* The N 1s spectra reveal four
peaks at 397.5 eV, 398.5, 400.7, and 404.4 eV, attributed to
pyridinic-like N in CN, -S-N=C-, graphitic-like N (C3-N)/
amino N (N-H), and oxidized N (N-O), respectively.”> Abundant
pyridinic N content in g-C3N,-CNT/S enhances lithium poly-
sulfide adsorption via Li-N interaction, thereby reducing the
barrier height and improving conductivity and electron
density.**** The S 2p spectrum of g-C;N,-CNT/S displays peaks
at 162.5 (S 2ps/,) and 163.9 eV (S 2p,,,), assigned to -S-S- bonds
(Ss molecules).”® Interestingly, the red shift in both the peaks
(compared to XPS of pure Sg: S 2ps/, at 164 eV and S 2p,,, at 165
eV)*® indicates a covalent link of sulfur chains to the host
material.”” The S 2p peak at 167.02 eV is ascribed to sulfate
species, formed through chemical interaction between surface
oxygen-containing functional groups and sulfur atoms.’®*
Besides N, C, and S, oxygen (O) is detected, originating from
oxygenated functional groups in g-C;N, preparation at high
temperatures. These oxygenated groups aid in chemically
adsorbing sulfur and preventing polysulfides from dissolving

into electrolytes effectively.®***
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Fig. 2 (a) XPS spectrum showing the complete scan and the corresponding spectra for the elements (b—e) present in the g-CzN4-CNT/S

composite.
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The catalytic conversion process of LiPSs involves two steps:
adsorption and catalytic reaction.’®®> To assess adsorption
ability, g-C3N,, and g-C3N,-CNT materials were individually
immersed in a Li,Ss solution with magnetic stirring for 30
minutes. After 24 hours, adsorbents were retrieved, and optical
photos of solutions were captured (inset of Fig. 3). Notably, the
original light-yellow color of the Li,Se solution becomes color-
less after immersing in g-C3N,-CNT, suggesting effective
absorption of most polysulfides. In contrast, the Li,Ss solution
color shows a slight change after immersing in g-C;N,. More-
over, UV-vis measurements for Li,S¢ reveal a strong absorption
band in the 240-300 nm region, assigned to S¢>~ polysulfide
species.®”® g-C3;N, exhibits lower absorbance than the Li,Se
sample, while g-C;N,-CNT demonstrates the lowest absorbance,
attributed to its high pyridinic/pyrrolic N content. This confirms
the strong affinity between polysulfides and pyridinic/
pyrrolic N, particularly effective in suppressing polysulfide
dissolution in the electrolyte (S,-Li--*N interactions).** This
robust affinity contributes significantly to enhancing the cycling
stability of the sulfur electrode.

Theoretical calculations

We performed DFT calculations to assess and compare the
binding strengths of Sg/LiPSs on g-C3;N, and g-C3;N,-CNT
composite surfaces. The calculated binding energies (&, in eV)
of Sg/LiPSs on the g-C;N, surface align with prior study find-
ings.® Tables S1-S31 and Fig. 4 offer a comprehensive analysis
of the electronic and binding properties of both g-C;N, and g-
C;N,-CNT composite surfaces when interacting with Sg/LiPSs.
The GGA-PBE bandgap for g-C;N, and g-C;N,-CNT was deter-
mined to be approximately 1.195 and 0.049 eV, respectively
(Table S1t). Regarding bandgap changes, notable decreases
were observed, as seen in Li,S (1.7321 to 0.0152 eV) and Li,S,
(0.0383 to 0.0354 eV), indicating a potential enhancement in g-
C;3N,-CNT electronic conductivity. Conversely, an increase in
the bandgap for Li,S and Sg when interacting with g-C;N,
implies a reduction in electronic conductivity, as a larger
bandgap typically requires more energy for electron movement

——Li,S,
LiSg+g-C3Ny
Li,S¢ + g-C;N,-CNT

Intensity (a.u.)

250 300 350 400 450 500
Wavelength (nm)

Fig. 3 UV-vis spectra for blank Li,Sg and Li,Se¢ added with CN and g-
C3N4-CNT. The inset shows the digital picture of the effect of the
active material on the adsorption of LiPSs in Li,Se solution.
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between the valence and conduction bands, hindering elec-
tronic transport. Binding energy changes, representing the
strength of interactions, show varying values across the
systems, with Li,S displaying a substantial binding energy
decrease (8.309 to 1.618 eV). These findings suggest that the
adsorption of Sg/LiPSs onto g-C3N, and g-C3N,-CNT composite
surfaces leads to modifications in electronic and binding
properties, with potential implications for the overall perfor-
mance of the material. These outcomes suggest that the
adsorption of Sg/LiPSs onto g-C3;N,-CNT results in favorable
alterations in electronic and binding properties, potentially
enhancing the material's overall performance. Notably, for all
lithium contents (Li,S,, n = 1, 2, 4, 6, 8), the LiPS molecules
exhibit higher binding energies on the g-C;N, surface compared
to the g-C3N,-CNT surface (Fig. 4a-c). This observation suggests
a more robust interaction between LiPSs and the g-C;N, surface
than with the g-C;N,-CNT surface. The structural impact
becomes evident as the g-C;N, layer undergoes distortion upon
the adsorption of Sg/LiPS molecules (Fig. 4a), while the geom-
etry of the CNT (Sg/LiPSs + g-C3N,-CNT) remains nearly unal-
tered (Fig. 4b). However, due to the weak van der Waals
interaction between Sg/LiPSs and g-C3N,-CNT, a small strain
can be observed on the g-C;N, surface as well. This discrepancy
indicates that LiPSs are chemically and physically adsorbed on
g-C3N, and g-C3N,-CNT, respectively, providing a rationale for
the experimental phenomena discussed in Fig. 3. A thorough
discussion on binding energy is included in the ESI.{

Upon closer examination of the structures, it is observed that
all carbon (C) atoms and a quarter of the nitrogen (N) atoms in
g-C3N, are three-fold coordinated, with the remaining three-
quarters of N atoms being two-fold coordinated. Analyzing the
optimized structure of LiPS molecules on the g-C;N, surface
reveals that the interactions predominantly stem from chemical
bonds between Li" atoms and the two-fold coordinated N atoms
(Fig. 4a). This underscores that the atomic under-coordination
in g-C;N, plays a pivotal role in stabilizing LiPSs. In the case
of Li,S, and Li,S, Li* forms bonds with N atoms, and S$*>~ binds
with C on the polar g-C3;N, surface. Importantly, this explains
the absence of chemical bonds between LiPSs and g-C3N,-CNT
(Fig. 4b), where all C atoms are three-fold coordinated within
the carbon nanotube. In-depth insights into the electro-
chemical reaction kinetics enhancement on both g-C;N, and g-
C3;N,-CNT surfaces are sought by examining the complete
reaction pathway involving the transformation of Sg to Li,S. In
Fig. 4d, we show the landscape of relative Gibbs free energy (in
eV) for the discharging process from Sg (solid) to Li,S (liquid) on
both the g-C;N, and the g-C3N,-CNT composite surfaces. It is
noteworthy that the results of g-C;N, differ significantly from
those of g-C3N,-CNT. We hypothesize that in the case of g-C3Ny,
the transition from Sg — Li,S results in the generation of
increasingly ionic structures where Li transforms into Li" and
the energy becomes highly negative, indicating the discharged
structure. On the other hand, for the g-C3N,-CNT composite
surface, the interaction between LiPSs and CNT is limited, and
we do not observe the same extent of electron transfer. The
composite structure of g-C;N,-CNT may be oversimplified, as
some of the LiPSs interact with the CNT, while other sulfides
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Fig. 4 Optimized configurations of LiPSs on the surfaces of (a) g-C3N4 and (b) the heterostructure of g-C3N4-CNT. The yellow, pink, cyan, and
blue spheres represent sulfur (S), lithium (Li), carbon (C), and nitrogen (N) atoms, respectively. Panel (c) displays the binding energies and panel (d)
illustrates the relative free energy for the discharging process from Sg to Li,S on both g-C3sN,4 and g-CsN4-CNT surfaces.

interact with g-C;N,, resulting in a mixture of outcomes. A
thorough discussion on the Gibbs free energy uphill process is
included in the ESL{

The initial phase of the discharge process involves the
simultaneous double reduction of an Sg molecule and 2Li" ions,
resulting in the formation of a lengthy Li,Sg polysulfide chain.
Subsequently, Li,Sg undergoes further reduction, sequentially
forming three intermediate LiPSs (Li,S, = 6, 4, 2), ultimately
leading to the production of the end-product Li,S polysulfides.
The obtained data unequivocally indicate a higher thermody-
namic favorability of the discharging process on the g-C3N,-

This journal is © The Royal Society of Chemistry 2024

CNT composite surface compared to the g-C3N, surface,
providing a rationale for the experimental phenomena dis-
cussed in Fig. 5. Specifically, the reaction energy from solid Sg to
liquid Li,Sg on the g-C3N,-CNT surface is more exothermic than
that on the g-C;N, surface (Fig. 4d). Notably, the subsequent
four reduction stages from Li,Sg to Li,S exhibit endothermic
behavior on the g-C;N, as well as on the g-C;N,-CNT composite
surface. The final two steps, from Li,S, to Li,S, and from Li,S,
to Li,S, exhibit substantial energy barriers (~3.472 e€V)
compared to the other steps on both the g-C;N, and g-C;N,-CNT
composite substrates. This observation suggests that the
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Fig.5 (a) CV profiles for g-C3N4/S and g-C3N4-CNT/S cathodes; CV curves at different scan rates for (b) g-C3N4-CNT/S and (c) g-C3N4/S; plots
of the peak currents versus the square root of scan rates from the CV curves of g-C3sN4-CNT/S and g-C3N4/S cathodes for (d) Peak A, (e) Peak C1

and (f) Peak C2.

precipitation process of Li,S,/Li,S is the rate-limiting step
during discharging. In contrast, on the g-C;N,-CNT composite
surface, the energy barrier for the endothermic precipitation
process is effectively lowered (~1.289 eV), signifying a more
favorable discharge. Additionally, the mixed behavior in the
subsequent reductions correlates with the bandgap values,
suggesting that electronic properties play a crucial role in the
energetics of the discharge process. The lower bandgap of g-
C;N,-CNT may contribute to its overall more favorable Gibbs
free energy values, suggesting better electrochemical perfor-
mance compared to the g-C;N, substrate. These findings
contribute crucial insights into the kinetics of the discharge
process on both g-C;N, and g-C3;N,-CNT substrates, high-
lighting key rate-determining steps and their corresponding
energy landscapes. Furthermore, the electronically conductive
nature of the g-C3N,-CNT surface facilitates rapid electron
transfer between C atoms (from CNT) of g-C3;N,-CNT and S
atoms of LiPSs, thereby weakening the Li-S bonds of LiPSs. As
a result, g-C;N,-CNT significantly reduces the reduction barrier
of LiPSs, promotes Li,S precipitation, and enhances reaction
reversibility, underscoring its potential superiority over g-C3N,
in terms of electrochemical performance.

Electrochemical characterization

The electrochemical performance of g-C;N,/S and g-C;N,-CNT/S
was assessed in a pouch cell configuration. In Fig. 5a, the CV
curves of g-C3N,/S and g-C3;N,-CNT/S composites are presented
within a voltage range of 1.6 V to 2.8 V at a sweep rate of 0.05 mV
s~'. During the cathodic scan, both g-C3N,/S and g-C;N,-CNT/S

15822 | J Mater. Chem. A, 2024, 12, 15814-15828

exhibit two main reduction peaks. The peak at approximately
2.27 V corresponds to the reduction of elemental sulfur to high-
order polysulfides, Li,S, (4 =< n =< 8), while the peak between 1.9
and 2.0 V signifies the formation of Li,S,/Li,S from low-order
polysulfides.®® In the anodic scanning process, two oxidation
peaks between 2.44 and 2.51 V are associated with the oxidation
of Li,S,/Li,S to long-chain polysulfides (Li,S,, (n > 2)) and further
to sulfur.®” Compared to g-C;N,/S, the main cathodic peaks of g-
C;3N,-CNT/S exhibit a slight shift to higher reduction potential,
and the anodic peaks shift to lower oxidation potential, indi-
cating reduced polarization in g-C;N,-CNT/S. This facilitates
polysulfide conversion, indicating improved reversibility of the
electrode during cycling.®® Furthermore, the smaller potential
difference (AE) between cathodic and anodic peak current
densities in g-C3N4,-CNT/S reflects its remarkably stable
tendency to effectively suppress the diffusion of liquid inter-
mediate products during CV cycles.®® Additionally, during the
scanning process for g-C;N,-CNT/S (Fig. S371), the cathodic peak
position, peak current, and peak area exhibit minimal change
over the next 5 cycles, indicating superior capacity retention and
good reversibility of the cell. CV curves at various current rates
are depicted in Fig. 5b and c for g-C3N,-CNT/S and g-C3N,/S
cathodes, respectively. The cathodic processes involve Peak C1
and Peak C2, attributed to Sg transformation to long-chain
LiPSs (Li,S,, 4 = n = 8) and the subsequent reduction of
long-chain LiPSs to Li,S,/Li,S, respectively.®®”

The anodic process is represented by Peak A, corresponding
to the reverse transformation. The redox peaks at higher current
rates appear broadened for both materials, indicating slow
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kinetics of LiPS conversion. Moreover, at increased scan rates,
redundant peaks emerge after 2.6 V during the anodic scan for
both materials, signifying sluggish cathode kinetics. Overall, g-
C3N,-CNTY/S exhibits higher peak current densities than g-C3N,/
S, indicating enhanced Li* transportability and superior rate
capability. Additionally, both cathodic and anodic peak
currents for both materials exhibit a linear relationship with the
square root of the scan rate (v°°), suggesting diffusion-limited
discharge/charge reactions (Fig. 5d-f).

Therefore, the diffusion coefficient of Li" can be described by
the Randles-Sevcik equation:™ I, = (2.69 x 10°)n'°AD*°Cy;-*>
v®®, in which 7 is the number of charge transfers, A is the active
electrode area, D is the Li* diffusion coefficient, and Cy; is the
concentration of Li" in bulk. Since n, 4, and ¢, are constants,

I I
p 05 p . . . .
1)OTOCD , a larger 05 implies a higher D. The equation reveals

a linear relationship between the peak current and the square
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root of the scan rate, with the slope indicating lithium-ion
diffusion.” Notably, in g-C;N,-CNT/S, the slopes for the two
reduction peaks and one oxidation peak surpass those in g-
C;N,/S at the same electrode area for each sulfur reduction and
oxidation reaction. This suggests accelerated Li ion diffusivity
and improved LiPS redox kinetics during discharge/charge
processes attributed to CNT presence, promoting LiPS trans-
formation and facilitating rapid Li* migration.” However, due
to the formation of various polysulfides in the redox process,
quantifying D;; is challenging due to an unknown number of
electrons involved in polysulfide formation.

Galvanostatic charge-discharge tests were conducted to
investigate the electrochemical performance of the pouch cells.
In Fig. 6a, the 1st cycle charge-discharge voltage profiles of g-
C;3N,/S and g-C3N,-CNT/S cathodes at a 0.1C current density
reveal two distinct discharging voltage plateaus and one major
charging voltage plateau, consistent with the multistep
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(a) Initial charge—discharge curves for the g-C3sN4/S and g-C3N4-CNT/S cathodes at 0.1C, (b) the capacity contribution of Qu, Q. and the

QL/Qy ratio of g-C3N4-CNT/S and g-C3N4/S at 0.1C, (c) galvanostatic charge—discharge profiles of the g-C3N4-CNT/S cathode for 250 cycles,
(d) cycle performance and coulombic efficiency of g-CsN4/S and g-C3N4-CNT/S cathodes for 110 and 250 cycles, respectively, (e) rate
capabilities of g-CsN,4/S and g-C3N4-CNT/S cathodes under various current densities, (f) galvanostatic charge—discharge profiles of the g-CsNy4-
CNT/S cathode at different current densities, (g) cycle performance of the g-CsN4-CNT/S cathode with varied sulfur loading for 250 cycles at
0.1C and (h) EIS spectra of the freshly prepared uncycled cell.
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reduction of sulfur indicated by CV curves. The polarization
potential (AE), calculated as the gap between anode and
cathode peaks, is lower for g-C;N,-CNT/S (190 mV) compared to
2-C3N,/S (231 mV), reflecting reduced polarization in the g-
C;3N,4-CNTY/S electrode facilitated by CNT-N active site catalysis.
Additionally, the capacity of the lower discharge plateau (Qy)
and higher discharge plateau (Qy) is calculated from discharge
curves. The higher Q;/Qu signifies superior electrocatalytic
activity for polysulfides, where Qg corresponds to sulfur
conversion into soluble polysulfides, and Qy, represents efficient
reduction of polysulfides to Li,S.” In Fig. 6b, the capacity ratio
for g-C3N,-CNTY/S (1.95) surpasses that of CN/S (1.88), indicating
enhanced sulfur utilization owing to the superior catalytic
activity of S,~Li---N in the g-C3N,-CNT/S electrode. The charge-
discharge profiles of g-C;N,-CNT/S at 0.1C over 250 cycles
(Fig. 6¢) reveal sustained maintenance of the two discharge
plateaus, demonstrating rapid mass transport and reaction
kinetics. A comparison of long-term cycle performances
between g-C3N,/S and g-C3N,-CNT/S (Fig. 6d) illustrates the
initial capacity decay attributed to the activation process. Non-
activated sulfur may aggregate on g-C3N,'s surface initially
leading to the formation of an unstable solid electrolyte inter-
face (SEI) layer.”” The subsequent cycles witness enhanced
sulfur utilization and uniform depreciation in capacity, with g-
C;3N,-CNTY/S delivering an initial discharge capacity of 895.7 mA
h g~ and a capacity retention of 86% after 250 cycles, boasting
a CE of 90.4%. In contrast, g-C3N,/S achieves a reversible initial
discharge capacity of 679.6 mA h g '. The improved cycle
performance of g-C;N,-CNT/S is attributed to abundant anchor
sites on nanosheets, influencing LiPS adsorption. Rate perfor-
mance (Fig. 6e) indicates higher discharge capacity of g-C3N,-
CNT/S than g-C;N,/S at different current rates, with g-C3N,-
CNT/S recovering well at 0.1C, which is ascribed to the porous
structures of g-C;N, ensuring fast Li ion transportation and
chemical confinement for lithium polysulfides.”””® Charge-
discharge curves at various rates (0.1C to 1.5C) for g-C;N,-CNT/S
(Fig. 6f) demonstrate excellent maintenance of discharge
plateaus at 1.5C, affirming swift mass transport and reaction
kinetics. The cathode exhibits high reversibility, maintaining
capacities of 847, 656, and 543 mA h g ' at 0.2, 0.76, and 1.5C,
respectively, corresponding to 95%, 73%, and 61% of the orig-
inal capacity. High sulfur mass loading is crucial for achieving
elevated energy density and facilitating lithium-sulfur battery
commercialization. Therefore, pouch cells, featuring sulfur
loadings of 4.3, 5.4, and 6.2 mg cm ™2, underwent testing at 0.1C
for the g-C3N,-CNT/S cathode. In Fig. 6g, the 6.2 mg cm > cell
yields the lowest reversible discharge capacity of 566 mA h g™*
after 250 cycles, exhibiting a fading rate of 0.08% per cycle and
a CE of 82%. This underscores g-C3;N,-CNT/S's outstanding
electrochemical performance under high-loading configura-
tions, indicating robust LiPS inhibition and accelerated kinetic
conversion for enhanced sulfur utilization.”” Table S47 provides
a comparative overview of Li-S batteries, affirming the
remarkable performance of the g-C3;N,-CNT/S cathode in the
pouch cell format (electrode size ~22 cm?® and E/S ~5 ul mg™")
as compared to the coin cells with a low electrode size (~1.6
cm?) and flooded electrolyte (E/S > 15 ul mg ™). The large area
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pouch cells are more prone to uneven sulfur degradation,’®
which would increase the electrode tortuosity and even block
the electrolyte redistribution, thereby reducing the cycling
performance and CE of the pouch cell.” Therefore, the superior
performance of our composite electrode further attests to its
utilization for commercial applications.

To further detail improved conductivity and enhanced
polysulfide-trapping ability, EIS measurements for cells with g-
C3N,/S and g-C3N,-CNT/S cathodes were conducted (Fig. 6h) in
the frequency range of 0.5 Hz-2 mHz, with an excitation
potential of 10 mV and 20 points per decade. Nyquist plots
reveal three frequency regions: a high-frequency segment indi-
cating electrolyte resistance (R.), a middle-frequency semicircle
corresponding to charge transfer impedance (R.), and a low-
frequency spike representing Warburg impedance (W) associ-
ated with lithium-ion diffusion in the cathode.*®®" As can be
seen, the semicircle diameter and R value for the g-C;N,-CNT/S
cathode cell (22.6 Q) are notably lower than those of the g-C3N4/
S cathode cell (35.6 Q), indicating reduced charge transfer
resistance due to enhanced electrical conductivity and
improved electrical contact upon CNT incorporation into g-
C;3N,. Additionally, the R. for g-C;N,-CNT/S is merely 2.7 Q,
affirming outstanding cell conductivity. This outcome under-
scores lower electrochemical impedance in the g-C;N,-CNT/S
host, attributed to the presence of CNTs and abundant pyri-
dine N acting as chemically active sites that robustly adsorb
polysulfides, facilitate charge and ion transfer, and diminish
electrode—-electrolyte interface resistance and charge transfer
resistance. Parameters from the Nyquist plot are detailed in
Table S5.7 To showcase the superior mechanical flexibility of
the designed g-C3N,-CNT/S electrodes, various folding angles
for pouch cells were tested. Fig. 7 reveals impressive open
circuit voltage (OCV) stability at 2.36 V, successfully powering an
LED bulb at varying bending angles. Remarkably, no discern-
ible change in LED brightness or OCV readings occurred even at
nearly 180° bending angles. The g-C;N,-CNT/S-based Li-S
pouch cells demonstrate favorable electrical performance,
emphasizing their practical utility in flexible energy systems,
owing to excellent cycling stability achieved through effective
polysulfide shuttling suppression.

Postmortem analysis

The lithiation mechanism of the g-C;N,-CNT/S cathode was
explored through XPS analysis after the 250th discharge cycle.
The pouch cell was dismantled in an argon-filled glovebox, and
a 10 mm x 10 mm segment of the g-C;N,-CNT/S cathode was
cut and dried before XPS measurements. Fig. 8 exhibits well-
defined peaks for C, N, S, and O, consistent with the pure
active material, revealing some new bond formations. Notably,
additional elements (Li and F) were observed. In the C 1s
spectra, peaks at 282.6 eV, 284.4, 286.6, and 288.3 eV corre-
sponded to -C-C-, -C=N-/-C=C-, C=0, and -S-C=N, mir-
roring the active material's C 1s spectra in Fig. 2. However,
a new peak at 292.5 eV, representing C-F due to electrolyte
passivation, emerged. Deconvoluting the N 1s spectra revealed
peaks at 397.5 eV for pyridinic-like N (-C=N-) in the CNT

This journal is © The Royal Society of Chemistry 2024
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Fig.7 Upper row: digital pictures of the OCV for the pouch cell consisting of the g-C3N4-CNT/S cathode at different folding angles and bottom
row: pictures of LEDs lit up by the pouch cell at different folding angles demonstrating the excellent flexibility of the developed pouch cell.

structure, 399.1 eV for -S-N=C-, and 403.6 for oxidized N (N-
0).%2 The 396.7 eV peak confirmed Li-N bond formation during
cathode lithiation, contributing to lithium storage.** Addition-
ally, the 407.2 eV peak indicated nitrate (NO; ) presence on the
cathode, formed by LiNO; reduction during cycling and
hindering active material reversibility.** For S 2p, various
reduction products and intermediates were identified after

cycling including Li,S,-S at 164.5 eV, thiosulfates at 167.2 eV,
sulfites at 168.0 eV, and S-F bonds at 169.1 eV.*® Compared to
the S-spectra in Fig. 2, more sulfates were observed in the cycled
cathode, which could result from oxidized S-species from the
reaction between LiPSs and oxygen species. The O-S bond
emerged due to sulfate species interacting with residual oxygen-
containing species, and the S-F bond indicated strong covalent

@)[cis 286.6 eV ()« s 3975 eV (©fs 2p
169.04 eV
2844 eV A
-~ 3 =
g 292.5eV \tSS/ 2
N 2883 eV -
= \ ¢ 2 .07V | 3 168.0 eV
g /\ § g 167.18 eV
£ \ / wsev| = | 4072ev d036ev £
= . ¢ ?6.7 eV —
\ / A \ 164.5 eV
\, / \ /
NS
204 292 290 288 286 284 282 280 410 408 406 404 402 400 398 396 394 173 171 169 167 165 163
Binding energy (eV) Binding energy (eV) Binding energy (eV)
Do 55.66V () Fls 688.1 oV Dros 53246V
. &
684.3 eV
-
_ 55.0 eV 5 -~
= K =
3 56.6 eV > <
z z £
g 2 g
£ = =
60 59 S8 57 56 55 54 53 52 695 693 691 689 687 685 683 681 679 545 540 535 530 525
Binding energy (eV) Binding energy (eV) Binding energy (eV)

Fig. 8 (a—f) XPS spectra of the g-C3sN4-CNT/S cathode obtained from the pouch cell cycled for 250 charge—discharge cycles.
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interaction between F-containing electrolytes and poly-
sulfides.®® Interestingly, the doublet peaks at around 163 eV
representing S 2p;/, and S 2p,, for elemental sulfur were absent
in the cycled cell. This agrees with the fact that a fully dis-
charged cathode after 250 cycles should have all sulfur in the
reduced state (Li,S/Li,S,) and the absence of a doublet peak
confirms that no ‘dead’ sulfur was present on the cathode even
after 250 cycles.*” F 1s peaks at 684.3 and 688.1 eV reflected
electrolyte and PVDF passivation, suggesting g-C;N,-CNT/elec-
trolyte interaction during cycling. In Li 1s spectra, peaks at 54.0,
55.0, 55.6, and 56.3 denoted Li-C, Li-S, Li-N, and Li-O bond
formations, signifying C=N bond involvement in lithium
storage in addition to Li-S bonds during discharge.'****® Over-
all, the XPS analysis of the cycled cell affirmed polysulfide
adsorption on the g-C;N,-CNT surface.

To delve into the electrochemical kinetics of the cathodes,
Fig. S5 displays the EIS results from the pouch cell cycled for
250 cycles (g-C3N,-CNT/S) and 110 cycles (g-C3N,4/S) at 0.1C. As
can be seen, after cycling, the R, of the cell with g-C;N,-CNT/S as
the cathode increases from 2.7 to 5.2 Q, notably lower than the
cell with g-C3N,/S as the cathode (rising from 4.2 to 11.1 Q),
signifying restricted polysulfide diffusion from g-C;N,-CNT/S.
Moreover, the reduced R. for both cells (Table S5t) post-
cycling suggests enhanced electrolyte penetration into the
composite, shortening charge and ion transport paths.***
Another observed semicircle at low frequency for the g-C;N,/S
cathode (the second semicircle) may indicate resistance from an
insulating layer like Li,S (denoted as R,), which incompletely
converts to sulfur during charging.®® In contrast, the cell with g-
C3N,-CNT/S as the cathode exhibits a single semicircle, signi-
fying an efficient redox reaction. The impedance spectra affirm
that the well-designed g-C3N,-CNT/S not only enhances sulfur
cathode conductivity but also mitigates the shuttle effect by
retaining more polysulfides within the cathode.

Conclusion

In summary, a hierarchical architecture, featuring 1D CNTs
grown on 2D g-C;N, sheets, is synthesized as a host matrix for
a sulfur cathode in Li-S pouch cells. Experimental analyses
reveal the g-C;N,-CNT/S composite's high pyridine N content,
promoting robust interactions with LiPSs and inhibiting poly-
sulfide shuttling, thereby enhancing electrochemical perfor-
mance in Li-S batteries. DFT studies provide valuable insights
through a comprehensive examination of the electronic
bandgap, binding energy, and relative Gibbs free energy alter-
ations upon the interaction of Sg/LiPSs with both g-C;N, and g-
C;3N,4-CNT composite surfaces. While g-C;N, exhibits increased
bandgap values for Li,S and Sg, indicative of reduced electronic
conductivity, g-C3N,-CNT demonstrates a decrease in the
bandgap, suggesting improved electronic properties. Addition-
ally, changes in binding energy highlight distinct interactions
between g-C3;N,; and g-C3N,-CNT with Sg/LiPSs. The relative
Gibbs free energy landscape further highlights differences, with
2-C3N,-CNT showcasing higher thermodynamic favorability in
the discharging process compared to g-C;N,. These findings
collectively contribute to a nuanced understanding of the
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material dynamics, emphasizing the potential benefits of g-
C;3N,4-CNT in enhancing the electrochemical performance in Sg/
LiPS systems. As a result, the g-C;N,-CNT/S electrode achieves
a capacity of 895 mA h g~ ' at 0.1C with excellent high-rate, long-
term cycling stability (0.053% capacity decay per cycle over 250
cycles). The electrode also attains a high discharge capacity of
566 mA h g~ ' under a high sulfur loading of 6.2 mg cm ™2 after
250 cycles, exhibiting a fading rate of 0.08% per cycle and
flexibility during repeated bending. Postmortem XPS and EIS
analyses further substantiate the excellent performance of the
Li-S pouch cell by elucidating new bond formation and changes
in cell resistance, respectively. The postmortem investigations
from XPS show that the binding energy peaks of elemental Sg
are missing from the cycled cell, which means that no dead
sulfur on the cathode side was present even after the 250th
cycle, thus revealing the excellent potential of the g-C;N,-CNT
host matrix for the sulfur cathode. This work lays the founda-
tion for the rational design of an ideal S host, enabling cathodes
with multifunctional adsorption-catalytic sites for Li-S batteries
with prolonged cycling life and high-rate capability.
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