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porous materials: a diffusion
model approach†
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The success of diffusionmodels in the field of image processing has propelled the creation of software such

as Dall-E, Midjourney and Stable Diffusion, which are tools used for text-to-image generation. Mapping this

workflow onto material discovery, a new diffusion model was developed for the generation of pure silica

zeolite, marking one of the first applications of diffusion models to porous materials. Our model

demonstrates the ability to generate novel crystalline porous materials that are not present in the training

dataset, while exhibiting exceptional performance in inverse design tasks targeted on various chemical

properties including the void fraction, Henry coefficient and heat of adsorption. Comparing our model

with a Generative Adversarial Network (GAN) revealed that the diffusion model outperforms the GAN in

terms of structure validity, exhibiting an over 2000-fold improvement in performance. We firmly believe

that diffusion models (along with other deep generative models) hold immense potential in

revolutionizing the design of new materials, and anticipate the wide extension of our model to other

classes of porous materials.
1. Introduction

In recent years, the eld of computer vision1,2 and natural
language processing3,4 has witnessed remarkable progress with
the emergence of deep generative models. Among the various
types of deep generative models, diffusion models5 have gained
attention as a promising method that addresses the limitations
faced by pre-existing generative models such as Generative
Adversarial Networks (GANs).5,6 In particular, diffusion models
have demonstrated outstanding performance in image genera-
tion tasks and have been leveraged in the development of
cutting-edge text-to-image generators such as Dall-E,7,8 Mid-
journey,9 and Stable Diffusion.10 These methods enable gener-
ating user-desired images based on the given input prompts
(e.g., “draw me an armchair in the shape of avocado”) with the
help of the diffusion model.

Given its success in various image generation applications,
the usage of diffusion models has expanded to other applica-
tions including material discovery. This extension involves
mapping the conventional image generation tasks based on the
provided text to the material generation tasks guided by speci-
ed chemical properties. As such, various classes of materials
Engineering, Korea Advanced Institute of
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including small molecules,11,12 proteins,13–15 and crystalline
materials16–18 have been explored within this context. However,
despite these strides, the generation of porous materials using
diffusion models remains unexplored due to several challenges
arising from the relatively large number of atoms, and the
difficulty in capturing the essential topological features for
generating porous materials. Consequently, to date, the appli-
cation of diffusion models for porous material generation
remains an untapped opportunity.

In this work, for the rst time, porous materials were
successfully generated using a diffusion model. Specically,
pure silica zeolites that consist of silicon and oxygen atoms were
targeted for the generation. Among the previous attempts made
with regard to the design of zeolites and other porous
materials,19–31 it must be stated that Deem and coworkers32,33

have employed the Monte Carlo approach, and Kim et al.34 used
the GAN architecture to generate new zeolite structures.
However, Deem's approach lacked the ability to generate
structures with user-desired properties, while the structures
generated using Kim's GAN architecture exhibited poor struc-
tural validity. In contrast, our diffusion model has successfully
generated structures with high validity while exhibiting excep-
tional capabilities in inverse design at the same time. Speci-
cally, quantitative comparisons with GAN demonstrated that
the diffusion model outperforms GAN by more than 2000 times
in terms of structure validity, revealing that diffusion models
outperform GANs not only in image processing but also in
material generation. Furthermore, the ability of our diffusion
model to extend to inverse design for various properties such as
J. Mater. Chem. A, 2024, 12, 6507–6514 | 6507
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void fraction, Henry coefficient and heat of adsorption
demonstrates the potential of this model to signicantly reduce
time in user-desired material discovery.

2. Results
2.1. ZeoDiff: a diffusion model for zeolite generation

The diffusion models generally operate in the following
manner. During the noising process, noise is gradually intro-
duced to a given data point, resulting in its perturbation.
Conversely, in the denoising process, which is the reverse of the
noising process, the model is trained to remove the introduced
noise, allowing for the generation of new samples from random
noises.35 In particular, among the various types of diffusion
models, the Denoising Diffusion Probabilistic Model (DDPM)35

has played an important role in the widespread adoption of
diffusion models by greatly simplifying the loss term of the
Fig. 1 A graphical model of the diffusion process for zeolite generation
developed in this work. (b) A graphical illustration of the noising and
Progressive sampling process for zeolite grids.

6508 | J. Mater. Chem. A, 2024, 12, 6507–6514
training process. In this work, on the top of the original DDPM
workow, we developed a new diffusion model named zeolite
diffusion (ZeoDiff) with the goal of generating pure silica
zeolites.

Zeolite structures are represented by three-dimensional
grids composed of energy, silicon and oxygen channels akin
to RGB channels of an image (Fig. 1a). The energy grid was
prepared using methane as a probe gas and calculating the
interaction energy between methane and the zeolite framework.
On the other hand, the silicon and oxygen grids were prepared
by applying Gaussian functions centered at the positions of
zeolite atoms. To ensure consistency in the input dimension-
ality across different zeolite structures, the size of each grid was
xed as 32 × 32 × 32 by using fractional coordinates. Alto-
gether, the three grids (energy/silicon/oxygen) were combined
and used as the input representation for ZeoDiff, which is
trained to generate new realistic zeolites through the sampling
. (a) Input representation of zeolite structures for the diffusion model
denoising process of the diffusion model for zeolite generation. (c)

This journal is © The Royal Society of Chemistry 2024
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(denoising) process (Fig. 1b). In addition, since the information
about the shape of the unit cell is not included in the generated
grids, an additional network that uses the correlation between
the lattice constants and grid representation was implemented
to predict the lattice parameters. To train the models, structures
from International Zeolite Association (IZA) and Predicted
Crystallography Open Database (PCOD)33 were used. More
detailed information on data preparation and training process
can be found in the Methods section and ESI Section 1.†
2.2. Generation of zeolites and comparative analysis with
GAN

A total of 10 000 new zeolite grids were generated using ZeoDiff,
where the progressive denoising processes of selected samples
are illustrated in Fig. 1c. It is evident that as the denoising
process proceeds, the overlap amongst the three grids gradually
disappears and each colored grid localizes into its own inde-
pendent regions, and thus morphing into shapes similar to
a typical zeolite structure (see ESI Video†).
Fig. 2 A post-processing procedure and performance comparison betw
cleaning-up generated zeolite grids into perfect zeolite structures. (b) Nu
model and GAN.

This journal is © The Royal Society of Chemistry 2024
From the generated zeolite grids, various chemical proper-
ties can be directly computed as detailed in the Methods
section.36 The void fraction, methane Henry coefficient and
isosteric methane heat of adsorption were calculated for the 10
000 generated samples, and their distributions were compared
to the structures comprising the training dataset (Fig. S5†). Two
sets of data exhibited similar distributions for all three prop-
erties, implying that ZeoDiff had learned the distribution of the
realistic zeolites contained in the IZA and PCOD database.

A notable distinction between the generation of visual
images and materials lies in the consequences of inaccuracies
at the lowest level. While the incorrect coloration of a single
pixel in an image of a cat may not pose a signicant problem,
when considering materials, even the presence of a single atom
with disrupted connectivity invalidates the entire structure.
Therefore, a post-processing procedure was conducted to obtain
zeolite structures with the correct Si/O atom ratio and accurate
connectivity. This procedure consists of three steps: atom
coordination assignment, bond connectivity determination,
and bond connectivity restoration, as illustrated in Fig. 2a.
een the diffusion model and GAN. (a) A post-processing procedure for
mber of samples left after each post-processing step for the diffusion

J. Mater. Chem. A, 2024, 12, 6507–6514 | 6509
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Fig. 4 Interpolations of zeolite structures. (a) An illustration of the
interpolation process between zeolites. (b) Two examples depicting
the interpolation of zeolites. The source structures along with the
interpolated structures with l = 0.25, 0.5 and 0.75 are presented.
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Further details regarding the post-processing steps can be
found in ESI Section 2.†

Prior to this work, ZeoGAN34 was developed in our group that
used GAN to generate pure silica zeolites and exhibited the
ability to generate samples with user-desired properties. To
make fair comparisons between the two models, we deliberately
aimed to employ the same data representation, training dataset
and post-processing procedures as ZeoGAN. In Fig. 2b, the
performance of ZeoDiff and ZeoGAN was compared in terms of
the percentage of valid zeolite structures generated using the
models. Taking the ratio between the perfect zeolite structures
generated (aer post-processing) to the total number of gener-
ated grids, ZeoDiff demonstrated over a 2000-fold improvement
compared to ZeoGAN (ZeoDiff: 1.83%, ZeoGAN: 0.0008%). This
implies that ZeoDiff possesses a superior capability to generate
realistic samples when compared to ZeoGAN, highlighting that
the advantage of the diffusion models seen in image processing
also extends to material generation.

In Fig. 3, a sample subset collection of cleaned-up zeolite
structures generated by ZeoDiff is illustrated. Out of 183 perfect
zeolite structures obtained aer post-processing, 102 structures
were identied as geometrically unique. Among these unique
structures, 9 structures were present in the training dataset,
another 9 structures were present in the test dataset, while the
remaining structures were entirely new. The generated zeolite
structures, along with the corresponding zeolites from IZA and
PCOD databases, are shown in Fig. S7 and S8.† Furthermore, it
is noteworthy that the average number of atoms comprising the
unit cell of generated structures was 159.1. This value repre-
sents a signicant increase compared to precedent studies that
utilized diffusion models to generate other crystalline mate-
rials16,17 where the number of atoms comprising the unit cell is
generally limited (e.g., fewer than 52 for CrysTens16 and ∼20 for
CDVAE17), validating ZeoDiff's ability to handle more intricate
and complex structures.

Given its facility to generate new zeolite structures, we
pondered on whether the model can be used to generate a new
material that consists of a linear combination of two different
materials. Image interpolation is a widely employed technique
in face morphing35,37 and style transfer38,39 which allows for
smooth transitions and blending of visual attributes between
images. To achieve image interpolation, generative models can
Fig. 3 Cleaned-up zeolites generated using ZeoDiff. A sample
collection of generated zeolite samples after post-processing. The
generated structures exhibited diverse pore structures and topologies.

6510 | J. Mater. Chem. A, 2024, 12, 6507–6514
be used to learn the underlying distribution of data and
generate new samples by linearly interpolating in the latent
space. In this work, for selected zeolite structures from the IZA
database, noise was added independently on two of the struc-
tures from t = 0 (pristine zeolite) to t = T/2 (half of the fully
noisy state). And then, the grids of the two structures at t = T/2
were interpolated within the latent space and were subse-
quently denoised back to t = 0 (Fig. 4a). Noise was only applied
until t= T/2 since it loses all its information if extended to t= T.
As depicted in Fig. 4b, the interpolated structures with different
interpolation factors (l) exhibited gradual transformations
between two distinct structures, as evidenced by the smooth
variation in visual characteristics such as the shape of the
energy grid and lattice parameters. Notably, dening an average
or intermediate for molecules or crystalline materials is inher-
ently challenging in materials science. In this context, interpo-
lation techniques utilizing generative models offer a potential
solution to address this issue.
2.3. Inverse design through conditional generation

Next, we tested the ability of our model to generate structures
with user-desired properties (known as conditional generation).
Extension of our model for inverse design was made by using
a straightforward approach introduced by Hoogeboom et al.12

This method involves creating an additional input tensor that is
composed of the target value and concatenating this with the
zeolite grid tensor. The process of inverse design does not alter
the behavior of the model, as it only introduces a change in the
dimensionality of the input data. The identical dataset with the
This journal is © The Royal Society of Chemistry 2024
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previous section was used for the training. A detailed explana-
tion on inverse design and conditional generation can be found
in ESI Section S4.†

The inverse design process of ZeoDiff was rst tested for
generating zeolites with user-desired void fraction. In the eval-
uation, 5000 new samples were generated for each of the target
void fraction values of 0.05, 0.10, 0.15, 0.20, and 0.25 (see
Fig. 5a). Notably, the conditionally generated samples exhibited
distinct distributions with their peaks located close to the tar-
geted values. It is noteworthy that samples with a target void
fraction value of 0.25 were successfully generated even though
the training set lacked sufficient data with high void fraction. In
the case of samples generated unconditionally (red in Fig. 5a),
their average void fraction was 0.069, and only 0.51% of them
exhibited a void fraction greater than 0.25. However, for the
samples generated conditionally at 0.25 (yellow in Fig. 5a), they
exhibited an average void fraction of 0.247 with 35.8% of the
samples showing a void fraction greater than 0.25. Similar
results were obtained for inverse design with methane heat of
adsorption, where the generated samples with target values of
15, 20, and 25 kJ mol−1 showed distributions with the peaks
aligned with the respective targeted value (Fig. 5b). Further-
more, some of the representative samples were examined for
void fraction values of 0.05 (Fig. 5c) and 0.25 (Fig. 5d) as a sanity
Fig. 5 Inverse design using ZeoDiff. (a) Inverse design targeted on void f
Generated zeolite samples targeted on a void fraction value of 0.05. (d)

This journal is © The Royal Society of Chemistry 2024
check for the inverse design procedure. From these gures, it
can be visually veried that the structures generated with
a target value of 0.25 possess larger pore structures compared to
those generated with a target value of 0.05.

On the other hand, in the case of the Henry coefficient, the
performance of inverse design was not as prominent as that of
void fraction and heat of adsorption. The generated samples
with different target values (10, 40, 70, and 100) did not exhibit
distinct distributions as observed in the void fraction or the
heat of adsorption. As can be seen from the equation of the
Henry coefficient (see eqn (7)), the Henry coefficient does not
directly utilize the energy values from the energy grid, but
instead employs its exponential Boltzmann factor. Since the
Boltzmann factor is not readily provided within zeolite grids,
achieving inverse design for the Henry coefficient can be more
challenging. Although the Boltzmann factor is also used in
calculating the heat of adsorption (eqn (8)), its ratio weighted on
absolute energy is employed thus somewhat “cancelling” the
effect of the Boltzmann factors.

To improve the performance of inverse design for the Henry
coefficient, an additional 32 × 32 × 32 channel that consists of
the Boltzmann factors (called the Boltzmann grid in this work)
was added to the existing three girds. Subsequently, inverse
design was conducted both with and without the Boltzmann
raction. (b) Inverse design targeted on methane heat of adsorption. (c)
Generated zeolite samples targeted on a void fraction value of 0.25.

J. Mater. Chem. A, 2024, 12, 6507–6514 | 6511
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Fig. 6 Incorporation of an additional user-desired channel. (a) Incorporation of an additional Boltzmann grid for representing zeolite structures.
(b) Enhanced performance of inverse design targeted for methane Henry coefficient following the incorporation of the Boltzmann grid.
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grid, and the generated samples were examined. As depicted in
Fig. 6, the generated samples with the supplementary Boltz-
mann grid exhibited more distinct distributions of the targeted
Henry coefficient values. This can be attributed to the fact that
the Boltzmann grid provides more straightforward information
that enables the neural network to learn the correlation between
the zeolite structures and their Henry coefficients. This suggests
that, depending on the target properties, users can enhance the
overall quality of the inverse design process by integrating an
additional channel that is closely relevant to the property of
interest.
3. Conclusions

In this work, we developed a diffusion model for the generation
of pure silica zeolite, marking the rst application of diffusion
models to porous materials. Our model successfully generated
new zeolite structures unseen during the training phase, and
demonstrates over 2000-fold improvement over the GAN model
under the same conditions. Moreover, the inverse design of
samples with user-desired properties was also achieved through
conditional generation and clearly shows vast improvement
compared to the unconditional generation case.

It should be mentioned that the ZeoDiff model was devel-
oped specically for pure silica zeolites, but extending its
application to other classes of porous materials can be readily
made by utilizing appropriate atom channels. As materials
6512 | J. Mater. Chem. A, 2024, 12, 6507–6514
become more complex, the dimension of the data representa-
tion (i.e., number of atom channels) would also increase,
making it potentially challenging to utilize the diffusion model
for materials such as MOFs and COFs. Nevertheless, we want to
note that the increased complexity does not necessarily lead to
difficulties in the generation process as it provides additional
information on chemical characteristics through inter-channel
correlations. One of the other possible approaches is to utilize
different variances for different atoms, which would enable the
distinction of different atoms even though all of them are
placed in a single channel.

One of the potential future directions is to utilize different
types of gas probes. We employed a methane energy grid as
a case study to represent the property space for the zeolite
structures, but users have the exibility to utilize any other gas
probe depending on their specic property of interest. More-
over, the slow sampling speed of diffusionmodels restricted our
exploration of a larger number of generation attempts.
However, incorporating more efficient diffusion algorithms40

could reduce computation costs, potentially enabling the
construction of a new database with a signicantly larger
number of structures.

The integration of diffusion models, along with other
generative models, holds great promise for driving signicant
breakthroughs in the eld of material discovery and we hope
that this work serves as a cornerstone for achieving this.
This journal is © The Royal Society of Chemistry 2024
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4. Materials and methods
4.1. ZeoDiff algorithm

ZeoDiff was developed based on the framework of Denoising
Diffusion Probabilistic Model (DDPM). Noising process (q) is
dened as a Markov chain that adds Gaussian noise to the
zeolite grids with pre-dened variances of b1, b2, ., bT

qðxtjxt�1Þ :¼ N
�
xt;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

p
xt�1; btI

�
(1)

Since all noising processes are in the form of Gaussian,
noising from pristine zeolite grids (x0) to noisy grids at certain
time step t (xt) can be arranged as

qðxtjx0Þ ¼ N
�
xt;

ffiffiffiffiffi
at

p
x0;

�
1� at

�
I
�
;

where at :¼ 1� bt and at :¼
Yt
s¼1

as (2)

On the other hand, the denoising process (p) is dened as its
reverse process, which gradually removes noise and obtains new
zeolite grids.

pq(xt−1jxt) := N(xt−1;mq(xt,t), Sq(xt,t)) (3)

One key idea of DDPM is that we can greatly simplify the
training process by setting the variance (Sq) of the denoising
process with regard to the variance of the noising process (bt).

Sqðxt; tÞ ¼ st
2; where st

2 ¼ 1� at�1

1� at

bt (4)

By doing so, the mean (mq) of the denoising process becomes
the only target for the training process. Training is aimed for
optimizing the variational bound on negative log likelihood.
Aer organizing the equation, nal loss function becomes as
follows:

L ¼ Ex0 ;3

�
bt

2

2st
2atð1� atÞk3� 3q

� ffiffiffiffiffi
at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
3
�
; tk

2
�
;

where 3 � Nð0; IÞ (5)

More detailed explanation on the training process and loss
function can be found in Ho et al.35
4.2. Zeolite databases

To train ZeoDiff, zeolite structures with sufficient methane
accessibility were selected from the IZA and the PCOD database.
The methane Henry coefficient served as the metric for evalu-
ating methane accessibility, and a total of 99 362 structures with
a Henry coefficient greater than 10−6 mol kg−1 Pa−1 were
selected. Among these selected structures, 63 426 structures
(102 from IZA and 63 324 from PCOD) with orthogonal cell
angles were further rened and utilized. The structures were
randomly divided into two sets (31 713 each), with one set
allocated for training and the other set for validation purposes
This journal is © The Royal Society of Chemistry 2024
in generating new zeolites. To impose invariances to the model,
various data augmentation methods (i.e., translation and rota-
tion) were employed as described in ESI Section 1.†
4.3. Molecular simulations and data preparation

Classical molecular simulation was used for the preparation of
methane energy grids. Lennard-Jones 12-6 potential model with
parameters from Garćıa-Pérez et al.41 was used for the calcula-
tion of pairwise interaction between atoms.

ULJðrÞ ¼ 43

��s
r

�12

�
�s
r

�6
�

(6)

The Lorentz–Berthelot mixing rule was imposed for the
calculation. For silicon and oxygen grids, Gaussian function was
used to represent the atomic positions of the atoms. The peaks
of the Gaussian function are assigned to the position of atoms
with the amplitude of 1.0 and variance of 0.5. No damping
factor was used in the Gaussian function. To keep the grid sizes
the same for all structures, the sizes of all grids were xed as 32
× 32 × 32 by using fractional coordination. GRIDAY soware42

was used for the grid generation tasks.
The Henry coefficient and the isosteric heat of adsorption

were directly calculated from the methane energy grids using
the following equations:

Unitless KH ¼ 1

N

XN
i

e�bEi (7)

Qst ¼ kBT �
PN
i

Eie
�bEi

PN
i

e�bEi

(8)

with N being the number of grid points, kB being the Boltzmann
constant, and T representing the temperature (298 K in this
work). b is dened as 1/kBT, and Ei is the energy value at the ith

grid point. Additionally, the void fraction was determined as the
fraction of grid points whose values are equal to or less than
15kBT.
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