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ge datasets to assess trends in the
stability of perovskite photovoltaics through
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Current trends in manufacturing indicate that optimised decision making using new state-of-the-art

machine learning (ML) technologies will be used. ML is a versatile technique that rapidly and accurately

generates new insights from multifactorial data. The ML approach has been applied to a perovskite solar

cell (PSC) database to elucidate trends in stability and forecast the stability of new configurations. A

database consisting of 6038 entries of device characteristics, performance, and stability data was utilised,

and a sequential minimal optimisation regression (SMOreg) model was employed to determine the most

influential factors governing solar cell stability. When considering sub-sections of data, it was found that

pin-device architectures provided the best model fittings with a training correlation efficiency of 0.963,

compared to 0.699 for all device architectures. By establishing models for each PSC architecture, the

analysis allows the identification of materials that can lead to improvements in stability. This paper also

attempts to summarise some key challenges and trends in the current research methodologies.
Introduction

The necessity for the widespread adoption of solar energy has
become increasingly pressing as the demand for renewable
energy sources continues to rise. For deployment on a global
scale, improvements in the properties and economic feasibility
of the materials and fabrication methods employed in these
devices are required. This will allow for an increase in the
performance of solar cells and a reduction in production costs,
providing a signicant step forward in realising the full poten-
tial of solar energy.1

PSCs are among the most intensely researched thin-lm
photovoltaic devices and have experienced rapid improve-
ments in stability and efficiency.2 Over the past decade, the
efficiency of PSCs has increased from 3.8% to 25.8% for single-
junction cells and from 33.2% for tandem cells, making them
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a promising option for large-scale deployment.3 Despite this
rapid progress, the instability of perovskites under different
environmental conditions remains a signicant challenge for
their commercialisation.4 As a result, extensive research has
been conducted to identify patterns, critical factors, and trends
in the properties and fabrication methods of PSCs to improve
their stability and efficiency. The amount of data generated
from this research has become vast, but much of it remains
inaccessible owing to its complexity and nonuniform
distribution.5

In light of these developments, machine learning (ML) has
emerged as a popular computational method for analysing and
interpreting large datasets in the eld of PSCs. With quick
processing, vast datasets, future predictions, and ease of
incorporation, ML offers a valuable tool for uncovering patterns
and relationships within complex data, leading to new insights
and breakthroughs in the eld.6,7

Several studies have employed ML techniques such as deci-
sion trees (DT), random forests (RF), articial neural networks
(ANN), and gradient boosting regression (GBR) to predict
material properties such as thermodynamic stability, band gap,
and other PSC characteristics.8 For instance, Schmidt et al. used
RF, ANN, and an extremely randomised tree (ERT) for thermo-
dynamic stability prediction,9 and Allam et al. utilised an ANN
to predict the bandgap of PSCs by analysing 220 cells with
desirable radiation tolerance and octahedral factors.10 In addi-
tion, Jain et al. proposed an ML-based classication model
utilising a support vector machine (SVM) approach to predict
This journal is © The Royal Society of Chemistry 2024
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Table 1 List of attributes and their variable type

S/N Attribute Type

1 Substrate Categorical
2 Electrode (rst electrode) Categorical
3 Active layer (perovskite) Categorical
4 Active layer additive Categorical
5 p-type transport layer Categorical
6 n-type transport layer Categorical
7 Electrode 2 (second electrode) Categorical
8 Cell architecture Categorical
9 Module Categorical
10 Stability PCE T80 Numerical
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the formability of 454 ABX3 perovskite compositions. The
model was trained on data from 189 inorganic ABX3 perovskite
samples with a formation probability of 0.8 or higher for 45
compounds. The thermodynamic stability of the perovskites
was compared in the materials project (MP), AFLOW, and
OQMD, leading to the identication of 18 compounds for
further investigation using DFT-based structural optimisation
and electronic structure predictions. In terms of device perfor-
mance, Odabaşi et al. employed descriptive statistics to
examine the trends in perovskite solar cell performance using
DT and RF algorithms. They identied the parameters that
must be satised for highly efficient solar cells.11 While
continued advancements in ML algorithms, computer hard-
ware, data management systems, and material science are ex-
pected to drive further growth in the study of PSCs, there are
also challenges to the use of ML in this eld. One of the main
challenges is the limited availability of experimental and accu-
rate datasets owing to the high cost and time required to collect
such data. Additionally, models trained on small datasets may
not be robust or generalisable, due to issues such as noise,
outliers, and unbalanced data structures. To overcome these
challenges, researchers will most likely need to rene their data
collection strategies or select ML techniques that are ideally
suited for small datasets, for example, through pre-processing
to remove noise and outliers. ML also provides various data
augmentation methods that can be used to construct more
efficient, stable, and resilient PSCs.5

In this research, ML tools are implemented to assess the
inuence of materials and fabrication processes on the stability
of PSCs, making use of the ‘perovskite database’ which contains
stability data for 7026 devices extracted from literature data
between 2012-2020, analysed and collated by Jacobsson et al.12

This study represents one of themost rigorous literature reviews
available, thereby demonstrating an invaluable resource for
researchers to assess the state of PSCs as well as the ability to
add to the resource through an interactive database. Our
objective was to analyse the impact of various attributes on the
stability of PSCs by applying data from relevant research
outputs to multiple ML techniques. Through this process, we
aim to enhance the understanding of PSCs as a source of energy
harvesting and to identify trends in device stability based on
various design architectures. Our results provide valuable
insights into the stability of PSCs and hold promise for the
development of new cell combinations with higher stability and
efficiency. Furthermore, the ML approaches implemented in
our study can be ranked to determine which is ideally suited to
a given problem and dataset.

Methodology

This study emphasises maintaining data consistency, utilising
the ‘OSEMN’ (Obtain, Scrub, Explore, Model, Interpret)
method.13,14 The initial stage of ‘obtain and scrub’ involves data
collection and conversion into a format that is appropriate for
utilisation by ML algorithms. To optimise the data analysis, we
focused on specic areas of the dataset. This allowed us to
extract the maximum information from relevant attributes
This journal is © The Royal Society of Chemistry 2024
without overwhelming the processing capacity. We further
examined the attributes related to the construction and stability
of PSCs and identied their impact on the nal performance
and stability. The original dataset consists of 45 attributes and
7025 instances. In this study, key attributes, such as cell
architecture, substrate type, electrode type, transport layers,
and perovskite compositions, were examined. Furthermore,
measurement conditions, including bias conditions, test
protocols, encapsulation, and light sources, are taken into
consideration. An exhaustive list of the factors used for the
processed database is provided in SI-1.† This is a provides
readers with some insight into data labelling. The largest
change we applied to the dataset was removal of data where
there were less than 3 instances of a particular test, as it was
discovered that this added signicant noise to the analysis. We
screened ten attributes with multiple categories in each section,
as summarised in Table 1.

In addition to the categorical attributes of the PSCs, the
stability and performance parameters were retrieved (power
conversion efficiency (PCE) and T80 lifetime). The T80 lifetime
quanties the time required for the devices to degrade to 80% of
the initial efficiency and is used here as the primary indicator of
stability for PSCs. In some instances, the T95 value is preferred
over T80 as a metric for assessing thermal stability in devices
with enhanced reliability, but the focus of this work is on device
stability. Furthermore, TS80 might be a more relevant metric for
measuring the time taken for the efficiency of a solar cell to drop
to 80% of the stabilised performance at the end of the burn-in
region.15 However, there are not enough reports on TS80
measurements available, thus making it difficult to obtain
accurate and consistent stability measurements for PSCs.
Despite this, T80 remains the most suitable and comprehensive
metric for examining the historical data pertaining to the
stability of PSCs.

Following feature selection, the ‘scrub’ stage begins to clean
and lter the data for consistency and accuracy in subsequent
analyses. Careful examination of the data is necessary to verify
that no unanticipated values exist which might have a substan-
tial impact on the outcome. At this point, the researcher must
use judgment in determine the amount of information con-
tained in the data and how much detail is provided to the ML
algorithm. This is important for reducing noise and ultimately
for deriving a more meaningful model. For instance, if the same
J. Mater. Chem. A, 2024, 12, 3122–3132 | 3123
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Fig. 1 Device structure of (a) mesoporous (n–i–p), (b) n–i–p planar
and (c) p–i–n planar PSC.21

Fig. 2 Distribution of cell architecture plotted as a function of (a) J–V
reverse scan and (b) T80 lifetimes. Statistical test data for these graphs is
shown in SI-2.† In the case of (a), all factors are statistically significant;
in the case of (b), only the “nip-mp-carbon” is statistically significant at
a risk level = 0.15.
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material is recorded with different names, these quantities are
categorised as distinct features and must therefore be re-
classied as one instance type. In addition, data have only
been used for instances in which ve or more occurrences have
been reported.

Apart from the inconsistent format, missing or improper
data can also be present. Several techniques, such as mean
values,16 multivariate chained equations,17 and k-nearest
neighbours,18 can be employed to handle missing data in ML.
For this work, we focused on the attributes set out in Table 1.
We eliminated rows with missing numerical entries and
substituted blank spaces in categorical features with
“unknown” to guarantee an equal distribution of instances for
every attribute. The category with the highest number of
unknowns was “p-type transport layer” which had 1.5% of data
points listed as “unknown”. Categorical features were also
encoded to integers, and all features were scaled between 0 and
1 to prevent the model from being biased toward attributes with
higher values and to ensure uniformity. We used the Waikato
Environment for Knowledge Analysis (WEKA 3.8) for ML
modelling, utilising the built in ref. 19. The analysis uses
sequential minimal optimisation regression (SMOreg), which is
an extension of the SVM algorithm applied to regression tasks.
SMOreg employs Lagrange multipliers and variational calculus
to assign weights to features and nd the hyperplane through
a dataset that minimises the error function.20 We selected this
algorithm because of its ability to provide a model that can be
evaluated based on attribute weights, allowing us to determine
the importance of each attribute. The fabrication of PSCs
involves the deposition of multiple thin layers of different
materials, which can be stacked in various architectures, as
depicted in Fig. 1.21 Fig. 1(a) and (b) demonstrate an n–i–p
architecture in which the top metal electrode is positioned on
top of the hole transport layer (HTL), which is separated from
the electron transport layer (ETL) by an active perovskite layer
that enables efficient transport of charge carriers. In this
arrangement, light enters via the ETL, and hence, is designated
as the n–i–p structure. Planar structures with a reverse transport
layer conguration are designated as p–i–n. In the n–i–p
conguration, TiO2 is the most widely employed material owing
to its efficiency in transferring electrons and preventing elec-
tron–hole recombination; recently, SnO2 has also been used
because of its high mobility. Most HTL and ETL materials
employed in n–i–p PSCs are unsuitable for p–i–n PSCs and vice
versa. This is because these two types of PSCs have distinct
charge transport and recombination properties.22 Thus, we
employed the model by considering ve different testing
conditions for subgroups of the data: the entire dataset; data
only consisting of a regular structure (n–i–p), where the solar
cell is illuminated through the ETL side; regular mesoporous
structure (n–i–p-(mp)); carbon-based mesoscopic structure,
represented as (n–i–p-(mp-carbon)); and nally, the data rep-
resented with an inverted structure (p–i–n), where the solar cell
is illuminated through the HTL side.

However, as shown in Fig. 2(b), n–i–p, p–i–n, and n–i–p-mp
exhibit similar stability responses, whereas n–i–p-mp-carbon
generally exhibits the greatest stability. It is worth noting that
3124 | J. Mater. Chem. A, 2024, 12, 3122–3132
the sample size for n–i–p-mp-carbon is signicantly smaller
than that of the other cell architectures; therefore, more data
would be useful to fully assess the stability of this architecture.
Overall, these results suggest that the type of cell architecture
has a signicant impact on both the efficiency and stability
of PSCs.

The results in Fig. 3 demonstrate the impact of different
substrates and electrode materials and their correlation with
the performance and stability of PSCs. As shown, devices
employing SLG substrates tend to give the highest PCEs when
This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Distribution of J–V reverse scan and T80 lifetimes for (a and b) substrate, (c and d) electrode, and (e and f) electrode 2, respectively, in the
dataset. The numbers represent the number of samples.
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quantied by the median value and both the upper and lower
quartile values. In contrast, devices employing a PET substrate
demonstrate superior stability compared to SLG, as indicated by
their highmedian and probability density. The reason for this is
a secondary effect; the SLG substrate devices correspond to
small “cells” and lower technology readiness level devices,
rather than manufactured modules. Most PET-based samples
are likely to be modules rather than small cells, which generally
show better stability as they are encapsulated. Generally,
modules are always encapsulated, but they also tend to possess
lower efficiency than cells.20

Tin-doped indium oxide (ITO) and uorine-doped tin oxide
(FTO) are the most used transparent conducting oxide elec-
trodes for PSC fabrication. However, the use of graphene as an
electrode material has shown improved stability compared to
other electrode types and has the potential to generate PCE
values comparable to those of ITO and FTO. Metallic back
contacts, specically copper, gold, aluminum, and silver,
demonstrated a higher efficiency, with values ranging between
17–19%. This contrasts with non-metallic compounds, which
predominantly exhibited efficiencies below 12%. However,
when considering stability as a key parameter, materials such as
nickel, indium tin oxide (ITO), and carbon-based electrodes
stood out, showing enhanced stability despite a trade-off in
efficiency. Copper has emerged as a material that offers an
optimal balance between efficiency and stability.

Fig. 4 presents the distribution of the T80 lifetimes for an
array of signicant testing variables within the dataset:
This journal is © The Royal Society of Chemistry 2024
potential bias conditions, stability protocols, edge sealant types,
light sources, and encapsulation stacks. In terms of potential
bias, as shown in Fig. 4(a), a standout observation was the
superior median stability of testing under open-circuit condi-
tions, as demonstrated in 4988 instances. The absence of
current ow in the open-circuit system could be the driving
force behind this superior stability, as it eliminates potential
power-ow uctuations that might disrupt the system's
equilibrium.

Maximum Power Point Tracking (MPPT) follows closely,
despite being an active power management system with only
368 instances. However, it is worth adding the caveat that any
measurement setup holds devices at a constant potential close
to the initial maximum power point and is not updated as
a function of time. However, these differences in testing
methodology are rarely differentiated in the reports. The data
derived from these graphs are consistent with the literature,
where specic tests have been conducted to determine the
impact of bias conditions.22,23

As depicted in Fig. 4(b), dark-storage methodologies,
specically ISOS-D, exhibited consistently superior stability
across the entire evaluated dataset. Among these, ISOS-D-1
testing protocols gave the highest stability measurements,
demonstrating not only robust median stability, but also
unique upper quartile values. This is not surprising, as the
ISOS-D-1 test is a benign and ‘storage’ test. Notably, the
improved performance of ISOS-D-1I, an adapted version of the
ISOS-D-1 protocol, allows the cell's intrinsic properties to be
J. Mater. Chem. A, 2024, 12, 3122–3132 | 3125
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Fig. 4 Distribution of T80 lifetimes for different attributes in the dataset for (a) potential bias conditions, (b) testing protocol for stability tests, (c)
edge sealant used, (d) light source used during testing, and (e) encapsulation stack.
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carefully controlled, typically in a nitrogen environment. This
strategy improved all stability parameters, highlighting the
advantages of precise control over cellular conditions.
Enhanced cell stability was also obtained using the light-
stimulated protocol, ISOS-L-3, and IEC 61646, two techniques
characterised by higher average costs and a small number of
data entries. However, the observed increased stability is
derived from a more restricted dataset, which frequently
consists of carefully engineered devices originating from
industrial establishments or major research groups.

The effects of encapsulation and edge sealants are shown in
Fig. 4(c) and (e). A variety of encapsulation strategies have
different impacts. Aluminium oxide (Al2O3) encapsulation
showed some of the best stability; this is ordinarily fabricated
using atomic layer deposition (ALD). It has been widely reported
as a successful method for protecting against oxygen and water
ingress.24 Nevertheless, conventional methods such as UV-
curable epoxy and SLG have been demonstrated to be quite
effective based on the dataset.

Fig. 4(d) illustrates the signicant variability in stability due
to different light sources, a factor oen omitted in many
publications. A signicant portion of the tests were conducted
under dark conditions. Dark testing offers a straightforward
and energy-efficient approach, yielding higher median stabili-
ties compared with various lit conditions. Numerous tests have
utilised indoor lighting, which lacks the full solar spectrum,
3126 | J. Mater. Chem. A, 2024, 12, 3122–3132
particularly UV rays. This results in improved stability but
potentially less representative outcomes. Halogen and metal-
halide light sources led to lower stability, whereas indoor
lighting generally resulted in enhanced stability. This observa-
tion aligns with expectations, as indoor lighting, which oen
lacks UV emissions, does not contribute to the signicant
degradation typically seen in PSC absorber layers due to UV
exposure.24,25

The data in Fig. 3 and 4 reveal considerable variance in
device PCE and stability when individual factors are considered,
indicating that pre-processed data visualisation can only
uncover general trends. This strengthens the view that machine
learning is vital for obtaining more precise information about
how materials, device structures, and testing conditions impact
stability. This also merits the decision to separate data into
subgroups based on the stability measurement protocol and
device architecture.
ML of PSC device using SVR algorithms

The SMOreg algorithm, which is an extension of the SVR
method, was initially applied to the complete dataset to
understand and predict the stability variation in PSCs, based on
the dataset. The kernel was chosen in the WEKA soware to be
a linear function such that the SVR weights could be associated
with feature importance, and attribute signicance could be
determined. The weights of the different categories for each
This journal is © The Royal Society of Chemistry 2024
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Table 2 Performance of SMOreg machine learning algorithm in predicting stability

Measure

Complete data n–i–p p–i–n n–i–p (mp) n–i–p (mp-carbon)-

Training Testing Training Testing Training Testing Training Testing Training Testing

Correlation coefficient 0.699 0.683 0.692 0.957 0.963 0.933 0.602 0.597 0.625 0.689
Relative absolute error (%) 63.39 52.25 65.74 46.16 44.42 47.37 73.21 46.27 64.50 64.39
Root relative squared error (%) 73.96 70.50 64.00 34.91 32.82 36.33 68.73 72.41 76.79 72.96
Number of instances 3421 597 1255 220 1092 188 865 151 138 22
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feature are reported in the derived model. From previous
work,20 it is evident that the model can be further applied in an
innovative way to predict stability and understand how stability
responds to each feature. Hence, SMOreg was applied again to
the four data subsets sorted according to the cell architecture.
This innovative split was necessary to conrm any bias in the
complete dataset and to identify how each feature affected the
stability of different cell architectures. The results of this
experiment are summarised in Table 2.

When the SMOreg algorithm is used on a dataset aimed at
quantifying aspects, such as stability (expressed in terms of
lifetime hours) or performance (expressed as a percentage), it
utilises variational calculus and Lagrange multipliers to estab-
lish a hyperplane within the N-dimensional data space. This
hyperplane is dened by a linear combination of attributes of
the dataset, each modulated by specic weights. It is note-
worthy, as previously indicated, that these weights can be
interpreted as reecting the ‘importance' of the corresponding
attribute in modelling the target parameter. By analysing the
output of the algorithm, a list of all attributes along with their
respective weights emerges. Organising this list using these
weights helps pinpoint both the most and least impactful
features.

We have applied the SMOreg algorithm because the data
contained within the dataset and used for training is highly
non-linear in the context of the entire dataset. This allows us to
achieve higher accuracy than can be achieved with a linear
model. Other techniques such as neural networks, or k-nearest
neighbors could be applied to build non-linear models.

Themodel was trained using a ‘Remove Percent’ lter to split
the datasets into training and test sets and the split was
randomly allocated and repeated ve times to create the average
in Table 2. The ratio of the training to test splits was 85 : 15. This
split enabled evaluation of the performance of the trained
model on the test set. The OSEMN process was conducted for
the entire dataset and separately for each subcategory of the
PSC architecture. This has led to the development of optimum
models using ML. Data corresponding to low PCE values were
removed such that noise within the dataset was minimised;
therefore, the algorithm did not overt and make predictions
based on this noise. In addition, by removing low-performance
devices, the algorithm focuses primarily on identifying the
materials which lead to improved performance and stability.
Based on the data presented in Table 2, it can be concluded that
the p–i–n architecture achieved the highest level of performance
for both the training and test datasets. Conversely, the n–i–p
This journal is © The Royal Society of Chemistry 2024
(mp) architecture exhibited the lowest correlation coefficient,
followed closely by the n–i–p (mp-carbon) architecture. The n–i–
p cell architecture, on the other hand, demonstrated the
second-highest correlation coefficient.

We employed the SMOreg algorithm on an entire dataset
covering various cell architectures to develop a predictive
model. The model features were extracted and ranked, and
those with the three highest weights and three lowest weights
are summarised in Table 3. The ‘highest’ weights refer to
materials or process steps that have a positive impact on
stability, leading to better device stability, and the ‘lowest’
weights refer to the opposite and should be designed out of PSC
manufacture. In the case of ‘module’; only the ‘true’ category is
present in the model and ‘false’ is excluded. In this case, the
SMOreg algorithm has selected the ‘true’ category because it
aids the construction of the model. However, the ‘false’ category
is excluded, which is likely to be the larger variation device
stability from cells so this category is not selected for the model.

The weights obtained from the SMOreg analysis helped
identify several essential attributes in the dataset. As summar-
ised in Table 3, the different factors possessed relatively
different weightings, indicating that some factors were more
prominent than others. Several important features can be
identied from the SMOreg weights. For the entire dataset, the
attributes that most positively inuenced the stability were the
hole transport layer (HTL) materials (Al2O3-mp, ZrO2-mp, and
graphene) and absorber layer ions (Ag and Br were prominent).
Signicantly, the most dominant negative inuences also cor-
responded to the HTL (P3HT; SWCNTs and WO3; WO3-np PEI).
These showed strong negative weightings, although being
a mixture of electron and hole transport layers in this case.
Overall, the substrate type and electrode choice hadmuch lower
values of weightings, so it is clear that the absorber and trans-
port layers have the greatest overall impact on device stability.

The algorithm also favoured the use of the module by
weighting the category ‘true’ as the highest. However, it did not
provide any results for the ‘false’ category. As straightforward as
the results seem, it was noticed that the SMOreg weightings for
the different categories differed across various architectures.
The analysis of the different architectures reported high
weightings for certain materials that were not included in the
results of the complete dataset. This result is understandable
because, as shown in the earlier analysis, cell architectures
respond differently to stability.

Aer deriving the results summarised in Table 3, the SMOreg
stability predictions for the four subsets of data were extracted.
J. Mater. Chem. A, 2024, 12, 3122–3132 | 3127
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Table 3 SMOreg analysis results showing the top three ‘best and worst’ instances for stability for the entire dataset

Feature

Highest Lowest

Category Weight Category Weight

1. Substrate SLG 0.0165 PES −0.0108
PEN 0.0025 Ti 0
PET 0.0013 PI 0

2. Electrode Ag-grid 0.0165 Ti −0.0044
IZO 0.0100 AZO −0.0034
ITO 0.0044 PEDOT:PSS −0.0011

3. A-ions Ag (BEA) 0.403 MA −0.075
MA 0.019 MA, Cs −0.052

4. B-ions Pb 0.0297 Sn −0.0077
Pb, Zn 0.0124 Sn, Ge −0.0052

5. C-ions Br 0.401 I −0.0524
Br, I 0.390 I, Br −0.031

6. Additives SnF2 0.092 Pb(SCN)2 −0.032
PCP 0.086 PS −0.021
Rb 0.032

7. HTL PbTiO3 0.0306 P3HT; SWCNTs −0.4939
ZrO2-mp 0.2466 WO3; WO3-np PEI −0.0843
Graphene 0.1523 −0.074

8. ETL Al2O3-mp 0.0683 PEI −0.0646
C60 0.0605 TiO2-c −0.0621
SnO2-c 0.0588 BCP −0.0212

9. Electrode 2 CNT 0.0190 Cu −0.0222
Au 0.0150 Ag–Al −0.0210
Carbon 0.0091 ITO −0.0146

10. Cell architecture p–i–n 0.0294 n–i–p-mp −0.0093
n–i–p (mp)-carbon 0.0103 n–i–p −0.0030

11. Module True 0.0408
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The results are summarised in Tables 4 and 5. It was necessary
to further study how each category behaved in each cell
architecture.

When considering the data subsets, it was noticed that the
categories with the most signicant positive inuence were
generally the A-ion, HTL, and ETL selections, similar to the
results for the complete dataset. This pattern was also repeated
in the negatively weighted categories, as most of the negatively
inuential materials also fell within the transport layers. This is
also observed in the ranking of the attribute weights, which
provides condence in our approach of using the SMOreg
algorithm to evaluate how the attributes affect stability. When
considering the data, it was clear which factors had the greatest
effect. Based upon this work, a sensible experimental strategy
would be to use this analysis to identify high performing HTL,
ETL and A-ions.

Implications for experiment and design

The focus of this work has been on obtaining greater insight
and elucidating trends within the ‘perovskite database’.
However, it is vital that the ML approaches employed are
continued to be used to inform future experimental design. To
achieve this, the analysis provided in the previous sections
should be considered, along with an understanding of the
boundaries and limitations of this study.

ML relies heavily on having a sufficient quantity and
diversity of information to provide an accurate prediction of
3128 | J. Mater. Chem. A, 2024, 12, 3122–3132
device stability and the ‘perovskite database’ does provide
this. However, developing a model that can describe stability
with all data present was not possible, and one must question
why this is. Data demonstrating low efficiency and stability
had to be removed to minimise the noise within the dataset.
Ordinarily positive and negative results from stability tests
should be considered equally important for ML, but our work
found that the algorithm does overt and make predictions
based on the low performing ‘noise’. The consequence of this
noise is that the model is disproportionately biased towards
low-performing devices and is unable to identify the role of
higher-performing devices, which do not play a signicant
role in overarching data distribution. This initially leads to
low correlation coefficients since no clear data structure can
be discerned. Secondly, this results in misleading ndings
when analysing the model weights, where an excess of attri-
butes corresponding to low-performance results are high-
lighted. If the objective of the study were to identify the role of
all attributes, whether they contribute to deteriorating or
improving device performance, then low-performance devices
could also be considered. However, since the aim of this study
is to model high-performance devices and pinpoint materials
that can enhance device functionality, low-performance
devices are excluded. In addition, by removing low-
performance devices, the algorithm focuses primarily on
identifying the materials which lead to improved performance
and stability. Furthermore, the number of materials in each
This journal is © The Royal Society of Chemistry 2024
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Table 5 SMOreg results showing the lowest performing materials in terms of cell architecture for stability

Feature

n–i–p p–i–n n–i–p (mp) n–i–p (mp-carbon)

Attribute Weight Attribute Weight Attribute Weight Attribute Weight

Substrate Ti −0.0084 PET −0.0018 SLG −0.001 — 0
PET −0.0033 SLG −0.0017

Electrode AZO −0.0071 Ag-grid 0.0085 ITO −0.004 ITO −0.024
PEDOT:PSS −0.0035 Ti 0.0028

Electrode Ni −0.0051 Ag-np −0.0108 AgNW −0.0082 — —
Ag-NW −0.0032 PEDOT:PSS −0.0035 Al −0.075

A-ions MA −0.1306 (3AMP) FA, MA −0.0076 GU, MA −0.0425 Ma 0.2076
Cs, FA, MA, BA −0.0518 MA −0.0054 (PEA) MA −0.0413 Fa, Ma 0.0316

B-ions Pb, Sn −0.0509 Sn −0.0012 Sn −0.0206
Ba, Pb −0.153 Sn, Ge −0.0012 Eu,Pb −0.0111

X-ions I, Br −0.0435 I, Br −0.0134 I, Br 0.207
I −0.1044 I −0.0128 I 0.1361

Additives I −0.016 RbI −0.047 Pb(SCN)2 −0.036
Pb(SCN)2 −0.004

HTL MoO3 p-DTS(FBTTh2)2 −0.0064 CuSCN −0.0113 CuO −0.0105
Cu2O −0.0122 PEI −0.0105 Spiro-MeOTAD −0.0019

−0.0081 PEDOT:PSS −0.0094
ETL C60-SAM −0.0198 Bphen −0.0103 ZrO2-mp −0.0134 Al2O3-mp −0.0306

PCBM-60 −0.0056 Ca −0.0092 ZnO-np −0.0108 SnO2-np −0.0021
LiF −0.0054 SrTiO3 −0.0025

Electrode 2 ITO −0.0102 Sb −0.2904 Graphene −0.0147 Graphite −0.0114
Al −0.0033 Cu −0.0035 Pt −0.0102

Module True −0.0145 False −0.0016 — — False −0.0031

Table 4 SMOreg results showing the optimal materials in terms of cell architecture for stability

Feature

n–i–p p–i–n n–i–p-mp n–i–p-mp -carbon

Attribute Weight Attribute Weight Attribute Weight Attribute Weight

Substrate PEN 0.0063 PEN 0.0019 PEN 0.004 — 0
SLG 0.0010 SLG 0.0010

Electrode Graphene 0.0130 Ag-grid 0.0055 FTO 0.0205 ITO 0.021
Ti 0.0017 ITO 0.0861 FTO 0.002

A-ions Cs, MA 0.1735 (BEA) MA 0.0196 Ag 0.2007 Cs, Fa 0.3674
Cs, FA, MA, (oFPEA) 0.1458 (ThMA) MA 0.0074 Cs, Fa 0.0623 Cs 0.0417

B-ions Pb, Zn 0.0748 Pb 0.0015 Bi 0.033 Pb 0.1598
Bi 0.0241 Fe 0.0008 Pb 0.0275 Pb, Sn 0.0004

X-ions Br 0.0104 Br, I 0.0014 Br, I 0.0298 Br 0.1226
Br 0.001 Br 0.0016 Br, Cl 0.1225

Additive compounds NaF 0.012 Cl 0.018 BEA 0.0056
TEOS 0.008 CEA 0.010 CEA 0.0090
KI 0.008

HTL pBBTa-BDT2 0.6535 NiO-c 0.24 ZnPC NiO 0.0262 WO3 0.152
MoO3 0.0305 NiMgLiO 0.0111 2TPA-4-DP 0.019 ZTO 0.0085
NiO(np) 0.0065 PTAA 0.0111 YT1 0.019

ETL Graphene 0.5430 TiO2-np 0.3435 ZnO 0.0145 Al2O3-mp 0.0102
C60 0.0876 TPD 0.256 Al2O3-mp 0.0112 ZrO2-mp 0.1451
SnOx 0.0421 SnO2-c 0.0892 Graphene oxide 0.0266

Electrode 2 Carbon 0.0105 Au 0.0392 MWCNTs 0.0234 — —
Au 0.0015 Al 0.0302 Au 0.0082

Module — — True 0.0053 True 0.012 True 0.0106
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layer that has been tested in the literature is relatively high,
thus the possible stack combination is large. During the rst
stage of the analysis, it was discovered that some materials
with three or fewer instances were highly weighted. This
prompted a couple of follow-up analyses to conrm the
This journal is © The Royal Society of Chemistry 2024
instances of the categories with the highest and lowest
weights. With this bias established in the results, some results
with a very low number of instances were eliminated, and the
results were further reinforced by investigating the data
subsets. In our datasets we have removed materials that have
J. Mater. Chem. A, 2024, 12, 3122–3132 | 3129
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Fig. 5 Histogram showing the variation in measured T80 stability for
devices made with the glass-FTO-TiO2-c/TiO2-mp-MAPbI-spiro-
MeOTAD-Au configuration.
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been used three times or less. The results obtained from the
subsets helped to conrm the accuracy of the weights of the
categories on the complete dataset. Therefore, the original
number of possible combinations in our ontology would be in
the order of 1048. However, only a fraction of those, 1021, are
represented in our dataset. To our knowledge, this still
represents the largest printed solar cell database analysed to
date. Therefore, the modelling process incurs some uncer-
tainty, it does not capture all possible non-linear interactions
between layers, and also does not take synthesis into account.
Finally, it is worth stressing that laboratory variability
remained a major issue within the dataset. Fundamentally,
the reasons we had to make this change was laboratory-to-
laboratory variability. As an example, Fig. 5 shows an
example of the variability in data from one of the most
common stack sequences within the dataset (glass-FTO-TiO2-
c/TiO2-mp-MAPbI-spiro-MeOTAD-Au); however, other factors,
such as the deposition procedure, solvent, quenching media,
and light source for the degradation study, have not been
considered when deriving this conguration.

Nevertheless, our ML model was able to predict T80 times
with absolute errors of 44% (nip) and 73% (nip-mp). It is also
interesting to see how well the best experimental data aligns
with the model. Therefore, we considered the 20 most and 20
least stable devices within our dataset to evaluate the accuracy
of our model in identifying the positive and negative attributes.
Considering the most stable devices; we were able to see that
83% of the materials used correspond to materials with a posi-
tive rating from the SMOReg algorithm. In contrast, when
considering the least stable devices, only 62% of the materials
used corresponded to materials with a negative rating from the
SMOreg algorithm. Therefore, it appears that the model is
better at predicting highly stable devices than low-stability
devices. This is likely to be the result of the removal of poorly
performing device data, as mentioned earlier, since it intro-
duced signicant noise within our dataset. Overall, our results
would encourage other groups to submit more data
3130 | J. Mater. Chem. A, 2024, 12, 3122–3132
submissions in papers and more repeated data for new mate-
rials to avoid the creation of biases within the analysedmachine
learning model. Our second observation is the lack of encap-
sulated devices ormodules. Our indication is that this produced
the best performing device data and gave us the least noise
when undertaking our analyses.

In the context of our study's ndings, particularly the R2

value of 0.683, it is benecial to draw parallels with comparable
research in our eld. Other reports have indicated values of as
low as 0.4 up to 0.9;5,11,15,21,26 but these studies have not used
such large and complex datasets as that present in the perov-
skite database. This comparison is signicant, as it demon-
strates that our model's R2 value, though seemingly moderate,
is quite substantial when viewed against the backdrop of
similar complex datasets.

Future work could also use databases to assess the optimum
cost and sustainability of PSC modules by considering material/
processing costs and environmental attributes, such as
embodied carbon. From a computer soware perspective, it
would also be advisable to consider the development of
a bespoke algorithm to handle the complexity of datasets, such
as the perovskite database.

Conclusions

Supervised ML has been applied to investigate a comprehensive
dataset from 2013 to 2020. This has allowed the inuence of
various materials on the stability of perovskite solar cells to be
identied. We conducted this investigation in two parts. An
innovative approach which entailed splitting the dataset by cell
architecture was used, and the SMOreg ML algorithm was
applied to identify how the materials under each feature inu-
ence stability. The results derived from the second analysis,
suggest the ‘best’ performing two to three materials in each
feature of the PSC, while the ‘bottom’ materials are also
identied.

We also applied SMOreg to the data subsets, split according
to the cell architecture. From the results, two to three materials
with the best inuence on stability were suggested. It is evident
from the results that the p–i–n architecture is the most suitable
for achieving higher stability, as the correlation obtained from
both analyses for this architecture is above 0.9. The insight
drawn from this research is that judicious attention should be
given to optimising thematerials used for the transport layers of
PSC.

Our results serve as a promising foundation for carrying out
further laboratory experiments to investigate the limitations of
materials to improve PSC stability. Our methodology will
inuence further research towards applying a combination of
MLmethodologies and laboratory experiments to nd a feasible
solution for the poor stability of PSCs. The recommendations
for further research are as follows.

Gathering a higher quantity of data to improve the results
obtained by investigating datasets using ML.

The datasets could be further split according to modules, in
addition to dividing them by cell architecture, to help achieve
a more robust relationship within the data.
This journal is © The Royal Society of Chemistry 2024
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