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facilitated by microscopic
features for discovery of novel magnetic double
perovskites†

Shuping Guo, *a Ryan Morrow, a Jeroen van den Brink ab and Oleg Janson *a

Double perovskites are a growing class of compounds with prospects for realization of novel magnetic

behaviors. The rich chemistry of double perovskites calls for high-throughput computational screening

that can be followed by or combined with machine-learning techniques. Yet, most approaches neglect

the bulk of microscopic information implicitly provided by first-principles calculations, severely reducing

the predictive power. In this work, we remedy this drawback by including onsite energies and transfer

integrals between the d states of magnetic atoms. These quantities were computed by Wannierization of

the relevant energy bands. By combining them with the experimental information on the magnetism of

studied materials and applying machine learning, we constructed a model capable of predicting the

magnetic properties of the remaining materials whose magnetism has not been addressed

experimentally. Our approach combines classification learning to distinguish between double perovskites

with dominant ferromagnetic or antiferromagnetic interactions and regression employed to estimate

magnetic transition temperatures. In this way, we identified one antiferromagnet and three ferromagnets

with a high transition temperature. Another 28 antiferromagnetic candidates were identified as

magnetically frustrated compounds. Among them, cubic Ba2LaReO6 shows the highest frustration

parameter, which is further validated by a direct first-principles calculation. Our methodology holds

promise for eliminating the need for resource-demanding calculations.
1. Introduction

Discovering new materials with desired functionalities and
understanding physical mechanisms behind these functional-
ities are central goals of materials science and engineering. For
systematic studies, particularly advantageous are material
classes in which the small number of structure types is con-
trasted by possibly rich chemistry. One such class is double
perovskites with the general chemical formula A2BB0O6, where A
cations occupy voids of the three-dimensional framework
formed by corner-sharing BO6 and B0O6 octahedra. The inter-
play between electronic correlations and the spin–orbit
coupling (SOC) in the d-shells of B and/or B0 can facilitate
applications of double perovskites in data storage, energy
conversion, contactless sensing, spin-polarized electrical
conductivity, superconductivity, and catalysis.1–3
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The magnetic properties of double perovskites are very
diverse. Following the discovery of large magnetoresistance in
Sr2FeMoO6,4 several promising candidates with high magnetic
transition temperature (Tc) were suggested for spintronic
applications, such as Sr2FeReO6 (Tc = 401 K), Sr2CrWO6 (Tc =
450 K), Sr2CrReO6 (Tc = 625 K) and Sr2CrOsO6 (Tc = 725 K).5 On
the other hand, long-range magnetic ordering in double
perovskites can be suppressed by magnetic frustration, giving
rise to the valence bond glass state in Ba2YMoO6.6

This remarkable disparity is driven not only by chemistry,
but also by structural degrees of freedom. Alternating BO6 and
B0O6 octahedra form a three-dimensional framework; A cations
occupy the voids of this framework. In a regular octahedral
environment, the d orbitals of B and B0 split into threefold
degenerate t2g (dxy, dyz, dxz) and twofold degenerate
egðdz2 ; dx2�y2Þ states. While the strict degeneracy is oen lied
by distortions of octahedra, the crystal eld splitting remains
signicant and largely shapes the electronic properties of
double perovskites. In addition to distortions, different sizes of
A and B/B0 ions may give rise to octahedral tilts and rotations. As
a result, various structural types can be formed, such as cubic
Fm�3m, tetragonal I4/m, monoclinic P21/n, I2/m, rhombohedral
R�3 and R3. Both distortions and tilts play a major role in the
physical properties, as they are strongly intertwined with the
charge, orbital, and spin degrees of freedom.7
J. Mater. Chem. A, 2024, 12, 6103–6111 | 6103

http://crossmark.crossref.org/dialog/?doi=10.1039/d3ta05679a&domain=pdf&date_stamp=2024-02-29
http://orcid.org/0000-0003-4536-6893
http://orcid.org/0000-0001-9986-3049
http://orcid.org/0000-0001-6594-9610
http://orcid.org/0000-0001-7328-5690
https://doi.org/10.1039/d3ta05679a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ta05679a
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA012010


Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 9

/2
5/

20
25

 1
:5

3:
38

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The magnetic exchange in double perovskites strongly
depends on the atomic arrangement and the valence of B and B0

cations. Exchange interactions are contributed by different
virtual electron transfer processes that can couple the t2g or eg
states of B with the t2g or eg states of B0, giving rise to multiple –
and oen competing – processes. Two such processes are
illustrated in Fig. 1, where the t2g states of B0 are coupled to the
t2g states of the B cation on the right, and the eg states of B0 are
coupled to the eg states of the B cation on the le. In this case, B
and B0 ions in double perovskites interact strongly with each
other, and the magnetism is driven predominantly by the B–B0

interaction. Electron transfer processes within each sublattice,
B or B0, are also possible. If B0 has an empty d shell, the inter-
action within the B sublattice determines the magnetic order,
despite the large separation between the nearest neighbors.

Transfer integrals are quantum-mechanical amplitudes
describing the virtual electron transfer between a certain pair of
orbitals. In the literature,8 the respective terms are called
“onsite” if the pertinent orbitals belong to the same atom, and
“transfer integrals” or “transfers” otherwise. Unfortunately, the
knowledge of all transfer integrals between the magnetically
active orbitals is not sufficient to evaluate the respective
magnetic exchange: strong electronic correlations in the d shell
lead to a many-body quantum problem whose generic solution
is unknown. For specic electronic congurations, such as
heavy d5 metals in an edge-sharing octahedral environment,9

perturbative treatments or solving the problem on a small
cluster can deliver parameterized solutions, provided that
interaction parameters and the strength of SOC are known. In
all other situations, insights are limited to empirical assess-
ments, such as the Goodenough-Kanamori rules, that are at
best qualitative. Therefore, predicting the magnetic ground
state is difficult even on a case-by-case basis, let alone in high-
throughput calculations.

An alternative, more direct way of obtaining exchange inte-
grals is performing density functional theory (DFT) calculations
Fig. 1 The workflow of the machine-learning part of this work. The train
the resultingmodel is used to predict themagnetic properties of the rema
to distinguish between antiferromagnetic and ferromagnetic compounds
model is constructed based on the transfer integrals. This latter model p

6104 | J. Mater. Chem. A, 2024, 12, 6103–6111
of different spin congurations. If only collinear arrangements
are considered, the DFT total energies can be mapped onto
a Heisenberg Hamiltonian and its classical ground state can be
addressed by energy minimization. The treatment of noncol-
linear congurations is even more complicated: the inclusion of
a full spin-density matrix and the necessary symmetry reduction
leads to a considerably longer computational time.10 Therefore,
screening the total energy of various congurations is almost
impossible in a high-throughput fashion, especially for systems
with metastable solutions that are sensitive to initially set
magnetic moments and U values.11

Because no method can be universally applied to derive
magnetic interactions, magnetic double perovskites have not
been studied much by high-throughput calculations. Machine
learning12–14 assisted high-throughput computations show
excellent potential for exploring the physical properties partic-
ularly when the understanding of underlying mechanisms is
elusive. Even though the majority of them don't have a large
amount of training data, with experimental inputs or more in-
depth features, a machine learning model is capable of accu-
rate predictions for a small dataset.11,14–17 For example,
a regression model with 157 experimental known data points
proposed 26 new high Curie temperature two-dimensional
ferromagnetic materials with a testing root-mean-square error
(RMSE) of 174 K.11 Here, we're inclined to explore representative
magnetic features which can further improve the predictive
power and make up for the limited experimental sample size.

Presently, there are more than 400 ordered double perov-
skites known experimentally (including doped, high-pressure
and high-temperature synthesized phases),18 and this number
is sufficient for several machine-learning techniques. But at
present, machine learning studies are either based on simple
inputs (e.g. radius, valence difference, atomic mass, tolerance
factor and so on)13 or total energies obtained for collinear
congurations,10 limiting their predictive power. For more
accurate assessments, it is crucial to resort to physically relevant
ing data set comprises 113 experimentally studied double perovskites;
ining 68materials. In the first step, a classificationmodel is constructed
. Here, only atomic features are used. In the second step, the regression
redicts the ordering temperature.

This journal is © The Royal Society of Chemistry 2024
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inputs and accurate targets which determine the predictive
precision of the machine learning.

In this work, we demonstrate that using the microscopic
information contained in the transfer integrals in combination
with the experimental information can drastically enhance the
accuracy, leading to accurate predictions of the magnetically
ordered state and the critical temperature. As shown in Fig. 1, by
using 113 experimentally known double perovskites as the
training dataset, we were able to predict themagnetic properties
of 68 further double perovskites. This is done in two steps. First,
a classication machine-learning model with atomic features
was used to distinguish between antiferromagnets and ferro-
magnets. In the second step, we constructed a regression model
which comprises the onsite energies and the transfer integrals
between the rst few neighbors; leading transfer integrals in the
three channels – t2g–eg, t2g–t2g, and eg–eg – are included sepa-
rately. Note that these microscopic terms underlie different
exchange mechanisms, including direct exchange, super-
exchange and double exchange. All these terms were calculated
by Wannierization of the nonmagnetic band structures of the
respective materials. In this way, we obtained a model which
predicts the ordering temperature with a RMSE of 18 and 61 K,
for antiferromagnets and ferromagnets, respectively. One anti-
ferromagnet and three ferromagnets with a high ordering
temperature were identied. We also found 28 antiferromag-
nets combining a low transition temperature (#50 K) with
sizable transfer integrals ($100 meV); these materials are likely
magnetically frustrated and therefore may harbor exotic
magnetic ground states. Since frustration is oen assessed as
the ratio of the Weiss temperature and the magnetic ordering
temperature, we constructed an additional regression model to
predict the Weiss temperature (RMSE = 76 K) and identify
systems with a large frustration parameter. We obtained the
largest ratio of 12 for cubic Ba2LaReO6; the sizable frustration
was subsequently conrmed by a direct DFT + U + SOC calcu-
lation. This demonstrates that transfer integrals can be effi-
ciently used in machine-learning models that aim at describing
magnetic properties.

2. Methods
2.1 Wannier function calculations

Experimentally reported crystal structures of double perov-
skites are drawn from the inorganic crystal structure database
(ICSD),19 including structures synthesized at high pressure or
high temperature. We restrict ourselves to the fully ordered
and slightly doped (with <0.1 fractional occupancy of a certain
element within an individual Wyckoff position) structures;
doping is neglected in the calculations of the latter structures.
For all materials, internal atomic coordinates were optimized
with respect to the GGA energy by keeping all symmetry
operations of the respective space group; the resulting
residual forces do not exceed 0.005 eV Å−1. Density functional
theory band-structure calculations and Wannier projections
are performed using an all-electron full potential local-orbital
scheme implemented in the FPLO code;20 the initial
This journal is © The Royal Society of Chemistry 2024
projections are done for the d-dominated bands of B and B0

cations in the relevant energy range around the Fermi level.
The Brillouin zones were sampled using meshes of 500, 1715
and 1470 k-points per reciprocal atom for cubic Fm�3m,
tetragonal I4/m and monoclinic P21/n space groups, respec-
tively. The Wannier basis, i.e. the presence of t2g and/or eg as
well as B and/or B0, and the energy window depend on the
material. For instance, in Ba2CoMoO6 we consider the energy
range between −2 and 2 eV which contains besides the t2g and
eg orbitals of Co also the t2g orbitals of Mo. The 4f electrons of
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb are treated by the
open-core approach by putting

1; 1
1
2
; 2

1
2
; 3

1
2
; 4

1
2
; 5

1
2
; 6 and 6

1
2

electrons of each spin

channel into the core.

2.2 Machine learning models

Machine learning contains two parts. As mentioned before, the
Goldschmidt tolerance factor

t ¼ rA þ rOffiffiffi
2

p  
rB þ r

0
B

2
þ rO

! (1)

is a simple, yet powerful descriptor for addressing the structural
stability.12 Therefore, we use this tolerance factor together with
other atomic features like atomic numbers, ionic radius, elec-
tron count of the partly occupied s, d and f shells and oxidation
states of B and B0 cations as inputs for three classier ML
models: neutral network (MLP),21 gradient boosting (XGBoost)22

and adaptive boosting (AdaBoost)23 implemented in the scikit-
learn24 package. Leave-one-out validation was used to evaluate
the performance of the classication model. This validation
leaves one sample to test and the remaining samples to train the
model. The accuracy is dened by the number of true cases
divided by the total number of datasets.

Then with the computed matrices of the largest t2g–eg, t2g–
t2g, eg–eg transfer integral of the short-range connections plus
the onsite energies, the AdaBoost regression model was used to
t the magnetic transition temperature (Tc) and Curie–Weiss
temperature (Q). The dataset is randomly split into 80/20
training/testing datasets for validation.

2.3 DFT + U + SOC calculations of Ba2LaRe/RuO6

First-principles DFT calculations of Ba2LaReO6 and Ba2LaRuO6

are performed with the projector-augmented-wave basis set
implemented in the Vienna ab initio simulation package.25 The
exchange-correlation energy is evaluated within the generalized
gradient approximation (GGA) using Perdew, Burke, and Ern-
zerhof parametrization26 and a roughly constant density of k-
points (30 Å3) of a Monkhorst-Pack27 mesh is used to sample the
Brillouin zones. Electron correlation effects were treated within
DFT + U + SOC with the Coulomb repulsion U = 2 eV (6 eV) and
the Hund exchange J = 0.4 eV (0.5 eV) for Re (Ru). For Ba2-
LaReO6 (Ba2LaRuO6), the total energies of one FM and one (six)
AFM spin congurations are mapped onto a Heisenberg model;
J. Mater. Chem. A, 2024, 12, 6103–6111 | 6105
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magnetic exchanges were obtained by a least-squares solution
to the system of linear equations. Detailed expressions are
provided in the ESI.†
3. Results
3.1 Magnetic order: classication machine learning

The classical review by Vasala and Karppinen summarizes the
experimental information on more than 400 ordered double
perovskites.18 In this work, we rst focus on three most popu-
lated space groups: cubic Fm�3m, tetragonal I4/m, and mono-
clinic P21/n (Fig. 2). These three space groups comprise 181
magnetic and non-magnetic stoichiometric double perovskites
with structures available in the Inorganic Crystal Structure
Database (ICSD). This set includes, in addition to structures
stable under ambient conditions, also high-pressure and high-
temperature phases that can be stabilized aer quenching.28

For 113 double perovskites the magnetism has been addressed
experimentally. We use these experimental observations to train
the machine-learning models, which are later applied to the
remaining 68 materials. To make the problem tractable, we
consider a simplied classication scheme which approximates
canted (e.g., Sr2CoOsO6 (ref. 29)) and quasi-two-dimensional
(e.g., Sr2YRuO6 (ref. 30)) antiferromagnets as antiferromag-
netic (AFM). Similarly, we do not distinguish between ferro- and
ferrimagnetic (FM) order. Paramagnetic and spin-glass double
perovskites are classied as nonmagnetic (NM). This three-
valued classication splits the data set into 19 NM, 23 FM and
71 AFM compounds.

Our rst task is to assess the ground states of 68 double
perovskites whose magnetism remains unknown. Following
earlier studies that addressed thermodynamic stability,31 we
consider geometric atomic features (such as tolerance factor,
ionic radius, and atomic number). These are supplemented by
electronic atomic features such as the number of electrons in
the outermost shell and the oxidation states of B and B0 atoms.
To surmount the relatively small size of the data set, leave-one-
out validation was used to evaluate the performance. We
applied three extensively used multi-class classiers: MLP,
Fig. 2 Crystal structures of A2BB0O6 double perovskites crystallizing in v

6106 | J. Mater. Chem. A, 2024, 12, 6103–6111
XGBoost and AdaBoost that yielded an accuracy of 63%, 73%,
and 78%, respectively. Unfortunately, using microscopic
parameters such as transfer integrals (which we do use for
predictions of the ordering temperatures, see the next section)
as features does not improve the performance of the classi-
cation models. We attribute this to the excessive dimensions of
such features and the small size of the dataset. The AdaBoost
model with the highest accuracy was further used to predict the
magnetic order of the 68 remaining double perovskites. In this
way, we identied 45 AFM, 7 FM, and 16 NM compounds
depicted in Fig. 3 with red, blue, and gray squares.
3.2 Magnetic ordering temperature: regression machine
learning

Aer applying the classication model to distinguish between
potential ferro- and antiferromagnets, we turn to the magnetic
ordering temperature Tc. In this case, atomic features are not
sufficient. Magnetic ordering is driven by different, sometimes
competing magnetic exchanges, that are in turn implicitly (and
nontrivially) governed by transfer integrals. While the number
of such parameters in each material amounts to several
hundreds, the magnetism is mostly determined by the largest
transfer integrals between the rst, second or third neighbors.
Depending on the number of electrons in the d shells and the
orbital sector (t2g–t2g, t2g–eg, or eg–eg), such terms contribute to
the antiferro- or ferromagnetic exchange; the overall sign and
strength depend on the balance between these contributions.

To illustrate how such balance is realized in practice, we
consider three Co2+-containing double perovskites: the cubic
Ba2CoReO6, the tetragonal Sr2CoReO6, and the monoclinic
La2CoIrO6. Since Re6+ (Ir4+) has one (ve) electron in the 5d
shell, exchanges between B and B0 as well as within each sub-
lattice has to be considered. Possible relevant exchanges in
these three structure types are schematically illustrated in the
le panel of Fig. 4, where the purple, green and orange solid
lines represent B–B, B0–B0, and B–B0 exchanges, respectively.
Respective directions in the crystal lattice are denoted by
superscripts, i.e. JB�B

a is exchange between B and B along the
arious space groups: (a) Fm�3m, (b) I4/m, and (c) P21/n.

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Classification ML-model-predicted 16 nonmagnetic (gray cells), 7 ferromagnetic (blue cells) and 45 AFM (red cells) double perovskites
with the cubic Fm�3m (left), monoclinic P21/n (top right), and tetragonal I4/m (bottom right) space groups. Rows and columns denote B and B0

cations, respectively. Atomic symbols in the cell denote A cations; double entries with atomic symbols separated by a slash pertain to both
compounds.
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a axis, JB
0 �B

d0 is the direction along the body diagonal between B0

and B0, etc. In the right panel of Fig. 4, we show the strongest
transfer integrals for a given interatomic separation in each
orbital sector; the color map spans the range between −300
(blue) and 300 (red) meV. For the cubic Ba2CoReO6, three rst
Co–Re nearest-neighbor bonds ðJB�B0

a ; JB�B0
b ; JB�B0

d Þ are identical,
with three large t2g–t2g transfer integrals (three blue squares in
the third row) around −225 meV. Besides, two eg–eg Co–Co
transfer integrals ðJB�B

a ; JB�B
b Þ and two t2g–t2g terms of Re–Re

ðJB0�B0
d ; JB

0�B0
d0 Þ are around −100 meV.

For Sr2CoReO6 crystallizing in the I4/m space group, leading
transfer integrals are three t2g–t2g (one blue and two red squares
in the third row) of −167 and 193 meV and two t2g–eg (two red
squares in the third row) around 203 meV of the three shortest
Co–Re bonds, JB�B0

a ; JB�B0
b ; and JB�B

0

d :

For the monoclinic La2CoIrO6, the largest components (100
to 200 meV) also pertain to the short-range B–B0 connections. At
the same time, both t2g–eg and t2g–t2g channels are active, as
evidenced by ve blue and one red squares in the third row of
Fig. 4 (right). In addition, there are four eg (t2g) transfer integrals
operating within the Co (Ir) sublattice. The structure of these
This journal is © The Royal Society of Chemistry 2024
matrices determines the sign and the strength of the respective
magnetic exchanges.

The leading transfer integrals are complemented by the
onsite energies of B and B0 d-orbitals. The resulting model is
trained on a dataset of experimental transition temperatures
(Tc), which is separated into 21 ferro- and 66 antiferromagnets.
To assess the predictive power, we randomly divided each set
following the 80/20 rule for the training/testing. As shown in
Fig. 5, the training data set of antiferromagnets yields very high
accuracy, which allows us to achieve the root mean square error
(RMSE) of 18 K for the testing data set. In contrast, RMSE is
sizable (around 61 K) for ferromagnets, which can be traced
back to the small size of the dataset and the broad distribution
of ordering temperatures.

These two pre-trained models are further used to predict the
transition temperatures of prospective 45 antiferromagnets and
7 ferromagnets. Among them, we nd antiferromagnetic Ba2-
TbReO6 and three ferromagnets with high predicted critical
temperatures: −51 K for Ba2TbReO6 (Fm�3m), 172 K for Bi2-
NiMnO6 (P21/n), 209 K for Ba2FeMoO6 (Fm�3m) and 99 K for
Ca2TiMnO6 (I4/m). While the predicted ordering temperature
(209 K) of Ba2FeMoO6 is sensibly lower than in the recent
J. Mater. Chem. A, 2024, 12, 6103–6111 | 6107
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Fig. 4 Transfer path and corresponding largest t2g–t2g, t2g–eg, and eg–eg transfer integrals of Ba2CoReO6 (Fm�3m), Sr2CoReO6 (I4/m), and
La2CoIrO6 (P21/n), respectively. The purple, green and orange solid lines represent the first nearest neighbors of B–B, B0–B0 and B–B0,
respectively. The color from purple to red indicates the value of transfer integrals ranging between −300 and 300 meV.

Fig. 5 Magnetic transition temperature Tc predicted by the regression models in comparison with the experimental value. Antiferromagnetic (a)
and ferromagnetic (b) materials are treated separately. The training and testing data sets are green and blue dots, respectively.

6108 | J. Mater. Chem. A, 2024, 12, 6103–6111 This journal is © The Royal Society of Chemistry 2024
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experiment (345 K32), our model correctly identies this mate-
rial as a high-temperature magnet. Considering this deviation,
to test whether the regression models are at risk of overtting,
different validations using resampling are conducted. As shown
in Fig. S1,† the robust behavior of the model for antiferro-
magnets against overtting gives us hope that the deviations in
the model for ferromagnets can be overcome if more samples
are added to the training dataset.
Fig. 7 Magnetic transition temperature Tc and the Weiss temperature
Q for 45 prospective antiferromagnets as predicted by the regression
model. Light yellow shading marks the strongly frustrated regime
(f > 5). The red rhombus, green square and purple pentagon represent
materials crystallizing in the cubic Fm�3m, tetragonal I4/m and
monoclinic P21/n space groups, respectively.
3.3 Identication and validation of prospective frustrated
magnets

Except for the handful of prospective high-temperature antifer-
romagnets, all remaining antiferromagnets are predicted to have
low Tc below 50 K. Among these 44 compounds, 28 feature sizable
transfer integrals ($100 meV) that can underlie strong antifer-
romagnetic exchange. To test this assumption, we turn to another
characteristic temperature – the Weiss temperature Q. This
quantity represents a sum of all magnetic exchanges (multiplied
with respective multiplicities) and can be estimated by ts to the
magnetic susceptibility at high temperatures. Since strong anti-
ferromagnetic exchanges give rise to sizable Q, the magnetic
frustration is oen characterized by the ratio f = jQj/Tc, where Tc
is the magnetic ordering temperature. Values of f exceeding ∼5
indicate sizablemagnetic frustration, which gives rise to an exotic
spin-liquid regime between Q and Tc.30

To identify relevant candidates, we collect experimentally
reported the Curie–Weiss temperatures (Q) of 63 known anti-
ferromagnetic double perovskites, and then used the transfer
integrals to train the regression ML model (leaving as before
20% for testing). In this way, we obtain a RMSE of 76 K for
the testing data set (Fig. 6). Next, we calculate Q for each of the
45 prospective antiferromagnets. As shown in Fig. 7, most
monoclinic double perovskites like Ba2LaRuO6 (Tc = −30 K and
Q = −127 K) lie near the f = 5 isoline. At the same time, many
Fig. 6 Regression ML model predicted as well as experimentally re-
ported Weiss temperature Q of AFM candidates. The training and
testing dataset are green and blue dots, respectively.

This journal is © The Royal Society of Chemistry 2024
cubic double perovskites lie in a more frustrated regime. In
particular, three Re-based compounds are predicted to have
f > 10: Ba2LuReO66 (Tc = −43 K and Q = −485 K), Ba2EuReO6

(Tc = −50 K and Q = −572 K) and Ba2LaReO6 (Tc = −42 K and
Q = −521 K). We note that the predicted temperatures for
Ba2LuReO6 are consistent with recent experimental work33

reporting Tc = −31 K and Q = −678 K.
For an independent assessment of the accuracy, we consider

the cubic Ba2LaReO6 and perform DFT + U + SOC calculations
for the commonly observed AFM conguration in experiment34

as well as the ferromagnetic conguration. The energy of the
antiferromagnetic conguration is lower by −151.7 meV/f.u.,
indicating that JB

0 �B
0

d and JB
0�B0

d0 are exchanges that are sizable
(110 K assuming S = 1) and antiferromagnetic, which is in line
with large (−154 meV, see Fig. 8) transfer integrals in the t2g
channel. We note that in the absence of magnetic moments on
B atoms, B0 moments (localized on Re) form a face-centered
cubic lattice, which is geometrically frustrated.34

For comparison, we perform a similar DFT + U + SOC
calculation for the monoclinic Ba2LaRuO6. Since the low
symmetry generates several independent terms, more super-
cells with different magnetic congurations (ferromagnetic and
six antiferromagnetic) are needed. Total energies for all
magnetic congurations are listed in the ESI.† By mapping
these energies onto a Heisenberg model, we estimate the short-
range exchange integrals Ja, Jb, Jd and Jd0. For simplicity, the
difference between Jd and Jd0 is neglected; this is justied by the
similarity of crystalline environments pertaining to both
exchange pathways.35 The resulting Ja, Jb, and Jd = Jd0 are 20, 11
and 11 K, respectively, with an accuracy of 0.5 K. These anti-
ferromagnetic exchanges mainly stem from electron transfer in
the t2g channel; due to the smaller spatial extent of 4d orbitals
compared to 5d, these transfer integrals are much weaker than
in Ba2LaReO6.
J. Mater. Chem. A, 2024, 12, 6103–6111 | 6109
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Fig. 8 Transfer paths and transfer integrals of Ba2LaReO6 and Ba2LaRuO6. To be consistent with the visual representation of Fig. 4, we show B–B
and B–B0 parts despite the absence of a partly filled electronic shell in La3+. Parameters whose absolute value is around 100 meV or larger are
labeled; other terms are denoted by color.
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4. Conclusions

We develop amachine learningmodel to discover newmagnetic
double perovskites. Our two-step procedure includes classi-
cation learning based on atomic inputs and regression learning
based on microscopic inputs – transfer integrals and onsite
energies. The goal of the rst step is to distinguish between
prospective antiferromagnets and ferromagnets; this model is
reasonably reliable, particularly for antiferromagnets (78%).
The second model aims at predicting the magnetic transition
temperature. Here, we achieve a root mean square error (RMSE)
of 18 and 61 K for antiferro- and ferromagnets, respectively.

We identify Ba2TbReO6 as an antiferromagnet with a high
magnetic ordering transition temperature of about 50 K, and
three prospective ferromagnets – Bi2NiMnO6, Ba2FeMoO6, and
Ca2TiMnO6 –with the ordering temperatures of 172, 209, and 99
K, respectively. We additionally identied 28 prospective frus-
trated antiferromagnets that combine sizable transfer integrals
(100 meV and larger) with a low ordering temperature (below 50
K). Detailed total-energy calculations of magnetic supercells
support this conjecture for Ba2LaReO6.

In addition to providing new candidate double perovskites
with high magnetic transition temperature or sizable
magnetic frustration, our work opens new insights for
machine learning assisted high-throughput calculations.
Estimation of transfer integrals is becoming a routine task
that can be done in a high-throughput fashion. These micro-
scopic parameters underlie the electronic and magnetic
properties, but quantitative information on the magnetic
properties can be obtained using analytical or perturbative
expressions that are available for several specic cases
6110 | J. Mater. Chem. A, 2024, 12, 6103–6111
only.9,36,37 Machine learning methods can be an appealing
alternative to such analytical approaches, because of its
potential to capture the elusive, yet inherent link between the
transfer integrals and physical observables.
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