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in CO2 hydrogenation to methane
using single-atom catalysts

Neha Choudhary,†a Kallayi Nabeela,†a Nirmiti Matea and Shaikh M. Mobin *ab

Single-atom catalysts (SACs) with isolatedmetal atoms dispersed on a solid support have been a hot topic in

the last decade in heterogeneous catalysis. In a comprehensive attempt to minimize CO2 emissions with

a persisting effect on global warming, the catalytic conversion of CO2 to methane can facilitate the

convenient storage of excess energy as a green natural gas. Herein, we narrow the scope of this review

by focusing on recent reports on thermocatalytic CO2 methanation using SACs with a special focus on

the design and optimization strategies and existing challenges to overcome to get high selectivity and

activity. It is highlighted that for higher selectivity towards methane over the CO product in CO2

hydrogenation, H2 dissociation and strong CO binding as an intermediate over the catalyst surface are

the key steps. These insights are vital for determining the design principles of upcoming SACs to make

them more efficient and selective in CO2 methanation.
Sustainability spotlight

Single-atom catalysts (SACs) are among the most important tools of the new era for commercializing CO2 emissions. Among CO2RR products, methane (CH4),
being a renewable fuel hydrocarbon, has attracted signicant attention, and its storage, transportation, and applications have been well researched. The
invention of SACs on the whole greatly alleviates the obstacle of scaling-up processes that previously used precious metals as catalysts that are highly selective
and effective toward CO2 methanation. In this review, the issue of product selectivity in CO2 hydrogenation, with a focus on mentioning the synthesis strategies
of SACs and their utilization for CO2 methanation reactions, is highlighted. We strongly believe that this review will enlighten ongoing and future catalyst
research, offering fundamental guidance to design multifarious SACs for CO2 methanation.
1. Introduction

The global demand for modern material designs with redened
catalytic efficiency is driving the circular economy to new
heights. As the need for carbon neutrality intensies, newly
invented catalysts for the conversion of CO2 by CO2 reduction
reactions (CO2RR) or CO2 hydrogenation to value-added
chemicals must be able to surpass the bottlenecks of the
existing catalytic chemistry.1,2 Based on the actual require-
ments, diverse subcategories and plentiful designs of hetero-
geneous catalysts have been developed and applied by global
industries. The most explored classes include metal oxides,3–8

metal suldes,9–11 metal–organic frameworks (MOFs),12–17 cova-
lent organic frameworks (COFs),18,19 carbonaceous materials20

(such as carbon nanobers,21–24 graphene,25,26 and carbon
nanotubes (CNTs)27–29), and conjugated microporous polymers
(CMPs).30 In this context, single-atom catalysts (SACs) are one of
the most promising classes of catalysts, and have shown good
of Technology Indore, Simrol, Khandwa

an Institute of Technology Indore, Simrol,
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potential due to offering high catalytic activity and a high
exposure to active sites together with good recyclability and
reusability.

Recently, SACs have been receiving much attention from
the scientic community owing to their extraordinary prop-
erties of both homogeneous and heterogeneous catalysts
(Fig. 1). SACs can solve the common issues of homogeneous
catalysts, in term of their recyclability and high cost and
difficult synthetic procedure, without compromising the
product selectivity.31,32 Since SACs are considered one of the
most important tools of the new era for commercializing CO2

emissions, considerable efforts have been made in the last
decades to achieve the selective hydrogenation of CO2 for
ensuring the desired products.33–37 Among CO2RR products,
methane (CH4), being a renewable fuel hydrocarbon, has
attracted much attention, and its storage, transportation, and
applications have been well researched. To date, it has been
reported that conventional catalysts can achieve a maximum
50% selectivity, but with an unsatisfactory practical current
density (>100 mA cm−2).33 Herein, we highlight the issue of
product selectivity in CO2 hydrogenation by considering the
synthesis strategies of SACs and their utilization for CO2

methanation reactions.
RSC Sustainability, 2024, 2, 1179–1201 | 1179
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Fig. 1 Comparison of the properties of SACs with those of homogeneous and heterogeneous catalysts.
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1.1. Scope of the review

Owing to the meteoric rise in publications in SACs over the last
few years, several attempts were previously made to review SACs,
including the fundamentals,38,39 various advancements made in
designing SACs,37 and theoretical insights40 into the electronic
structure and mechanistic aspects of catalysis in various organic
reactions.41 Many reviews have discussed the scope of SACs for
CO2 hydrogenation transformation alone.36,42–50 Quite a large
number of progress reports have also beenmade on SACs for the
electrochemical reduction of CO2.36,42–47 Herein, we narrow the
scope of this review by focusing on CO2RR methanation using
SACs in light of relevant reports. For the sake of understanding,
we provide a brief overview of the general aspects of SACs,
including the theory, their structures, and common synthetic
strategies. Aerward, we discuss how SACs have been employed
for CO2 hydrogenation into useful products, further narrowing
the discussion down to the methanation of CO2 in particular.
Additionally, an earnest attempt is made to give the reader
a comprehensive understanding of the mechanistic aspects of
SAC methanation. It is remarkable that around one-third of
reports on SACs are based on theoretical conceptualization,40

while a majority of the experimental reports endorsed their
results based on theoretical grounds. We strongly believe that
this review will enlighten ongoing and future catalyst research,
offering fundamental guidance to aid the design of multifarious
SACs for CO2 methanation.
1180 | RSC Sustainability, 2024, 2, 1179–1201
1.2. SACs: evolution, structure, and theory

Numerous studies and observations have shown that the effi-
ciency and selectivity of a heterogeneous catalyst are directly
related to its size.51–56 It is evident that as a catalyst's size is
decreased from the micron to cluster to atomic size, more
catalytic access points are created or more active sites can be
accessed, which leads to an increase in catalytic efficiency.57,58

It is noteworthy that even though downsizing catalysts into
(sub)nanoclusters is highly desirable for catalysis, stabilizing
such systems under realistic reaction conditions still requires
signicant effort, despite the advancements accomplished in
nanotechnology. For example, metal nanoclusters character-
istically display instability, especially under thermocatalytic
conditions, which prompts sintering them into larger particles
(such as nanoparticles, and nano aggregates).59–61 However,
over time, it has been established that these clusters could
better withstand extreme conditions by encapsulating them
into molecular frameworks or cage-like structures, like
zeolites, COFs, and MOFs.59 Nevertheless, reducing a catalytic
active element to the atomic level (equivalent to a homogenous
catalyst) can lead to improvements in catalytic efficiency, but
these would still be highly unstable under real-time reaction
conditions. This is because free atoms or active elements with
unsaturated coordination sites are too reactive.62 Moreover, it
has been revealed that the existence of an isolated atom can
restrain such a risk when it is bound to a suitable support in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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a crystal lattice. A heterogeneous catalyst so formulated is
called a single-atom catalyst (SAC) and can overcome many of
the drawbacks of a typical heterogeneous catalyst.

The term ‘single-atom catalyst’ was rst coined by Qiao
et al.62 in 2011. SACs can be dened as an ensemble of any
catalytically active atom spatially secluded from its own species
by directly bonding with a solid carrier host of another entity.
The terminology SAC should not be confused with the isolated
active elements immobilized with the linker functionalities of
carriers.63 It is worth mentioning that, even before introducing
the terminology SAC, many groups had already reported the
exceptional catalytic features of SAC systems but variously
termed these as ‘isolated atom’, ‘atomically dispersed’, or
‘single site catalysts’, where the single metal atoms were iso-
lated on a metal oxide support.64,65 Seemingly, SACs stand as
a bridge between both types of catalysts. A heterogeneous
catalyst has a bad reputation for its less viable active sites for
molecular transformation. Unlike a homogenous catalyst,
a heterogeneous catalyst, however, offers better thermal
stability and easy recovery. SACs provide a solid insoluble
platform that is viable for easy recovery with enough chemical
stability but with possibly 100% exposed active sites. The
evolution of SACs right aer heterogeneous catalysts is illus-
trated in Fig. 2.62,66–75

Typically, the design of SACs has three main components: (i)
active single atom (SA) entity, (ii) SAC support, and (iii)
anchoring sites and anchoring strategies, as shown in Fig. 3.
Being highly selective and effective for CO2 methanation, the
active SA entity of SACs is the part responsible for the catalytic
action. Ru, Rh, and Pd are the most explored noble metals and
are known for the selective methanation of CO2.76,77 A prudent
and maximal utilization of these SAs in SACs would help
economize CO2 methanation to a signicant extent by reducing
the overall consumption of precious metals. Besides, providing
a proper coordination environment and electronic structure of
a SA could, on the other hand, also address the limited activity
and deactivation issue of low-cost metals, like Ni, toward the
methanation of CO2. The SAC support, as the second major
Fig. 2 Evolution of single-atom catalysts over time.

© 2024 The Author(s). Published by the Royal Society of Chemistry
component of SACs, helps to stabilize the SA entity. The stability
of the SA in SACs largely depends on how the SA is bonded to
the support. Typically, there are 3 classes of support: metal
oxides, carbon materials, and porous structures (zeolites, MOF,
COF, etc.). The porous structures help to signicantly increase
SA loading onto the support matrix.78

The third designating entity in SACs is their anchoring
strategy, which plays a decisive role in the SAC accomplishing
a particular reaction out of a certain SA–support combination.
The anchoring of the SA onto the support could be achieved
using dopants, defects, or connements. The heteroatom
dopants in SACs can enhance the catalytic activity by creating
surface defects to stabilize the structure.79–81 In such cases,
single atom stabilization usually occurs through covalent/ionic
interactions with the support surface.33,50 Doping can be done
by introducing non-metals into the lattices or interstitial sites
of a host system. Non-metallic elements with lone pairs (such
as N, S, or O) doped in a host system can provide anchoring
centers for metallic SAs, leading to the stabilization of the
SAC.82–85 Defect engineering is another strategy to introduce
vacancies onto a host material, which otherwise would not be
introduced by doping.86 Surface step edge defects, unsaturated
coordination sites, and cation vacancies are important
anchoring centers for single atoms.87–89 A high SA loading can
also be achieved by conning the active elements spatially in
the pores of perforated materials (COFs, zeolites, MOFs) or by
linking with coordination sites. For example, 20% atom
dispersion was achieved by using melamine sponges with
a carbon nitride backbone, which apparently helped to effec-
tively disperse SAs throughout the host system.63 Thus the
electronic structure of SACs will be governed by the coordina-
tion environment of the SA.40 Apparently, the electronic struc-
ture of SACs will differ from their bulk counterparts. Since
SACs have a regular crystal lattice, simulating equivalent
models largely gives insights into the electronic features of the
anticipated structure. This is also vital to decide the design
principles of SACs to make them selective toward a particular
reaction, like the hydrogenation of CO2.
RSC Sustainability, 2024, 2, 1179–1201 | 1181
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Fig. 3 Illustration of the structural design entities of SACs.
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1.3. Synthesis

The bottleneck for acquiring SACs is the controlled growth of
a SA on a support phase without compromising the atomic
catalytic activity of the active phase. Common strategies that
can be adopted to prepare SACs are: (1) lowering the active
phase loading, (2) increasing the metal–support interactions,
and (3) exploring vacancy defects on the support. Measures like
mass-selected so-landing and atomic layer deposition are
helpful in establishing the above scenarios, enabling the precise
regulation of the growth of SACs. Nevertheless, scaling up these
methods and their economization pose problems. Recently,
many wet chemical methods, which are usually simple and easy
to implement, have been introduced as alternatives.41,62

However, most wet chemical processes rely on typically trial-
and-error principles. Altogether, any synthetic routes that
already exist or that are being constantly evolved can be clas-
sied broadly into bottom-up strategies (direct synthesis) and
top-down strategies (post synthesis).

Bottom-up strategies (direct synthesis) are themost common
approach to achieve metal SACs. When the minority element
precursor is adsorbed, reduced, and/or conned by the vacancy
defects or voids present in the host material, single metals can
be stabilized in solitary sites by surrounding them with the host
material. This can happen during the preparation of the host
material. Stabilizing isolated atoms gets the prime focus, which
1182 | RSC Sustainability, 2024, 2, 1179–1201
decides the ultimate thermodynamic stability of SACs. For
further in-depth information, we refer to recent reviews dealing
with preparation strategies.90,91

In top-down approaches (post synthesis), an isolated single
metal of interest is introduced and gets stabilized in the bulk
catalyst right aer preparation.91–94 Many SACs are prepared by
incorporating/depositing the active SA in pre-synthesized
support having appropriate coordination sites. Common strat-
egies are gas-phase, electrochemical, and wet chemical depo-
sition.18 More strategies have been constantly evolving over
time. The most common methods are discussed below. A
concise illustration of the synthetic strategies is presented in
Fig. 4. The major merits and demerits of the existing synthesis
methods for SACs are listed in Table 1.

(1) Coprecipitation approach: this is a wet chemical method
that is known for its straightforwardness. The method needs
neither complicated steps nor any special equipment and hence
could be executed in any wet chemical laboratory. Here, host
precursor are precipitated in parallel with the SA active
precursor, resulting in the desired SAC. For example, Lin et al.
synthesized single-atom Ir species dispersed on a FeOx support
by precipitating from H2IrCl6 solution.95 In fact, the rst iden-
tied SAC was prepared via a coprecipitation method to isolate
Pt atoms dispersed in iron oxide.62 Thereaer, researchers
devoted efforts to nd a reliable root to achieve SACs by
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Pictorial representation of the synthesis methods for SACs.
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adopting different coprecipitation strategies suitable for a wide
combination of catalytic active elements in a plethora of
supports.91

(2) Electrostatic adsorption: this is a special wet impregna-
tion method, wherein single metal species are adsorbed on the
support by a strong electrostatic interaction. Here, a strong
metal–support interaction prevents metal–metal interactions,
guaranteeing a stable dispersion of the SA phase on the support
phase. In some cases, electronic modication of isolated metal
atoms by charged ions (cations or anions) helps to stabilize the
isolated active species from agglomerating into clusters or
nanoparticles. Modication of the precursors and support
surface is, therefore, decisive in this method. For example, in
SACs, it has been proven that the protection of isolated metal
atoms, like Pt and Pd, from aggregation could be accomplished
by introducing charged species, like ionic liquids (ILs), on
supports, like hydroxyapatite (HAP).96 This will not only
enhance the kinetic barrier of forming metal–metal bonds but
also decrease the thermodynamic feasibility of metal
aggregation.

(3) Atomic layer deposition (ALD): in the ALD process,
a cyclic self-limiting reaction between a gas-phase precursor
and a solid-host surface enables the controlled deposition of
single-atom-thick layers one over other.97,98 The vapor-phase
deposition technique provides a scalable way to achieve SACs
with good uniformity and conformity. Due to its high surface
chemical selectivity, the possibility of impurities from the
residual components is less probable, unlike what happens in
the simple coprecipitation method.

(4) Electrodeposition: electrodeposition involves the depo-
sition of an active metal containing an electrolyte onto the solid
support. Despite the scalability, economic advantages, and
better control over the extent of active element deposition
(owing to the control over the applied potential and amount of
metal ion precursor in the electrolyte), electrodeposition
© 2024 The Author(s). Published by the Royal Society of Chemistry
possesses a major drawback of a possible inhomogeneous
coating onto the host phase.39 Hence, a universal strategy for
realizing SACs for a wider class of SA–support combinations is
difficult to formulate, but not impossible. Indeed, Zhang et al.99

demonstrated a universal electrodeposition applicable for the
deposition of 4d and 5d metals, like Ru, Rh, Pd, Ag, Pt, and Au,
onto a variety of supports, like Co(OH)2, MnO2, MoS2, Co0.8-
Fe0.2Se2 nanosheets, and nitrogen-doped carbon.

(5) Galvanic replacement method: the process for the
galvanic replacement reaction (GRR) involves redox reactions,
wherein a metal precursor is oxidized, dissolved, and replaced/
deposited by the reduction of another metal precursor with
a higher reduction potential. Thus, the standard electrode
potential of the precursor ions will decide the nature of pairing
two components in a particular SAC.79 Toshima's group has
introduced a crown jewel cluster concept to prepare highly
active and scalable colloidal nanocatalyst Au/Pd clusters by
adopting this method.100,101 Some of the top Pd atoms from Pd
nanoclusters (Pd147, considered as a crown) were, thus,
galvanically replaced by Au atoms (appeared as a jewel), leaving
a high degree of coordinative unsaturation, responsible for high
catalytic activity. However, the galvanic replacement in colloidal
form oen results in dissolution of the non-noble element by
depositing the noble metal component. Also, the process is
hard to predict, such that the resultant structure of the SAC is
governed mainly by the nature of the protective agent and the
morphology of the host material.102 Another drawback of this
method is that this process is applicable only to those metals
whose electrode reduction potential is higher than that of the
host.103 Thus, it is speculated that when the reduction potential
of the host component is higher than that of the SA component,
an alternative way to achieve the SAC or single-atom alloy (SAC)
is to downsize the host to promote a reverse replacement
reaction.103 Besides, it is worth mentioning that galvanic
replacement is not only restricted to noble metals but also can
be applied for the replacement of transition metals (e.g., Ni),
excluding Cu. For example, Peng et al.104 used Ni nanoparticles
sized 4.4 nm as a host for the controlled deposition of single Pt
atoms using galvanic replacement.

(6) Pyrolysis: this method forms a metal on a C-based host
because of the decomposition of the precursor at pyrolysis
temperature or by chemical leaching. On the other hand, this
strategy involves a sacricial host template (removed by acid
leaching or oxidative calcination). The sacricial material could
be a MOF, COF, zeolite, or those that can hold metals via
a variety of linkers. A uniformly dispersed SA system with
enough thermal stability can be realized by the thermal
decomposition of various MOFs. As an alternative, the desired
active single metal ion can also be ion exchanged post-synthesis
of the MOF, followed by high-temperature pyrolysis.35 Single/
bimetallic zeolitic imidazolate frameworks (ZIFs) are the most
explored MOFs for preparing SACs for CO2 reduction. Wang
et al.34 successfully prepared Co-based SACs by high
temperature pyrolysis of Co, Zn-based bimetallic ZIF precur-
sors. Pyrolysis at a temperature above Zn metal's boiling point
(i.e., >907 °C) facilitated carbonization of the organic linkers,
and evaporation of the low boiling Zn, as well as a reduction of
RSC Sustainability, 2024, 2, 1179–1201 | 1183
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Table 1 Merits and demerits of different types of synthesis strategies reported for SACs

Type of synthesis Process Advantages Disadvantages Ref.

Coprecipitation Precipitation of host
precursor in parallel with SA
precursor

� Simple operation � Control over single atom
loading is less

62 and 107

� Requires no complicated
steps or any special
equipment

� Heterogeneous active sites

� Post-treatments are
required to limit the
aggregation of isolated SA

Electrostatic adsorption Single metal species is
adsorbed and stabilized on
the support by a strong
electrostatic interaction

� Simple operation � Limited control over the
SAC structure

96

� Scalable � Heterogeneous active sites
� Post/pre-treatments are
required to limit the
aggregation of isolated SA

Atomic layer deposition Controlled single-atom-
thick-layer deposition of
a gas-phase precursor on
a solid support

� Sub-nano level thickness
control

� Low deposition rate 97 and 98

� Scalable � Expensive
� Surface chemical
selectivity
� Applicable for the
fabrication of SACs with
a complex micropattern

Electrodeposition Deposition of an activemetal
containing an electrolyte
onto the solid support

� Scalability � Possible inhomogeneous
coating of SA on the host

99

� Economical
� Better control over the
extent of the active element
deposition

Galvanic replacement Oxidation of one metal
(support) as a sacricial
template by other metal ions
(SA component) that have
a higher reduction potential

� Better control over the
morphology (size and shape,
composition) of the SAC

� Suitable for SA metals with
a higher reduction potential
than that of the host metal

79, 100–102 and 104

Pyrolysis Metal on the C-based host at
pyrolysis temperature
removes its sacricial host
template, leaving SA on the C
support

� Robust precursors � Requires high-temperature
(>800 °C)

34

� Good thermal stability and
recyclability

� Applicable only for an SA
on a C support
� Less control over the SA
loading

High-temperature atomic
migration

Subjecting SA species from
the precursor to high-
temperature so they get
trapped and stabilized onto
the support phase by
atomically migrating under
elevated temperature ($800
°C)

� Sinter resistant � Choice of the SA is
restricted to metals with
a low free energy

106

� Suitable for
thermocatalysis under
elevated temperature
conditions

� Support must be sinter
resistant or must be able to
undergo stable phase
transition without affecting
the ability to stabilize the SA
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Co in the lattice.34 It also enabled control over the coordination
numbers by varying pyrolysis temperature. A regular reduction
in coordination number 4 to 2 was observed upon the increase
in temperature from 800 °C to 1000 °C.

(7) High-temperature atomic migration: this is an outright
method to achieve the atomic dispersion of thermally stable
SACs by subjecting SA species from the precursor to get them to
atomically migrate under elevated temperature ($800 °C), then
trapped and stabilized onto the support phase.105 Generally,
a high-temperature treatment will be destructive to the
precursor host system. This is because the high-temperature
will facilitate the migration of the SA with high free energy in
1184 | RSC Sustainability, 2024, 2, 1179–1201
the host system, which then has the tendency to form larger
aggregates, clusters, or nanoparticles (otherwise called Ostwald
ripening).106 Thus, one way to control the sintering possibility is
to use noble metals with a low free energy in defective metal
oxides, like CeO2. However, this only works for a low level
loading of SA. At higher noble metal loading, it is almost
impossible to achieve atomic dispersion due to the uncontrol-
lable formation of defects at elevated temperature. An alterna-
tive approach for achieving a higher SA loading on the supports
hence can be formulated by considering the thermal behavior of
the support material. For instance, Yan et al.106 developed
a sintering resistant (thermally stable) SAC by atomically
© 2024 The Author(s). Published by the Royal Society of Chemistry
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dispersing Pt onto MnOx, taking advantage of its existence in
multiple oxidation states and possible structural reconstruction
during thermal treatments. During calcination at 800 °C, the
initial Mn3O4 lattice support was reformed into Mn2O3 in the
presence of O2 and water vapor. In the latter case, the atomic
dispersion of Pt SA was further stabilized by the strong inter-
action existing between the support Mn2O3 (Mn in a high
valence state with a possibly increased number of coordination)
and Pt atoms.
2. SACs for CO2 hydrogenation

Carbon dioxide is the major greenhouse gas as its emission is
leading to increased global warming and unpredictable weather
change.108,109 The conversion of CO2 into value-added chemicals
is in great demand owing to its harmful impact on the envi-
ronment and humans. However, the direct conversion of CO2

into value-added chemicals, like methane, methanol, carbon
monoxide, urea, formic acid, ethanol, ethylene, ethane, acetic
acid, acetone, and propanol (Fig. 5)110–112 is still challenging due
to the high thermodynamic stability of CO2. Typically, the
structural characteristics of catalysts have a signicant impact
on the CO2 reduction reaction process. Mainly, CO desorption
from a catalyst's surface is the key step for the selective
conversion of CO2. If CO desorption is favorable, then the
reverse water gas shi reaction (RWGS) is dominant. Otherwise,
additional hydrogenation occurs to produce compounds like
methane or formic acid.113–115 The formation of CO from CO2

requires a large amount of energy and has a high DG
�
298K of

28.6 kJ mol−1. However, while the conversion of CO2 to methane
is thermodynamically favored ðDG�

298K ¼ �132:4 kJ mol�1Þ,
conversion with high selectivity toward methane at low
Fig. 5 Schematic illustration of the conversion of CO2 into various
value-added chemicals.

© 2024 The Author(s). Published by the Royal Society of Chemistry
temperature is a real challenge and requires efforts to improve
the catalytic activity at lower temperature.113,116–118 Additionally,
CO2 hydrogenation to methanol is also thermodynamicallyfav-
orable ðDG�

298K ¼ �10:7 kJ mol�1Þ and exothermic, whichmeans
it needs to be performed at low reaction temperature. Further-
more, the formation of formic acid is comparatively less ther-
modynamically favorable and requires an alkaline reaction
medium or additives for the reaction to proceed.119–121

Recently, Wu et al.122 and Liu et al.50 reported mechanistic
insights into the electrocatalytic, photocatalytic, and thermo-
catalytic conversion of carbon dioxide into various chemicals
using SACs. To scale-up the conversion of CO2 to the industrial
level, thermocatalysis is an easier approach, but it involves
a high reaction temperature.122 The conversion of CO2 into
various value-added chemicals involves, rst the formation of
CH4, CH3OH, HCOOH, and C2+ fuels or hydrocarbons and then
thermocatalytic CH4 reforming into H2 generation (Fig. 6),
making it environmentally benign and sustainable process.59

As this review focuses on the thermocatalytic conversion of
CO2 into methane using SACs, a discussion on the general
mechanism for CO2 conversion to methane (as illustrated in
Fig. 7) would be helpful. The typical CO2 hydrogenation can be
divided into two major accepted pathways: (1) CO pathway and
(2) formate pathway.123

As shown in Fig. 7, in the formate pathway, formate species
serve as the primary intermediate products. This is referred to
as the CO2 associative pathway of the CO2 hydrogenation reac-
tion. In this pathway, initially chemisorbed CO2 species can
transform into bidentate formates (HCOO*) before progressing
to formic acid (HCOOH), with CH4 produced as a result.
However, in the CO pathway, known as the dissociative pathway
of the CO2 hydrogenation reaction, the adsorbed *CO2 species
dissociate into *CO and *O. Consequently, the generated *CO
species may further dissociate into carbon species (*C). These
carbon species (*C) aerward undergo hydrogenation to form
CH4 through interaction with dissociated H2 molecules that
remain on the metal particles and desorb from the catalyst
surface. Meanwhile, *O species can react with hydrogen to
generate H2O.76,124,125

3. CO2 methanation using SACs

The conversion of CO2 to methane is captivating as it can
replace the traditional fossil fuels and can be utilized for the
synthesis of syngas. Methane (CH4) is a benecial fossil fuel for
the environment since it produces more heat and light energy
per mass than other hydrocarbons, such as coal and gasoline
that have been processed from oil. The hydrogenation of CO2 at
lower reaction temperature is a challenging task but is highly
desirable. In this regard, various efforts have been made by
researchers to enhance the selectivity toward methane rather
than CO. For these reactions, the catalysts should be stable and
active at high reaction pressure and temperature, and tuning of
the catalysts is usually required, in which the interfacial effect
between the metal atom and supported material plays a vital
role. The use of a support material prevents the metal atoms or
particles from agglomeration and preserves the activity of the
RSC Sustainability, 2024, 2, 1179–1201 | 1185
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Fig. 6 Mechanistic reaction pathways for CO2 hydrogenation to various reduced forms, like methane, methanol, and formic acid.

Fig. 7 General routes for CO2 hydrogenation through the CO route and formate route.

RSC Sustainability Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 1
2:

54
:4

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
metal component. However, the interfacial effects between the
metal and support are highly affected by the particle size,
surface area, porosity, acidity, and basicity of the catalyst, which
consequently affects the catalytic activity and selectivity of the
material for the conversion reaction. Also, the utilization of
supported metal catalysts is a better alternative to deal with the
issue of the costly Ru-, Pt-, and Pd-based catalysts. In suchmetal
catalysts, a very small amount (4–6 wt%) of precious metal is
doped or dispersed over a low-cost metal support in the SAC.
This approach decreases the overall cost of metal catalysts
without compromising the catalytic activity.126,127 The atomically
dispersed single-atom metals provide the active sites for the
reaction and maximize the catalytic performance.128,129 In this
context, zeolite-based SACs were synthesized to produce bi-
functional materials, which have high catalytic activity as well
as good water sorbent capability for CO2 methanation. Wei
et al.130 synthesized 13X zeolite as a support material for SACs,
where CeOx particles acted as a separator for Ni single atoms.
The catalyst was synthesized by the chelation of Ni and Ce ions
using citrate and was diffused over 13X zeolite. They observed
that the Ce loading played a signicant role in tuning of the
catalyst's properties, like basicity, reducibility, and activity for
the reaction. The balanced basicity and acidity allowed a well-
managed interaction of CO2 with the surface of catalyst, so
that the selectivity toward methane was not compromised.
Among all the synthesized catalysts, 5%Ni2.5%Ce13X showed
the highest conversion and selectivity toward methane at 360 °C
for 200 h timescale. Furthermore, Fan and coworkers131

synthesized a Ru-supported catalyst on porous hexagonal boron
1186 | RSC Sustainability, 2024, 2, 1179–1201
nitride (pBN) and utilized this for CO2 conversion into methane
with high conversion and selectivity. The use of a supported
material can reduce the overall cost of the catalyst without
compromising its activity and thermal stability. In a Ru sup-
ported over pBN catalyst, the pBN facilitated the dispersion of
Ru and generated defects via B and N coordination, which
reduced the valence state of atomic Ru. The Ru-supported pBN
catalysts showed superior catalytic activity towardmethane with
∼93.5% selectivity, whereas the Ru nanoparticles showed
a lower conversion and selectivity during 110 h at 350 °C.
Density functional theory (DFT) simulations proved that the
increase in the CH4 generation rate was due to both the atomic-
scale size and the low valence state of atomic Ru supported on
pBN (Fig. 8). When they increased the Ru loading, aggregation
occurred, leading to the formation of Ru nanoparticles and
a low dispersion of Ru over the pBN support and as a result, the
CO2 methanation selectivity decreased.

Moreover, a comparison between a plasma-decomposed
catalyst and a thermally decomposed catalyst was performed for
Ni over a ZrO2 catalyst. Also, the interaction between Ni and the
ZrO2 support was studied by Jia and coworkers132 for the CO2

methanation reaction, where Ni/ZrO2 with a uniform dispersion
of Ni was prepared via a plasma decomposition method and
thermal decomposition method. The plasma-decomposed
catalyst had a more uniform dispersion of Ni metal over ZrO2

than the thermally synthesized catalyst. Owing to the high
dispersion of Ni over the zirconia support, its activity was
enhanced, which led to a quicker dissociative adsorption of H2

and H-spillover in the plasma-decomposed catalyst. This H-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Energy profile diagram for methane formation using Ru/pBN
SACs. Adaptedwith permission from ref. 131. Copyright 2019 American
Chemical Society.
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spillover increased the availability of H atoms for CO2 hydro-
genation and generated oxygen vacancies on the surface of the
zirconia. The oxygen vacancies ultimately increased the basicity
to facilitate the CO2 adsorption and activation capability at the
surface of the catalyst. Consequently, a 71.9% conversion with
69.5% selectivity at 300 °C toward methane with a 0.61 s−1

turnover frequency (TOF) was achieved at a low reaction
temperature. Compared to the thermally synthesized catalyst,
the TOF value was only 0.39 s−1 under the same reaction
conditions with a 32.9% conversion and 30.3% selectivity
toward methane. DRIFT analysis revealed that the plasma-
decomposed catalyst followed the CO hydrogenation pathway at
the highly exposed Ni(111) lattice plane and facilitated the
decomposition of CO2 and formates into CO, as shown in Fig. 9.
The thermally decomposed catalyst had a complex Ni crystal
Fig. 9 Mechanistic pathways over (a) Ni/ZrO2-plasma and (b) Ni/ZrO2-c

© 2024 The Author(s). Published by the Royal Society of Chemistry
structure and more defects, which play important roles in
formate hydrogenation.

Furthermore, to stabilize Ru and Ni single atoms, Rivera-
Cárcamo et al. synthesized CNT- and TiO2-supported SACs and
utilized them for CO2 hydrogenation.133 Both the CNT and TiO2

supports were modied to create oxygen vacancies to stabilize
the Ru and Ni single atoms. When the supported materials were
utilized without creating defects, then nanoparticles and clus-
ters of Ru and Ni were obtained. The doping of Na occurred
when synthesizing TiO2-supported SACs, due to the presence of
NaBH4. Further, the same authors synthesized Na-doped CNT
for comparing the catalytic activity. Among all the synthesized
catalysts compared for the CO2 hydrogenation reaction, the Ni-
based catalysts all showed less activity than the Ru-based cata-
lysts. Surprisingly, the Na-doped TiO2 catalyst showed
enhanced activity and stability compared to the CNT-supported
catalyst. However, Ni on the CNT-based SAC showed a higher
selectivity toward CO formation, whereas the Ru/CNT-based
SACs showed excellent selectivity toward methane formation.
The charge transfer between the support and metal was the
main reason for the high selectivity of the Ru SACs. They
demonstrated that the electron-rich metal surface produced
CH4, while the electron-decient metal surface produced CO
more selectively. Recently, an interesting result on a single atom
alloy was reported by Tu et al.,134 whereby an Ir/Ni single atom
alloy was synthesized via an impregnation method and utilized
for CO2 methanation using a homemade mechanical reactor
with an attached electromotor for controlling the vibration
frequency. In the Ir–Ni catalyst, Ir was atomically dispersed and
coordinated with the surface Ni atoms in the form of an Ir–Ni
alloy, while the reduced Ir0 species presented an electron-
efficient state. This Ir/Ni catalyst displayed superior catalytic
performance with a TOF of 10 244 h−1 for methane formation
and a 220 h lifetime at 350 °C without deactivation. When
alcined catalysts for CO2 methanation.

RSC Sustainability, 2024, 2, 1179–1201 | 1187
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compared to the Ir–Ni/Al2O3 catalyst supported by an oxide, the
Ir–Ni catalyst demonstrated superior coke-resistant perfor-
mance. The multiple oxidation states of Ni, i.e., Ni0 and oxida-
tive Ni2+, facilitated CO2 adsorption while the Ir–Ni alloy
provided the reaction site for H2 activation and the subsequent
hydrogenation reaction.

Moreover, it was reported by Liang et al. and Kwak et al. that
the selectivity of the CO2 hydrogenation reaction could be
shied from CO to methane by modifying the catalyst.51,135

Liang et al.135 synthesized a Co single atom supported on SBA-15
via an ALDmethod, where the CoOx thickness was controlled by
the ALD cycle numbers. Based on the ALD cycles, the catalysts
were named as 50Co/SBA-15 and 500Co/SBA-15. Co2+ was
stabilized by strong Co2+–O–Si bonds when the catalyst was
exposed to H2 gas. The catalyst with an ultrastable Co2+ single
atom with SBA-15 supported via Co–O–Si bonds exhibited 99%
selectivity with a 304.6 mol CO2/mol Co/h TOF toward CO and
was stable for up to 500 h at 600 °C. In contrast, the 500Co/SBA-
15 catalyst had a weak interaction bond for Co–O–Co, whereby
the Co species were partially reduced to metallic Co and this
metallic Co further enhanced the product selectivity toward
methane. Similarly, in the 300Co/SBA-15 catalyst, the methane
selectivity increased with increasing the reduction temperature
due to the increased metallic Co at higher reduction tempera-
tures. The experimental and DFT studies revealed that on the
single atomic Co2+ catalyst, shiing between the octahedral and
tetrahedral elds played an important role and the catalyst
exhibited H-assisted CO2 direct dissociation, as shown in
Fig. 10. Similarly, Kwak et al.51 reported that a shiing of the
catalytic activity could be observed from CO to methane when
3D metal clusters were formed with a higher Ru metal loading
in a Ru single atom over an Al2O3 support. The Rumetal loading
was varied from 0.1–5% and with increasing the Ru content,
and the selectivity toward CO and methane was analyzed. When
the metal content was low, i.e.,#0.5%, the metal was present in
Fig. 10 Mechanistic pathway over Co/SBA-15 catalyst for methanation.

1188 | RSC Sustainability, 2024, 2, 1179–1201
the active metal phase with a high dispersion over alumina, and
then the CO selectivity was high. As the metal loading of Ru
increased from 1% and above, large metal clusters were formed,
which led to a decrease in CO formation together with an
increase in CH4 formation. The results revealed that the size of
the metal clusters decides the production selectivity in the CO2

hydrogenation reaction. Additionally, the Arrhenius plots
revealed activation energies of 82 and 62 kJ mol−1 for CO and
methane formation, respectively, which conrmed that either
the formation of methane followed a different reaction pathway
without forming CO as an intermediate or by utilizing different
active sites. This result was further conrmed by the difference
in onset temperature between CO2 (∼325 °C) and CO (∼450 °C)
reduction, i.e., ∼125 °C difference.

Moreover, dual single-atom catalysts or dual atom catalysts
(DACs) have been extensively explored due to their better
performance compared to SACs.136 Owing to the presence of
heterometal sites, the catalytic activity is enhanced with a few
advantages: (1) one metal atom acts as the active site while the
other has an electronic regulatory role; (2) both metal centers
act as active sites to enhance the catalytic activity due to
a synergistic effect;137,138 (3) the scaling relationship limit (SRL)
based on SACs is broken by the adsorption effect, in which,
providing more sites alters the adsorption structures. Recently,
dual metal atom catalysts have been explored for various
conversion reactions, like CO2, N2, and O2 gases. Consequently,
Zhang et al.139 explored the efficiency of a dual-active-site
tandem catalyst (Ru1Ni/CeO2) made of Ru single atoms (Ru1)
and Ni nanoparticles. The results showed a substantially greater
efficiency in the case of Ru1Ni/CeO2 than that of the Ru1/CeO2

and Ni/CeO2 catalysts. The Ru1Ni/CeO2 catalysts showed a 90%
CO2 conversion and ∼99% CH4 selectivity at 325 °C. DFT
calculations and the experimental results conrmed the syner-
gistic effect between the Ru1 and Ni sites, which boosted the
overall methanation pathway (Fig. 11). As shown in Fig. 11, rst
Adapted with permission from ref. 135. Copyright 2024 Elsevier B.V.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the dissociation of CO2 goes on at the Ru single atom, which is
further hydrogenated to produce *CHO over the Ni NPs. Aer-
ward, this *CHO is converted into methane over Ni sites of the
Ni NPs. Hence, the Ru single atom species help to convert CO2

to CO, whereas the Ni sites promote the reaction further from
CO to CH4.

In another report,140 a Ru1Ni SAA catalyst was synthesized over
a SiO2 support and named as Ru1Ni/SiO2. First, Ni phyllosilicate
(Ni-ph) was reduced to derive Ni NPs via a hydrothermal prepa-
ration method and then the GRR was performed in between
ruthenium chloride and the as-synthesized Ni NPs. To compare
the catalytic activity, a methanation test was performed, where
the Ru1Ni/SiO2 DAC showed higher catalytic activity than Ni/SiO2

and other previously reported Ni-based catalysts. The DAC
showed a TOF of 40.00× 10−3 s−1, which was signicantly higher
than that of Ni/SiO2, i.e., 4.40 × 10−3 s−1. Based on DFT calcu-
lations and the experimental results, the reaction mechanism
was proposed and is shown in Fig. 12. It was mentioned that
initially, over the Ru and Ni sites of DAC, the adsorption of CO2

occurred. Consequently, this CO2 molecule dissociated into CO*,
which further hydrogenated into methane over the Ru single
atom. The atomically dispersed Ru species on the Ni surface
exhibited a pronounced interaction with nickel atoms, resulting
in signicant charge transfer from Ru atoms to Ni atoms, facili-
tating the dissociation of CO2 into CO* for the high catalytic
activity and selectivity toward methane formation.

In addition, Kikkawa et al.141,142 reported a Ni–Pt alloy (iso-Pt)
produced on aluminum oxide (Al2O3) via an impregnation
method under the pretreatment of hydrogen for reduction. The
Ni–Pt alloy over alumina (Ni95Pt5/Al2O3) had isolated Pt atoms
surrounded by Ni atoms, and exhibited a relatively high CH4-
formation rate owing to a lower activation energy than that of
the bulk-Ni (Ni/Al2O3) and bulk-Pt (Pt/Al2O3) catalysts. It was
discussed that the iso-Pt species play a dual role: one is for H2

dissociation at low reaction temperature and the other one is
Fig. 11 Schematic representation of CO2 methanation using Ru1Ni/CeO2

B.V.

© 2024 The Author(s). Published by the Royal Society of Chemistry
tuning the d-electronic state by alloying with Ni atoms. The iso-
Pt atoms enhanced the ability of the nearby Ni atoms to
encourage more methanation with hydrogen, while weakening
the C–O bond of the CO species connected to the Pt atoms.
Through the electrical interactions between Ptd− atoms and the
surrounding Nid+ atoms, isolated Pt atoms were produced on
the surface of the Ni95Pt5 solid solution alloy, as shown in
Fig. 13. Additionally, they also compared the catalytic activity of
Ni95Pt5/Al2O3 with Ni/Al2O3. Moreover, they extended the study
into the cooperative effect between the neighboring Ni atoms
and isolated Pt atoms in the Pt–Ni alloy using in situ and tran-
sient Fourier transform infrared (FT-IR) studies and kinetic
studies for the production of methane from CO2. They observed
that the formation of CO in the bridge form as an intermediate
between the iso-Pt and Ni atoms played a signicant role in
selective methane production. The transient variations in the
FT-IR spectra showed that the bridging CO species hydroge-
nated the CO species connected to the isolated Pt atoms in the
direction of CH4. The kinetic studies revealed that aer the
addition of Pt species in the Ni catalyst, the H2-dissociation step
became the rate determining step instead of the hydrogenation
of the surface carbon species step. Also, the carbon species on
the Ni–Pt alloy were hydrogenated more quickly due to the
strong H2-dissociation capacity of the Pt atoms. These results
conrmed that the isolated Pt atoms of the Ni–Pt catalyst play
a dual role, acting as effective H2 dissociation sites to encourage
hydrogenation and as adsorption sites for the on-top CO species
to afford a high selectivity toward CH4 (Fig. 14).

In addition, Kwak et al.143 synthesized Pd + La2O3/MWCNT,
a bimetallic catalytic system combining SACs to boost the
catalytic activity. Here La2O3 acted as a promoter, while atomi-
cally dispersed metallic Pd facilitated the dissociation of H2,
and the size of the metal particles determined the selectivity of
the product of the CO2 hydrogenation. With this approach,
atomically dispersed Pd-based catalysts supported on Al2O3 and
DACs. Adapted with permission from ref. 139. Copyright 2023 Elsevier
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Fig. 12 Schematic representation for the production of CH4 over Ru1Ni/SiO2. Adapted with permission from ref. 140. Copyright 2023Wiley-VCH
GmbH.

Fig. 13 Representation of the adsorbed CO species on the surfaces of the (a) iso-Pt catalyst and (b) bulk-Pt catalyst, and (c) the adsorbed CO
model on a single Ptd− atom encircled by Nid+ atoms. Adapted with permission from ref. 141. Copyright 2019 American Chemical Society.

1190 | RSC Sustainability, 2024, 2, 1179–1201 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Graphical representation of the adsorbed species and CO2 hydrogenation over (a) Ni/Al2O3, (b) the iso-Pt catalyst, and (c) Pt/Al2O3.
Adapted with permission from ref. 142. Copyright 2020 American Chemical Society.
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Pd over multiwalled carbon nanotube (MWCNT) catalysts were
also synthesized. Initially, when their activity for the CO2

hydrogenation reaction was analyzed, the Pd/Al2O3 SACs
showed high catalytic activity, while Pd/MWCNT was completely
inactive for the hydrogenation of CO2. However, when La2O3

oxide was introduced to the inactive Pd/MWCNT catalyst, then
the catalyst showed superior catalytic activity compared to both
the Pd/Al2O3 and Pd/MWCNT catalysts. Nonetheless, selectivity
and conversion toward methane were only obtained in the case
of Pd/Al2O3, as shown in Fig. 15. In this catalyst, large Pd
clusters were present over an alumina support, on which the
initially generated CO was readily hydrogenated to methane,
while the selectivity toward methane increased as the temper-
ature increased due to sintering of the Pd active metal phase.

Moreover, Shin et al.144 synthesized an atomically dispersed
Pt catalyst over barium zirconate (BaZrO3 = BZ) perovskite with
Co nanoparticles and compared the activity with g-Al2O3-sup-
ported catalysts. Generally, the catalyst must transport cooper-
ative hydrogen between the Pt metal support and Co species to
produce the desired functionality, so that the dissociation of
CO2 occurs on cobalt and that of H2 on the Pt metal. In this
regard, they synthesized atomically dispersed Pt on the surface
of Co nanoparticles. The catalyst was synthesized by the
immobilization of Pt particles over the Co/BZ support with
1 wt% Co and 0.2 wt% Pt loading. They observed more than a 6-
fold increase in CH4 formation rate with Pt on the Co/BZ
support compared to that with the alumina support at 325 °C.
This enhancement in activity in the case of the BZ support was
due to the strong interaction between the Co particles and the
© 2024 The Author(s). Published by the Royal Society of Chemistry
BZ support, and the dissociation of CO2 and H2 was thus
facilitated on the surface of Co and Pt, respectively. Despite this,
more than 70% CH4 selectivity was obtained, which remained
constant throughout the measured temperature range of 250–
350 °C. The selectivity was 80% even at 325 °C, compared to only
43% selectivity with the g-Al2O3 support. Additionally, when
yttria was doped on zirconia (5 and 30 atom%, respectively),
a decrease in catalytic activity was observed compared to when
yttria was supported by BZ. However, even at low substitution
levels, the activity was still higher than that of the g-Al2O3

support.
In contrast, there are several reports where nanoparticles

and nanoclusters have shown higher selectivity towardmethane
over SACs. However, isolated active sites of SACs suppress the
side reactions and generate products with high selectivity. In
this regard, the metal particle size must be taken into consid-
eration, as it plays a signicant role in the distribution of active
sites and consequently in the reactivity and selectivity. The size
effect in catalysis is a highly disputed and intricate subject,
primarily because the most effective sizes of metal particles can
vary signicantly across different catalytic setups.60 It oen
requires careful experimental optimization and theoretical
modeling to understand the interplay between the particle size,
catalytic activity, and reaction mechanisms. Guo et al.60 studied
the effect of the size of the particles in supported SACs for the
CO2 hydrogenation reaction to methane in detail. They
synthesized a Ru single atom supported on CeO2 nanowire, Ru
nanoclusters (1.2 nm), and Ru nanoparticles (4 nm) and utilized
these for CO2 hydrogenation to methane. It was observed that
RSC Sustainability, 2024, 2, 1179–1201 | 1191

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4su00069b


Fig. 15 Comparative study of CO2 hydrogenation over (1) Pd/MWCNT, (2) Pd + La2O3/MWCNT, (3) large Pd cluster over Al2O3, and (4) Pd/Al2O3

SACs.
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with the increase in the size range, the selectivity and activity
toward methanation varied. The TOFs for methane selectivity
with the Ru/CeO2 SACs, Ru nanoclusters, and Ru nanoparticles
were 4.59 × 10−3, 7.41 × 10−3, and 5.30 × 10−4 s−1, respectively
at 190 °C. The highest activity and selectivity toward methana-
tion were observed in the case of the Ru nanoclusters. In situ
DRIFT analysis revealed that the CO route was the predominant
reaction pathway with Ce3+–OH sites and Ru sites near the
metal–support interfaces acting as the active sites for CO2

dissociation and carbonyl hydrogenation, respectively. DFT
calculations revealed that as the strong metal–support interac-
tion (SMSI) of CeO2 with Ru atom decreased, CO adsorption on
the surface of the catalysts increased, whereas weakening of the
Fig. 16 Effect of the competition of SMSI and H-spillover on CO activa
Chemical Society.

1192 | RSC Sustainability, 2024, 2, 1179–1201
H-spillover effect enhanced the removal of water. Consequently,
the activity and selectivity for methanation were greatly
enhanced in the case of the Ru nanoclusters at low reaction
temperatures, as shown in Fig. 16. The SMSI and H-spillover
play important roles that can affect the activity of the catalysts
with the size regimes, which was balanced in the case of the Ru
nanocluster supported on CeO2 support.

Furthermore, Matsubu et al.145 compared the catalytic
activity of Rh nanoparticles and Rh supported on TiO2 SACs for
CO2 hydrogenation reactions. They performed diffuse reec-
tance infrared Fourier transform spectroscopy (DRIFTS) anal-
ysis to quantify the Rh active sites in the synthesized catalysts.
There was signicant relation observed between the TOF of
tion. Adapted with permission from ref. 60. Copyright 2018 American

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 17 CO2 hydrogenation selectivity over Rh NPs and Rh/TiO2 SACs.
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RWGS with Rhiso (Rh SACs) sites and the TOF for methanation
with Rh nanoparticles (RhNP). When the CO2 hydrogenation
reaction was performed, the nanoparticles showed selectivity
toward CH4 and the SACs showed selectivity toward CO. They
demonstrated that all the Rh sites in the Rh nanoparticles were
surrounded by other Rh sites, which were more active for H2

dissociation and bound CO very strongly. Consequently,
sequential hydrogenation occurred, and methane formation
was favored over CO desorption. However, in the case of the
SACs, i.e., the isolated Rh sites over the TiO2 support, the CO
bonding was weak and the selectivity toward methane
decreased. They concluded that the SACs and nanoparticles
supported on the samemetal oxide, i.e., TiO2, followed uniquely
different pathways for CO2 hydrogenation and showed different
Fig. 18 Plausible reaction mechanism over the Pt nanocluster and Pt S
American Chemical Society.

© 2024 The Author(s). Published by the Royal Society of Chemistry
selectivities, where disintegration of the nanoparticles played
a considerable role in controlling the stability (Fig. 17).

Additionally, Jimenez et al.146 compared the catalytic activity
of Co/SiO2 single-atom catalysts with Co clusters for the CO2

hydrogenation reaction. They observed that atomically
dispersed Co over the SiO2 catalyst where the isolated Co was
present in the tetrahedral Co2+ coordination showed the highest
conversion toward CO, whereas cobalt clusters (sized 2–30 nm)
exhibited selectivity toward CH4 formation under similar reac-
tion conditions. They found that the local coordination envi-
ronment of the Co metal played an important role to tune the
selectivity toward methane. SACs with a distribution of Co0/
(Co2++Co0) of 0.122–0.363 exhibited CO2 conversion at a 600 °C
reduction temperature, while nanoparticles sized 2–30 nm
exhibited CO2 conversion at higher temperature. When the Co0/
(Co2++Co0) ratio was 0.363, the catalytic activity and selectivity
toward methane were high whereas, then as the ratio decreases,
the selectivity and conversion toward methane also decreased.
The superior catalytic activity at 0.363 was estimated to be due
to a synergistic effect between the metallic Co and Co2+. This
result indicated the ensemble effect for transition metals in the
subnanometer scale and the effect of the particle size for
surface-sensitive reactions. Similarly, Wang et al.147 reported Pt/
CeO2 SACs for the CO2 hydrogenation reaction and compared
their catalytic activity with nanoclustered Pt catalysts. Atomi-
cally dispersed Pt over the CeO2 catalyst had only a 0.05 wt%
loading of Pt, whereas the Pt/CeO2 nanoclustered catalyst had
ACs catalysts. Adapted with permission from ref. 147. Copyright 2018

RSC Sustainability, 2024, 2, 1179–1201 | 1193
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a 2 wt% Pt loading. To reduce the total cost of the catalyst, the
usage of noble metal should be reduced and, in this context,
a signicantly lower amount of Pt was utilized in these catalysts.
When the reaction was performed for CO2 hydrogenation, the
atomically dispersed Pt/CeO2 displayed a 7.2 times higher
reaction rate over the nanoclustered Pt/CeO2 catalyst even with
a 40 times lower Pt loading. It was revealed that the activation of
CO2 occurred on the oxide support while H2 dissociation
occurred on the Pt metal. However, the atomically dispersed Pt
SACs showed selectivity toward CO formation, whereas the
nanoclustered Pt catalyst showed selectivity toward CH4

formation. It was demonstrated that on the dispersed Pt
surface, CO binds weakly, which restricts its further hydroge-
nation to methane and consequently the CO selectivity
increases. In both the nanoclusteres and SACs catalysts, the
CeO2 present is rich with surface oxygen defects where the
adsorption of CO2 occurs. As shown in Fig. 18, CO2 molecules
rst interact with the oxygen defects of CeO2 and bind with the
oxygen of CO2 in a bidentate manner to yield carbonate species.
Further, with increasing the reaction temperature, this oxygen
is released from the oxygen defects and generates monodentate
carbonate species, and consequently at higher reaction
temperatures, methane production occurs. Moreover, another
mechanism pathway was also proposed where a monodentate
system is rst generated on the CeO2 surface and reacts with the
adsorbed H, which was observed in the in situ DRIFT analysis.
Further, the OH− of bicarbonate is replaced with adsorbed H,
which generates CO via the cleavage of C–H bonds of the
aldehyde group on the single atomic Pt of the atomically
dispersed Pt/CeO2 catalyst. This aldehyde further will not be
hydrogenated to methane. This might be due to the strong
bonding of the OH group with the CeO2 support of the SAC,
which reduces the H-spillover, thus hindering CO dissociation
and methane formation.
4. Conclusions and future outlooks

A survey of the available reports on SACs for the hydrogenation
of CO2 highlights that the scope grows rapidly toward
commercializing natural gas to a promising regime. The
invention of SACs on the whole greatly alleviates the obstacle of
scaling-up processes that previously used precious metals as
catalysts that are highly selective and effective toward CO2

methanation. Themost comprehensive progress report on SACs
attempted so far is provided with a special emphasis on the
hydrogenation of CO2 to methane gas. Based on the survey, the
below conclusive points are made and further future directions
are suggested:

(1) The scope for the methanation of CO2 by SACs is still in
its infancy as few systems have yet managed to achieve suffi-
cient selectivity. This is because theoretical studies say that
conventional SACs show feasibility toward the hydrogenation of
CO2 to formic acid. The bottleneck is the need to formulate
SACs based on a clear understanding of the structural features
that can control the product selectivity toward methanation
during CO2 hydrogenation.
1194 | RSC Sustainability, 2024, 2, 1179–1201
(2) Elaborated data technology is required to unravel the
exact structures of SACs and the complex reaction network by
theoretical analysis. The state-of-the-art computational details
are currently unsatisfactory in this respect.

(3) The understanding of the complex mechanisms under-
lying catalysis in SAC systems has far to go. It is hard to estab-
lish a general reaction mechanism for CO2 conversion by SACs
due to the limited understanding of the key reaction interme-
diates and the complex interactions between different phases of
the SACs and reactants, even in the case of SACs with a well-
dened structure.

(4) It is essential to reveal the temporal changes in the
structural and electronic features of SACs under real-time
reaction conditions. Exploiting new characterization tools may
allow handling of these issues in the future. Many of the exist-
ing analysis tools are not sufficient to fully elucidate the
complex processes. For example, the widely used in situ char-
acterization tools, like Operando FT-IR analysis, do not yield
information about weak interactions. Instead, Operando tech-
niques, like near ambient pressure X-ray photoelectron spec-
troscopy (NAP-XPS), endorsed by low energy electron diffraction
(LEED) and scanning tunneling microscopy (STM) measure-
ments can give more in-depth information about the transient
intermediates formed during CO2 methanation.113

(5) The possibilities of providing a proper coordination
environment with distinct electronic features for other low-cost
metals, like Ni in SACs, which otherwise are not so promising
for the methanation of CO2, would also expand the choice of
active SAs in SACs to a wider margin in the periodic table.
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