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Applying electro-organic synthesis in flow configuration can potentially reduce the pharmaceutical
industry's carbon footprint and simplify the reaction scale-up. However, the optimisation of such
reactions has remained challenging due to the convoluted interplay between various input experimental
parameters. Herein, we demonstrate the advantage of integrating a machine learning (ML) algorithm
within an automated flow microreactor setup to assist in the optimisation of anodic trifluoromethylation
without transition metal catalysts. The ML algorithm is able to optimise six reaction parameters
concurrently and increase the reaction yield of anodic trifluoromethylation by >270% within two
iterations. Furthermore, we discovered that suppression of electrode fouling and even higher reaction
yields could be achieved by integrating 3D-printed metal electrodes into the microreactor. By coupling
multiple analytical tools such as AC voltammetry, kinetic modelling, and gas chromatography, we gained

holistic insights into the trifluoromethylation reaction mechanism, including potential sources of faradaic
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Accepted 25th December 2023 efficiency and reactant losses. More importantly, multiple electrochemical and non-electrochemical

steps involved in this process are elucidated. Our findings highlight the potential of synergistically

DOI: 10.1039/d35u00433c combining ML-assisted flow systems with advanced analytical tools to rapidly optimise complex

rsc.li/rscsus electrosynthetic reactions sustainably.

Sustainability spotlight

Electro-organic synthesis is a relatively new approach for making valuable molecules driven by electricity as an energy input. When coupled with flow
configuration under optimum operating conditions, high energy transfer efficiency with minimum reagent wastage can be achieved, significantly reducing the
environmental impact. However, the optimisation of flow electro-organic synthesis is highly challenging due to the convoluted interplay between various
experimental parameters and the desired product(s) yields. Herein, we demonstrate how integrating a machine-learning algorithm and 3D printed electrodes in
a flow electro-organic synthesis reactor can help rapidly optimise the reaction yield and address pertinent issues of electrode fouling in anodic tri-
fluoromethylation reactions. Further analyses of the reaction data using advanced electrochemical techniques and kinetic modelling shed light on the reaction
mechanisms. We believe that this work and the dataset contained within will benefit the concerted effort towards realising electro-organic synthesis as an
efficient and versatile synthetic tool, minimising the footprint of reaction optimisation and helping to realise an environmentally friendly approach to chemical
synthesis. This work advances efforts towards the following UN sustainable development goals: industry, innovation, and infrastructure (SDG 9), responsible
consumption and production (SDG 12), and climate action (SDG 13).
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Introduction

Effective and targeted synthesis methods for pharmaceutical
products with a reduced carbon footprint are highly sought
after. Electrosynthesis can tap into renewable low-carbon
electricity sources to drive specific synthetic reactions at tar-
geted areas near the electrode, improving energy transfer effi-
ciency while reducing the consumption of expensive and
volatile reagents,>® potentially making the pharmaceutical
industry more sustainable. However, the application of elec-
trosynthesis in the pharmaceutical industry is still limited
today, more than 170 years after Kolbe's first demonstration.*
One of the reasons could be the poorly understood mechanism
of electrosynthesis, which involves complex relationships
between the precursor, substrate, solvent, electrode, electrons,
and other reaction parameters.® The common use of hazardous
solvents, redox mediators, and transition metal catalysts also
limits the appeal of electrosynthesis.*”

In this regard, microreactors powered by machine learning
(ML) algorithms can offer practical solutions to optimise a large
number of parameters with non-trivial interdependency
compared to a systematic Edisonian approach. Microreactors
have a much smaller footprint and use tiny amounts of
reagents, while offering precise control over the temperature,
residence time, pressure of the reactor vessel, and a high
surface-to-volume ratio.*® In addition, the short inter-electrode
separation in flow reactors allows the flow reactor's operation
without a reference electrolyte, which can simplify future scale-
up.’ A multi-input problem such as electrosynthesis in flow
microreactors is a prime test-bed for ML algorithms, as it can
eliminate blind spots and biases that may prevent the discovery
of global minima during manual optimisation.>*** Further-
more, learnings obtained from the optimisation process may be
transferrable to related reactions through transfer
optimisation.*

In this work, an automated microflow electrosynthesis
reactor is integrated with ML algorithms and a 3D-printed
electrode under direct and alternating current (DC and AC)
conditions to optimise the yield of trifluoromethylation of
caffeine and investigate the challenging issue of reactor fouling.
Trifluoromethylation was selected as the reaction has been
demonstrated in both cathodic and anodic configurations,****
and it has significant applications in pharmacology.'® Caffeine
was selected as the substrate as it is the most consumed
psychoactive substance globally'” and is an inhibitor of AchE.*
Caffeine is also a challenging substrate for typical tri-
fluoromethylation reactions, as the multiple N atoms in its
structure can easily poison traditional transition metal cata-
lysts.’ Here, we aim to move away from transition metal cata-
lysts or redox mediators and optimise electrofluorination using
a greener solvent (acetonitrile*) and widely available graphite
anodes. A series of advanced analytical techniques are applied
to get a holistic understanding of the electrochemical tri-
fluoromethylation reaction. Finally, detailed kinetics based on
a reaction network incorporating candidate mechanisms and
side reactions with kinetic parameters were modelled and fitted
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to the experimental data. The fitting results help us discern
probable reaction paths and side reactions and guide us to
simplify the reaction network and distil the dominant
mechanisms.

Materials and methods

Tetrabutylammonium perchlorate (TBAP, >98%, see ESI Section
9 for precautiont) and sodium trifluoromethanesulphinate
(CF3SO,Na, >95%) were purchased from TCI chemicals.
Caffeine was purchased from Sigma (>98.5%), and acetonitrile
(chromatography grade) was purchased from VWR chemicals.
All chemicals were utilised without any further purification.

Microflow electrosynthesis cells with PEEK construction and
4 mm graphite electrodes were purchased from Electrocell
North America. 3 mm expanded PTFE gaskets were purchased
from James Walker. A Foxy R1 fraction collector (Teledyne ISCO)
was used to collect reaction products for high-fidelity NMR
quantitation. Cell temperature was controlled using a recircu-
lating water cooler (CP-300F, Julabo GmbH). Flow pumps were
purchased from Tacmina Corporation (Series Q). A preparative
degasser (model 186002488) was purchased from Waters
Corporation, and a potentiostat (IviumStat.h standard) was
used to control the current or voltage. Square wave current
pulses with variable upper and lower bound magnitudes and
times were used to drive the reaction. The automation of the
flow electrosynthesis setup was conducted through a unified
LabView interface. Details of the setup can be viewed in ESI
Section S1.}

Six parameters were investigated: (a) flow rate (constrained
between 0.25 and 2.00 mL min "), (b) first current pulse (ON
current, constrained between 40 and 80 mA), (c) second current
pulse (OFF current, constrained between 40 and —80 mA), (d)
frequency of the AC pulse (F, constrained between 0.1 and 100
Hz), (e) temperature (7, constrained between 5 and 65 °C), and
() duty cycle ( QN pulse time .

[ON pulse time + OFF pulse time]
between 0.5 and 1.0). AC pulses were investigated as they have
been reported to improve mass transport, improve stability, and
enhance the electrode surface in other electrocatalytic reac-
tions.”>** Gaseous side products were collected and analysed
with a GC-MS system to confirm the gas-phase side products
from the trifluoromethylation reaction. We leverage our ML
framework for optimising the six input parameters simulta-
neously within constraints. The initial sampling was performed
with the experimental parameters generated via the Latin
hypercube sampling (LHS) algorithm* as implemented in sci-
kit-optimize.** LHS was chosen to maximise the range of
exploration with the minimum number of initial datasets, while
minimising the overlap between the experimental conditions.
We then construct a surrogate artificial neural network (ANN) -
as implemented in the Keras/TensorFlow framework,* as an
estimator for the target output, given the input parameters. The
choice of the surrogate machine learning model is based on
prior optimisation studies, where we observed comparatively
faster convergence with the ANN model as compared to other
machine learning algorithms (ESI Section S6t). We opted for

, constrained
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the batched optimisation approach as it is more efficient,
allowing us to take multiple suggestions to simultaneously
operate in both exploration and exploitation modes and is less
prone to noise and saddle point trapping.**>*

The 3D electrode design is conducted using computer-aided
design (CAD) software, including SolidWorks and nTopology
(v3.31.2). The evaluation of the geometry parameters, such as
the surface area and porosity of the electrode structure, are
calculated using the CAD software. The computational fluid
dynamic (CFD) simulations are conducted using ANSYS Fluent
(2022 R1) to understand and compare the hydrodynamic
behaviour of the fluid between the conventional planar elec-
trode and the proposed lattice-based body-centred cubic (BCC)
structure, emphasising the flow distribution visualisation and
residence time distribution (RTD) curve. Subsequently, the
proposed electrode designs are 3D printed with industrial-level
laser powder bed fusion (LPBF) additive manufacturing
machine - EOS M290 with an SS 316L material and integrated
into the flow system for performance evaluation.

AC voltammetry techniques were performed on a Gamry 600+
potentiostat coupled with a Digielch v8.0 as a measurement and
analysis tool. The DC voltage was swept between 0.5 and 2.5 V vs.
a leakless Ag/AgCl electrode (eDAQ) at a scanning speed of 0.04 V
s~ ". The AC amplitude and frequency were set at 0.15 V and
~22 Hz (depending on the actual DC range and the number of AC
cycles per step). The delay time was set at 2 s, and the potentiostat
current range was fixed at 600 pA with a 200 kHz IE filter. iR
compensation was added at 85% of the measured uncompen-
sated solution resistance. The number of data points was collected
at 2", with n = 16. Fitting of the Fourier-transformed AC/DC vol-
tammetry (FTAC) data was performed on Digielch v8.0, following
the Marcus-Hush model. The initial concentration was assumed
to be 0.05 mol L', and chemical potential (E°), symmetry of the
electron transfer energy barrier («), steady-state rate constant (k)
and diffusivity (D) of the electrochemical transfer reaction and
species are fitted. For kinetic modelling, Python libraries such as
SciPy*® and scikit-optimize* were used to perform the estimation
of kinetic parameters by fitting a reaction network to experimental
concentration values.

Results and discussion
Trifluoromethylation reaction mechanism

The trifluoromethylation of caffeine is schematically represented
in Fig. 1. The anodic electrosynthetic route towards tri-
fluoromethylation of arenes has been suggested to follow the
oxidation of the trifluoromethanesulphinate anion (CF;SO, ) to
a trifluoromethanesulphinate radical (CF;SO;, Step 1) followed by
its disintegration into a trifluoromethyl radical (CF;) and SO,
(Step 2).>*** The CF; is proposed to react readily with caffeine to
form a transition complex that is quickly converted to the
caffeine—CF; reaction complex through Step 3. Earlier studies have
proposed that the caffeine-CF; reaction complex converts tri-
fluoromethylated caffeine (1,3,7-trimethyl-8-(trifluoromethyl)-3,7-
dihydro-1H-purine-2,6-dione, referred to as I) exclusively through
electrochemical Step 4a.***' Herein, our experimental observa-
tions of the by-products (red fonts in Fig. 1) and kinetic modelling
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point out the coexistence of a parallel chemically driven Step 4b.
We shall discuss this in greater detail in the following sections.

Electrochemistry characterisation

We first employed a superimposed AC/DC voltammetry tech-
nique®»** to conduct a thorough analysis of the oxidation event
surrounding the reactant near the electrodes. AC/DC voltam-
metry can extract minute electron transfer of surface-bound
species that DC voltammetry often misses (Fig. 2A), as the
contribution from the capacitance background current is
removed by the fast-oscillating AC component.*® Flat AC/DC
scan (black trace, Fig. 2B) indicates the stability of the TBAP
electrolyte and solvent up to 2.5 V vs. Ag/AgCl. The oxidation of
caffeine observed from 1.5 V vs. Ag/AgCl was indeed irreversible
(pink trace), with no reduction event observed on the reverse
(cathodic going) scan. The oxidation of NaSO,CF; appears to
occur a little bit earlier, at around 1.0 V vs. Ag/AgCl, as compared
to caffeine. When all reactants are mixed (purple trace), the
NaSO,CF; oxidation features dominate, but caffeine oxidation
peaks are still visible, although smaller and shifted to a more
anodic potential. Inverse Fourier transformation (IFT) was then
performed on fourth harmonic Fourier transformed AC/DC
voltammetry (FTAC), resulting in multiple sets of peaks that
correspond to electron transfer events (Fig. 2C). Notably, the
reagent mixture (purple trace) contains features consistent with
caffeine and NaSO,CF; but shifted towards less anodic poten-
tial with some notable changes in the peak shape.

Fitting of the caffeine’s fourth harmonic IFT FTAC features
suggests that the caffeine oxidation event follows two back-to-
back two-electron transfer steps, first at 1.37 V followed by
another at 1.63 V (ESI Fig. S2A and Table S17). Our observations
corroborate previously reported caffeine anodic oxidation that
follows two consecutive 2-electron transfer reactions to 1,3,7
trimethyl uric acid, and subsequently to 4,5 diol uric acid.*® On
the other hand, the anodic activation of NaSO,CF; is often
described as a single electron transfer process, followed by
chemical transformation.***” Interestingly, our NaSO,CF; FTAC
signal fit best with two back-to-back single electron transfer
events at around 1.18 and 1.53 V (ESI Fig. S2B and Table S27),
suggesting an unknown side reaction during NaSO,CF; anodic
oxidation. With higher oxidation potential, the caffeine
substrate is expected to be more stable in the presence of
NaSO,CF;. However, traces of caffeine oxidation are still present
in the FTAC of the mixed reagent (Fig. 2C, purple trace), sug-
gesting that caffeine oxidation may still be a potential side
reaction that could lower the electron and caffeine utilisation
efficiency. The mixed reagents' IFT FTAC fits well with
combined caffeine and NaSO,CF; oxidation events (Fig. 2D and
Table S31). However, we note that both oxidation events have
earlier E° when compared to the individual components, indi-
cating possible interaction between the reagent mixtures during
electrosynthesis.

Preliminary study on the microflow reactor

We then started the flow electrosynthesis experiments with

a flat stainless steel (SS) plate as a cathode in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A schematic of the proposed mechanism for trifluoromethylation of caffeine. The gaseous side products are drawn in red colour.

chronoamperometry mode to simplify the reactor setup. The
microflow reactor setup is described in ESI Section S11 while
the quantitation methods utilised herein are described in ESI
Section S3.t1 After a short period of the constant current oper-
ation of 20-40 min, we observed a significant deposit of dele-
terious reaction by-products on the electrode (Fig. S471) that
frequently leads to flow obstruction and cell leakage. These
white solid deposits were identified as sulphates and fluorides
of sodium based on powder XRD experiments (ESI Section S4,
Fig. S51). This observation is unexpected as it suggests that the
trifluoromethyl radicals can undergo a reduction reaction at the
cathode electrode to form fluoride anions, especially near the
cathode where the local pH is expected to be alkaline in the
presence of water.>®

In addition to the solid precipitates, we investigate the
gaseous emission from the microflow reactor. Carbon dioxide
(COy,), fluoroform (CFsH), and hexafluoroethane (C,Fs) gases
were detected (ESI Section S4, Fig. S6 and S77). The CO, likely
evolved from the oxidation of the carbon at the graphite
electrode. Whilst the evolution of C,Fs is expected, the evolu-
tion of the CHF; formation is surprising and leads us to
suggest that Step 4a of the trifluoromethylation reaction (Fig.
1) may not be the only pathway towards I. Based on the
detection of CHF; gas, we hypothesise that the CF; radicals
generated in the second step can abstract an H" from the

© 2024 The Author(s). Published by the Royal Society of Chemistry

caffeine-CF; complex due to their likely proximity near the
anode electrode (Step 4b, Fig. 1).*° Alternatively, the CF;
radical may also attack the water in the solvent (Step S1, Fig. 1)
to form CHF; gas and a hydroxide radical. Water is assumed to
reduce to H, and OH™ on the cathode surface as a competing
reaction (Step S2, Fig. 1).

To address the reaction fouling, AC waveforms and 3D-
printed SS electrodes were explored. AC conditions have been
shown to improve reaction yield while lowering energy
consumption.* When optimised correctly, it can improve elec-
trosynthesis reaction efficiency and selectivity.*>** On the other
hand, 3D-printed electrodes can improve reagent mixing** and
mass transfer to electrodes,” while increasing the reaction
turnover by virtue of increased surface area.

A simple BCC geometry with a unit cell of 6 mm (referred to
as BCC-6 mm, Fig. 3C and ESI Table S4}) was then selected
based on the evaluation of optimum surface area, porosity and
residence times of electrode structures (see ESI Section S57).
The results showed that using a BCC-6 mm electrode structure
increases the electrode surface by 3-fold and reduces the
porosity by 25% as compared to the planar electrode. More
importantly, the BCC-6 mm almost doubles the maximum
velocity of fluid flow (at height 2 mm above the electrode) from
~3.4 x10*ms " to~5.5 x 10"* m s~ " (ESI Table S5), which
we posit to be the key to reducing the fouling accumulation.

RSC Sustainability, 2024, 2, 536-545 | 539


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3su00433c

Open Access Article. Published on 26 December 2023. Downloaded on 2/8/2026 3:59:56 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Sustainability

(A)

B),

View Article Online

Paper

= TBAP __TBAP
< <
E E
0 - - - 0 - . -
__ STTBAP+car _STTeAP + car.
< <
E E
= =
0 ' ———_ﬁ'. . 0 : M
_ 5 T7BAP + NaSO2CF3 _ 5 [7BAP + NaSO2CF3
g E m
= = l T {1
. —— o .‘.nl‘.I...mmu#m'"""""""-‘."e,';,':.':.';.
_ 11TBAP +Nas02CF3 + Caff, __ 1 TTBAP + NasO2CF3 + Caff.
< <
€ - _— &
st e -—
0 - . : 0 ‘ : .
0.5 1.0 15 2.0 2.5 0.5 1.0 1.5 2.0 25
E (V vs. Ag/AgCl) E (V vs. Ag/AgCl)
C D
: 1% TBAP ( )7
— —— Experimental
< : 3 i
2 -=-= Simulation
- 6 -
0 - - "
100 { TBAP + Caff. 51
<
3
0 —— 2
100{ TBAP + NaSO2CF3 = 31
<
2
= J\ 2
0 : : . e
_ 10 TTBAP + NaSO2CF3 + Caff, 14
<
el
- ‘/\’\/M_/\/ 0 1T
0 - - - . . .
0.5 1.0 15 2.0 2.5 0.5 1.0 1.5 2.0 25

E (V vs. Ag/AgCl)

Fig. 2

E (V vs. Ag/AgCl)

(A) DC voltammetry data of TBAP (electrolyte), caffeine, NaSO,CFs, and their mixtures as labelled. (B) Superimposed AC/DC voltammetry

data. (C) Inverse Fourier transform (IFT) of the 4" harmonic Fourier transformed AC/DC voltammetry data shown in (B). (D) Fitting of simulated
electrochemical steps (broken line) to TBAP + caffeine + NaSO,CFs fourth harmonic IFT data (solid grey line). The light blue shaded area

represents NaSO,CFz oxidation, while the light pink area represents caffeine oxidation.
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Fig. 3 Batch by batch run improvement for (A) yield and (B) production rate. LHS represents the initial sampling with reaction parameters
generated from the Latin hypercube sampling (LHS) method. Batch 1 is the optimised parameters obtained from the ANN surrogate model with
LHS as training input. Batch 2 takes Batch 1 and LHS as training inputs. (C) 3D model of the BCC-6 mm 3D-printed SS cathode used in the

microflow electrosynthesis cell.
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To understand how the electrode design and AC conditions
contribute to the yield, we compared the 3D printed BCC-6 mm
patterned SS electrode with a flat SS plate as cathodes under AC
and DC conditions. We observe that flat SS electrodes have
a markedly lower yield as compared to the 3D-printed BCC-
6 mm SS electrodes (ESI Table S77) as well as severe reaction
fouling (ESI Fig. S47). This could be linked to the larger surface
area and longer and more spread-out retention time, as
observed in the CFD RTD simulation (ESI Fig. S8). Thus, we
chose to use 3D-printed BCC-6 mm SS electrodes for the opti-
misation in this study due to the comparatively higher reaction
yields compared to flat SS electrodes.

ML-guided reaction optimisation

ML algorithm-assisted optimisation of the reaction was per-
formed by first obtaining an initial sampling dataset suggested
by the LHS algorithm. The initial dataset is then used as a prior
to construct surrogate models capable of relating the objective
(reaction yield and production rate) and the input parameters.
After selecting the best models, the optimisation process is then
done by the Bayesian Optimisation (BO) method.** Further
details of the optimisation modelling are presented in ESI
Section S67. For the reaction yield objective, a minimum and
maximum yield of 0.10% and 19.64% were observed in the
initial sampling dataset respectively (Fig. 3, labelled as LHS).
Surprisingly, the first BO iteration already resulted in signifi-
cantly enhanced maximum and minimum yield of 53.99% and
4.90% respectively (Fig. 3A, batch_1). A second iteration was
then done by re-training the models with updated prior that
contains new results from batch_1. A minimum and maximum
yield of 9.35% and 46.63% was observed respectively. No further
iteration was done as no improvement in the maximum yield
was observed. Full results of the ML-aided optimisation results
can be seen in Tables S7-S9 and Fig. S11.1

Similar trends were also observed for the production rate
objective, where the maximum production rate increased by
almost 50% from 8.78 to 11.63 pmol min ", for the experiments
from the initial sampling run and the experiments with the
parameters suggested by the ML model from the first BO,
respectively (Fig. 2B). The second iteration of the BO did not
improve the production rate, with the maximum and minimum
rates being 11.23 pmol min~" and 4.39 umol min", respec-
tively. From these results, it appears that we have the appro-
priate size of initial sampling parameters and that the ML
model can find out the underlying parameters in relation to the
yield and production rate relatively quickly, hence achieving the
global maxima early.

We can now comment on the relationship between the input
parameters and objectives. We see some interesting relation-
ships between the input parameters chosen herein and the
dependent parameters, i.e. yield and production rate, with the
help of SHAP feature importance maps* (Fig. 4). The input
parameters are represented on the y-axis, and their respective
Shapley values are presented on the x-axis. Input parameters
that strongly influence the output have a wider spread of the
Shapley values, and input parameters that have minimal

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 A representation of the feature importance for all the inde-
pendent input and dependent output parameters, which are (A) the
yield and the (B) production rate with a SHAP waterfall map.

influence on the output have clustered Shapley values. We
observe that the flow rate has a strong inverse correlation with
the yield (Fig. 4A). Conversely, there is a strong direct correla-
tion with the production rate (Fig. 4B). Based on the spread of
the Shapley values along the x-axis for the various input
parameters, we observe that the flow rate, duty cycle, and T
strongly influence the yield and the production rate compared
to the current pulses and the frequency. However, the exact
order varies for both metrics. We also observe that all other
parameters are directly correlated to the yield (except for the
flow rate) and the production rate. On the other hand, F appears
to influence the production rate negligibly.

In this work, non-continuous parameters such as the reactor
geometry, electrode material, and substrate scope were not
optimised, leading to a relatively lower (absolute) reaction yield
and production rate compared to the literature with similar
reagents.”*** However, we wish to highlight that the imple-
mentation of our workflow has successfully optimised the
reaction within two iterations. This approach can be extended
to many other electrosynthesis reactions without a strict need
for reaction chemistry knowledge.

Reaction kinetics and analysis

The datasets obtained from the optimisation steps contain
valuable information that can be used to model detailed reac-
tion kinetics following a prescribed reaction network and its
associated rate laws. Kinetics modelling incorporates physical
constraints and considers the whole dynamic process to provide
a mechanistic understanding of the reaction, allowing for better
generalisation to different reactor setups and facilitating
scaling up. To build a kinetic model, we first hypothesise several
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candidate reaction pathways based on the mechanism
proposed by Deng et al.*® and the experiments performed in
previous sections, which contain various intermediate species
and speculated side reactions, as shown in eqn (1)-(8).

CF;S0, . CF; + 80, + ¢ 1)
CF; + caffeine LY CF; — caffeine. 2

CF; — caffeine. + CF; 5 CF; — caffeine + CF;H (3)

CF; — caffeine. Y CF; — caffeine + HY + e~ 4)
CF; + CF; % C,F, (5)

CF; — caffeine. + CF; % caffeine + C,Fs (6)
caffeine % side products (7)

caffeine % side products + 2e~ (8)

We want to distinguish the mechanism suggested by the
experimental data. First, note that we include both the chemical
and electrochemical steps for producing I, corresponding to
eqn (3) and (4), respectively. Second, we incorporate three
radical termination steps as eqn (3), (5) and (6) that produce
various gas side products detected by GC-MS. Besides,
comparing the molar concentrations of the reacted NaSO,CF;
and I (Fig. S13t) shows that the reacted NaSO,CF; is typically 2
to 4 times as much as I. We expect the dimerisation of the CF;
and the formation of CHF; from CF; and CF;-caffeine’ to be the
major side reactions related to NaSO,CF;. Third, we add both
the chemical and electrochemical side reactions of caffeine in
eqn (7) and (8), respectively.

Looking at the total faradaic efficiency (FE) at the anode as
a metric of electron utilisation, if anodic oxidation of NaSO,CF;
is taken as the only electron donating reaction, we found the
average total FE to be very far from unity, approx. 53.8(+13.8)%.
We posit that the missing FE could stem from the side elec-
trochemical process, such as the caffeine oxidation detected in
the AC voltammetry experiment (Fig. 2). As we have shown that
caffeine is stable in the reagent without current (Fig. S21t), the
average caffeine loss of about 3.7(+2.6) mM (Table S107) should
originate from anodic oxidation. These losses translate to
18.7(+9.9)% FE if the two back-to-back two-electron steps sug-
gested by AC voltammetry are followed. When caffeine oxida-
tion is considered, the total FE becomes closer to unity at
72.2(+17.3)%. We add both the chemical and electrochemical
mechanisms to the network, attempting to discern the domi-
nant one from the data. However, comparing the reacted
caffeine and I (Fig. S157) implies that side reactions involving
caffeine are mild, so this reaction might not be discernible. The
remainder of the missing FE could represent other side reac-
tions that are not quantified, such as CO, generation from the
anode.

542 | RSC Sustainability, 2024, 2, 536-545

View Article Online

Paper

We assume that all the rate laws are elementary. To fit the
rate constants in these rate laws to the concentration
measurements, we also need a reactor model that governs the
transport of the species. For the efficiency of parameter fitting,
we make several simplifications. From the reaction data, we
observed that the dominant conditions affecting the yield are
the residence time ¢ = hwhe/V, and the anode temperature,
where [, w, h, and ¢ denote the length, width, thickness, and
porosity of the flow reactor channel, respectively, while V is the
volumetric flow rate. The mean anodic current I = pmax{I;,0} +
(1 — p)max{l,,0} also has an apparent influence on the yield,
where p is the duty cycle ratio. In contrast, the role of pulsing
(Fig. S127) is relatively ambiguous. Therefore, we make the
simplification of using a constant average current without
accounting for pulsing only to capture the dominant effects on
the yield.

We further assume that species concentration is uniform
over each cross-section of the channel and only varies along the
flow. This is because the inter-electrode thickness is much lower
than the other two dimensions, also considering the spanwise
homogeneity (Fig. S141). We further ignore the residence time
distribution for simplicity and thus apply the plug-flow reactor
conditions® to this case and identify the flow-wise coordinate
with time. Therefore, the full reactor model reduces to a system
of ODEs characterising how the species concentrations vary
with time, which are solved using the Python library
scipy.integrate.”

All candidate reaction pathways share the same initial step,
where NaSO,CF; is oxidised at the anode to generate CF; and
kick off the whole reaction. Using an irreversible version of the
Butler-Volmer equation formulated in terms of the electrode
potential rather than overpotential, the first step is decoupled
from the rest and governed by eqn (9).

dCF:S0y] (aan(dU/diﬁ) [CF;S0,7]

=)

dt RT

rmse=7.2, mae=5.7, mape=34%, corr=0.96

E Res time [s] 60
E701 ¢ 270 _
- @ 469 b
~ 601 50 o,
Q @® 668 o
m 50 1 . 868 5
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©
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Fig. 5 Fitting the kinetic parameters for the first step, which can be
decoupled from the rest of the reaction network. The root mean
squared error (rmse), mean absolute error (mae), and mean absolute
percentage error (mape) of the fitting are shown at the top.
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Table 1 The fitted kinetic parameters for the simplified reaction network. For the Butler—Volmer steps, we also need a« = 0.5 and dU/di =

0.0021V m? A%, while ny = n,4 = 1 for the k; step and k4 step

Step & ks ks ks k;
A 33x10 °ms! 7.2/(mM s) 31ms ! 6.8/(mM s) 4.7 x 10 *s?
E [in k] mol '] 4.1 21 17 7.0 2.1

Hence, using the measurements of CF;SO,  at the exit, we
can fit the kinetic parameters for this first step separately as
shown in Fig. 5.

The rest of the kinetic parameters are fitted to caffeine and I
molar using nonlinear least squares implemented by the
Python library scipy.optimize.”* When fitting the full reaction
network as formulated in eqn (1)-(8) (fitting results shown in
Fig. S15t), we find that the full network can essentially be
simplified to a subset of it, which is extracted and adapted as
the simplified model as follows (eqn (10)-(14)).

CF;S0, % CF; + 80, + ¢~ (10)

CF; + caffeine LA CF; — caffeine. (11)

CF; — caffeine. % CF; — caffeine + H* + e~ (12)
CF; + CF, % C,F (13)

caffeine % side products (14)

The fitting results shown in Fig. 6 are as good as those of the
full model. As we can see, the agreement with measurements is
reasonably good, with the error in the final I product prediction
being around 2 mM, well within the uncertainty of an NMR
molar measurement. The kinetic parameters from fitting are
listed in Table 1, with the rate constant for each step repre-
sented by the Arrhenius equation k = A exp(—E/RT), where A is
the pre-exponential factor and E is the activation energy.

We must emphasise that the flow reactor experiments in this
work have been designed to optimise the yield rather than

© 2024 The Author(s). Published by the Royal Society of Chemistry

discern the detailed reaction mechanisms. With the aggressive
simplifying approximation made regarding the reactor to make
kinetic parameter fitting feasible, the obtained kinetic model
should be viewed as a preliminary attempt to elucidate the
kinetic processes rather than a conclusive mechanistic study.
The model can decently capture the dominant effects of
temperature, residence time, and average current on the reac-
tion progression, but much work is still needed to verify the
detailed mechanisms and associated kinetic parameters.

Conclusions

Our work demonstrates how a synergistic combination of the
ML algorithm with advanced analytical tools can be very effi-
cient in optimising complex electrosynthetic reactions rapidly
and sustainably without prior knowledge of the chemical reac-
tions. Specifically, we found the ANN model to be the most
suitable algorithm to reach the optimum conditions with just
two iterations. While training datasets are required in this work,
newer concepts of transfer optimisation envision that diverse
optimisation datasets from related reactions can be exploited in
the future. This will enable rapid deployment of electro-
synthetic approaches to produce complex functionalised
molecules relevant to the pharmaceutical and specialty chem-
ical industries in a greener manner whilst eliminating the need
for transition metal catalysts and hazardous redox intermediate
compounds.

Furthermore, advances in electrochemical techniques, such
as superimposed AC/DC voltammetry, can be applied to discern
possible electron transfer events during the reaction, enabling
rapid evaluation of solvent, reagent, and substrate suitability
and compatibility. We also hypothesise a reaction network with
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elementary rate laws and fit the kinetic parameters to the
experimental data to study the detailed reaction mechanisms.
We find that not only the initial oxidation of NaSO,CF; is
electrochemical, but the final product I is also likely to be
generated through an electrochemical step. The fitting results
also indicate that the dimerisation of CF; is the dominant side
reaction of NaSO,CF;. Due to the mildness of the side reaction
for caffeine, it is not clear from the fitting whether its major
mechanism is electrochemical. Finally, we also simplify the full
reaction network to a much more parsimonious one while
preserving most of the accuracy, showing that it captures the
major reaction mechanism.

Electrode fouling is also a formidable challenge in electro-
synthesis. Here, we discover that applying AC pulses and inte-
grating 3D-printed cathodes suppress the fouling significantly
and increase the experimental yield by >270%. CFD simulations
suggest that the protrusions on the electrode increase the cell's
turbulence and the components’ mixing. Also, the increased
surface area of the electrode further enhances the surface-to-
volume ratio of the reaction, promoting the conversion of the
reactant into the product. As such, the combination can be
readily adopted for continuous electrosynthesis of many
desired compounds. Although only unpressurised microflow
reactors are used in this study, further optimisation of the
reactor and process design, such as increasing working pres-
sure, adding gaseous vents, and implementing process loops,
can improve the electron and reagent utilisation efficiency
significantly.
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