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The dynamical behavior of binary mixtures consisting of highly charged colloidal particles is studied by
means of Brownian dynamics simulations. We investigate differently sized, but identically charged
particles with nearly identical interactions between all species in highly dilute suspensions. Different
short-time self-diffusion coefficients induce, mediated by electrostatic interactions, a coupling of both
self and collective dynamics of differently sized particles: the long-time self-diffusion coefficients of a
larger species are increased by the presence of a more mobile, smaller species and vice versa. Similar
coupling effects are observed in collective dynamics where both time constant and functional form of
intermediate scattering functions’ initial decay are influenced by the presence of a differently sized
species. We provide a systematic analysis of coupling effects in dependence on the ratio of sizes,
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1 Introduction

Dynamical processes in strongly interacting systems and their
relation to the time-averaged structure are since decades in the
focus of scientific interest. Understanding of freezing pro-
cesses, where correlations covering orders of magnitude in
time are crucial, is still a challenge both from the viewpoint
of experiment and theory. With evolving photon correlation
spectroscopy’ as a quasielastic scattering method accessing
timescales from microseconds to hours, colloidal suspensions
gained interest as model systems on, compared to atomic or
molecular systems, enlarged scales of lengths and times: the
availability of highly defined particles with tailored interactions
establishes a fruitful combination of experiment and theory to
investigate structure-dynamics relations in interacting systems
self-organizing to analogues of imperfect gases, liquids, glasses
and even colloidal crystals.”® Colloidal suspensions have
become relevant model systems for an experimental test of
mode coupling theory describing slow dynamic processes such
as, e.g., the glass transition.*™®

Opposite to model hard-sphere colloids interacting via their
mutual excluded volume, highly charged colloidal particles
interact via the long-range electrostatic repulsion of equally
charged macroions. Hence, these systems form at volume
fractions as low as ¢ = 10> colloidal crystals.® According to
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number densities, and the strength of electrostatic interactions.

DLVO theory,'® charged colloids interact via a screened Cou-
lomb- or Yukawa-potential while the mutual excluded volume
and van der Waals interactions are not relevant in dilute
systems.

Binary mixtures of charged colloidal particles have previously
been studied in two dimensions.'*™” In three dimensions, studies
are so far limited to hard-sphere systems'®>* while only few works
investigate mixtures of charged particles.”*® The vast majority of
existing studies focuses on the self-dynamics of identical particles
employing both, theoretical®** and experimental**** methods.
Collective dynamics are up to now only rarely analyzed.***°
Investigations of self- and collective diffusion processes in binary
mixtures are up to now reported using systems with hard-sphere
interactions.***

We demonstrate that employing highly parallelized code it is
feasible to calculate distinct, time-dependent van Hove functions
from trajectories of comparatively large systems consisting of
16000 particles. By spatial Fourier transform, finally, dynamic
structure factors are obtained. These quantities can, in principle
be obtained via quasielastic scattering experiments in the time
domain, eg, photon correlation spectroscopy. In multi-
component systems of differently sized particles consisting of
the same material, an average dynamic structure factor as a
weighted sum of the partial structure factors is obtained by these
experiments. Partial structure factors are experimentally accessi-
ble with index-matching experiments, if particles with different
refractive indices are available. Even if such particles are available,
for charged colloids, however, tuning the suspending medium’s
refractive index affects the protolysis of functional groups and
thus their number of effective charges and interactions.>® Typi-
cally, assuming a constant surface charge density, the number of
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effective charges is proportional to the particle surface. A possible
experimental access to differently sized, but equally charged
particles is the combination of particles stabilized via differently
acidic functional groups: small particles with highly acidic func-
tional groups and large particles with less acidic groups can,
controlled by the suspending medium’s pH provide equal number
of effective charges. Since the preparation of such a system is
highly challenging, we investigate in a first approach using
computer experiments possible dynamic coupling effects in such
binary mixtures.

We investigate, how different mobilities of equally charged
particles with identical time-averaged interactions influence
the non-Gaussian diffusion of interacting systems. The wave-
vector resolved, distinct partial correlation functions can be a
valuable test for theoretical predictions of structure-dynamics
relations in charged multi-component systems.

In this paper, we investigate structure-dynamics relations in
dilute, binary mixtures of equally charged but differently sized
particles by means of Brownian dynamics simulations. Since
the strength of electrostatic interactions essentially depends on
the number of effective charges, the interactions in such
systems are practically identical between all species. Different
particle sizes, however, lead to different Stokes-Einstein diffu-
sion coefficients as short-time self-diffusion coefficients with
impact both on long-time self and collective diffusion coeffi-
cients: mediated by electrostatic interactions, the long-time
dynamics of a larger species is influenced by the presence of
a smaller, more mobile species. We investigate long-time self-
diffusion coefficients and, to quantify collective diffusion in
mixtures of highly charged colloids, partial intermediate scat-
tering functions where the influence of both size- and number
density ratios is systematically assessed.

For metastable, supercooled liquids, we compare different
static and dynamic freezing criteria such as the Hansen-Verlet
criterion®® based on the maximum total structure factor, the
dynamic Léwen criterion®” based on the ratio of long- to short-
time self-diffusion coefficient and the Debye-Waller factor as
long-time limit of the dynamic structure factor. We demon-
strate using Brownian dynamics that the long-time dynamics in
binary mixtures is significantly influenced by different short-
time mobilities of its constituents.

2 Theoretical background
2.1 Charged colloidal particles

The interaction between charged colloidal macroions can, accord-
ing to the DLVO theory,"’ at relevant distances r; be written as

V(Vij) 5 eko/2 ze—xr,»/
=Zg gl ———— ) — 1
ksT T\ + ka/2) 1y )

with the thermal energy kg7, the macroions’ number of effective
charges Z., and their diameter o. lp = ey/(4neeoksT) is the
Bjerrum length depending on the electron charge e, and the
permittivity &, of the suspending medium. Due to counterions
present for reason of electroneutrality, the colloidal macroions
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interact via a screened Coulomb- or Yukawa-potential with the
inverse Debye length

1/2
K= (sz > p,z,2> , @)

i

where 'p; is the number density of counter ions carrying z
electron charges. Extending the single species Yukawa potential
to multiple species, the pair potential reads as

ek‘g_,-/Z e i 3
1—0—1«;,—/2) 1+x0;/2) 1y~ )

V(rs) e 2

kT

= B Zefr,iZefr (

Suspensions consisting of highly charged colloidal particles,
due to the long-range electrostatic repulsion, self-organize to
liquid-like ordered and even crystalline structures at extremely
low densities® with particle distances as large as ten times the
particle diameter. For such highly dilute systems, the pairwise
additive approximation of the interactions is an adequate
assumption® neglecting hydrodynamic interactions as a con-
sequence of their extremely small volume fraction. Typical pair
correlation functions g(r) show, that distances comparable to
the particle size do not occur: collisions of these electrostati-
cally interacting particles are not observed and the mutual
excluded volume, unlike in hard-sphere systems, does not play
a role for the self-organization.

2.2 Brownian dynamics simulation

Relevant time scales for the Brownian motion of colloidal macro-
ions are orders of magnitude larger than those of the suspending
medium particles. The rapidly varying degrees of freedom of the
suspending medium can be eliminated employing a projection
operator formalism>* ™ leading to a generalized Fokker-Planck
equation. Restricting to times larger than momentum relaxation
times with typically 7, & 10™° s, such particles’ equation of
motion can be described as

N
ri(t+ AN =r(0)+p Z (D - £) At
=1
4)
+

-

(Vi Dy)At +R; + O;(7)

Jj=1

employing Ermak’s algorithm.>®*"*° Here, r(t) is the position of
particle 7 at time ¢, f = (kT)~ "' the inverse thermal energy, and Dy
the diffusion tensor. The force acting on particle j is denoted as f;
and R; is a random displacement caused by the rapidly fluctuating
interactions between the suspending medium and the colloidal
macroions with the properties

(R{7)) =0 (5)
and

(Ri(1)-R(t + A?)) = 6D,AL (6)
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neglecting hydrodynamic interactions. In pairwise additive
approximation, the force f; acting on particle j reads as

fi=—> V,V(r) )

with V(r;) being the potential of two macroions with distance
vector r;. Neglecting hydrodynamic interactions in highly dilute
suspensions, the diffusion tensor Dy is approximated as D =
D, X with I denoting matrix identity and

_ ksT
" 3oy

0,i (8)
the Stokes-Einstein diffusion coefficient of particle i depending
on the viscosity n of the suspending medium and the particle
diameter ¢;. In absence of hydrodynamic interactions, the
derivative V¢D; = 0 vanishes.

2.3 Dynamic properties

The time-dependent self-diffusion coefficient Ds ,(t) of a particle
i is accessible via its mean-square displacement as

D) = g o {I®) v+ 0F) ©)

T
Both, the short-time limit D, and the long-time limit D(SL) are
time-independent. The short-time self-diffusion coefficient is
the Stokes-Einstein diffusion coefficient. The reduced self-
diffusion coefficient

Ds,i(t)
Dreq £ = 5l
S,i ( ) DOA[ )

(10)

as a size-independent quantity allows to analyze the time-
dependence of the self-diffusion in mixtures.

In an alternative way, the time-dependent self-diffusion of
particle 7 is accessible from the van Hove function®

G(ry, 1) = %< . (11)

Sr —ri(r) + r.;(O)}>

1

LJ

= Gg(ry t) + GD(riﬁ t) (12)

with Gs denoting its self and Gy, its collective part.

In a mixture of N¢ species for each species « a self correla-
tion function Gg,(r; ¢) exists which obeys the differential
equation

0Gs,(rj,t
% = Ds ,(t)V*Gs 4(rii, t) (13)
with the solution
-3/2 r ii2
Gso(rii t) = (4nDs o (1)1) " “exp “4Ds, (1)1 (14)

where in the limit ¢ - oo the long-time self-diffusion coeffi-

cient Dg,(t - o) = DY) results.
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In such a mixture, No(N¢ + 1)/2 different, distinct van Hove
functions Gp ,4(tjg — Ty 1)

Gpp(r,t) = ]<Z Z S[r—mp(r+1)+ riac("~')]> :

(NaN/;)l/z T
(15)

exist and are accessible from the trajectories.
Analogously to eqn (13), the distinct part of the van Hove
function obeys the differential equation

9Gp,up(rj, 1)

T = DC,aﬁ(t)szDﬂﬂ (rij> ’)

(16)
which reads as

aGD,xﬁ (Q7 Z)

. = —Dcp(1)0*Gp 5(Q, 1)

(17)

in reciprocal space. The van Hove function Gp,,4(Q, ¢) is related
to the intermediate scattering function S,4(Q, t) as

Saﬁ(Qr t) = GD,ac/f(Qy t) + 59(/5

with d,; denoting the Kronecker symbol.

In a binary mixture, three partial intermediate scattering
functions are accessible from the trajectories. Normalizing by
the static structure factors S,4(Q, 0) = S,4(Q, ¢ = 0), reduced
intermediate scattering functions

S&ﬂ(Qv t) - 6&/3
Szx/f(Qvo) - 60{/}

are obtained. Due to spherical symmetry, for liquid like struc-
tures, these quantities depend only on the modulus Q = | Q| of
the wave vector.

To identify a freezing transition in interacting systems,
different criteria are described in the literature. The Hansen-

(18)

Slr)ei/;(Q )= (19)

Verlet criterion®" is based on the maximum of the static
structure factor and identifies a frozen state for systems with
max[S(Q)] = 2.85. Lowen et al. suggest a dynamical freezing
criterion based on the reduced long-time self-diffusion coeffi-
cient, to identify a frozen state when D{'/D, < 0.098.°%°% A
frequently used criterion to characterize the glass transition is a
non-zero Debye-Waller factor S(Q, ¢ — 0)/S(Q, 0) indicating a
frustrated a-process.>37%°

2.4 Computational details

We performed Brownian dynamics simulations employing the
previously described and well known Ermak-McCammon
algorithm,®® neglecting hydrodynamic interactions in three
dimensional space employing a cubic box with periodic bound-
ary conditions. The mean-square displacement (Ar?(£)) and
partial distinct van Hove functions are calculated from the
simulation trajectories. By Fourier transform, from the latter
quantities intermediate scattering functions S(Q,t) are
obtained. The parameters used for Brownian dynamics simula-
tions are compiled in Tables 1 and 2.

The diameter o, = 100 nm is kept constant during all
simulations, while oy is varied from 100 nm to 20 nm to obtain
binary mixtures including a virtually binary mixture with

Soft Matter, 2024, 20, 8897-8908 | 8899
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Table1l Simulation parameters and properties of the suspending medium
(water) used in Brownian dynamics simulations of binary colloidal Yukawa
systems

Parameter SI units

Temperature T=1298.15K

Box length Lp=2.52 x 107° m
Total number density o =1 x 10" m™3
Time base 1=1x10°s

Time step At=2.0 x 10" °s
Viscosity 7=89x10 *Pas
Relative permittivity & =78.3

Bjerrum length Jp=7.160 x 107 m
Particle number Np =16 000

Table 2 Particle-dependend parameters used for Brownian dynamics
simulations of binary mixtures, compiled for particles with diameter g =
100 nm and og = 50 nm with identical number of effective charges Zega =
Zeiip = 400 and identical number densities 1pA = 1/)5 =5x10Y m™3

SI units Reduced units

Lp=2.52 x 10> m

ot =1 x 10" m™?
At=2x10"°s

K =1.897 x 10°m™*

Do =4.908 x 1072 m*s™"
Do =9.815 x 107 m* s
Apa = 1.155 x 10 ' m

App = 1.151 X 10 * m

Agp = App

App = 1.148 x 10 * m

L* = Lg/o, = 252.0

Pl = 'Pror0a’ = 0.001
At* = At/t = 0.002

K* = ko = 0.1897

Dy o = Doat/oa’ = 0.4908
DS,B = D()‘B‘E/(TA2 =0.9815
ARA = AAA/GA = 1155
Aiy = App/op = 1151
Apa = App

Aty = App/oa = 1148

oa = o = 100 nm. The number of effective charges of both
species is varied in the range of Zega = Zegrp = 300-600. To
investigate the influence of relative particle number densities
Lop/*pa, three different ratios *pp/*pa = {1, 2, 4} are simulated.
Additionally, in Table 2 the reduced interaction parameters

elco‘,-/Z

) ; e;m’,-/2
i = A Z iZ J
j = ABZefr, eff./<1 T KO—]./Q) 1+ x0;/2

(20)

are compiled for g, =100 nm and o = 50 nm With Zegp = Zegep =
400. The interaction parameters differ by less than one percent
at identical number of effective charges for all simulated particle
sizes. Depending on the particle sizes, the volume fractions of
the investigated systems are in the range of 4.2 x 10°° < ¢ <
5.2 x 10~*, We investigate colloidal macroions with monovalent
counter ions in absence of additional stray ions.

Starting from a bcc structure, in ten successive simulations,
each with 10" time steps, with drastically reduced number of
effective charges of Zega = Zegrp = 50, a gaseous configuration is
prepared. Using this disordered configuration, in ten successive
simulation runs of each 10" time steps liquid-like ordered
systems consisting of particles with the respective number of
effective charges are prepared. The convergence of equilibration
is monitored by comparison of static pair correlation functions
and the time-dependence of self-diffusion coefficients computed
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in each run. After equilibration, a production run of 2 x 10° time
steps is performed.

From its trajectory, the mean-square displacement and the
distinct van Hove functions are computed. To estimate uncer-
tainties of the results, twelve independent production runs are
evaluated for each system. The uncertainties are given as triple
standard deviations of the results.

3 Results and discussion

In the present work, we investigate binary colloidal suspensions
of equally charged, but differently sized particles, interacting
via a repulsive, screened electrostatic or Yukawa-potential. The
interaction is primarily governed by the number of effective
charges of the particles, the permittivity of the suspending
medium, the temperature, and the mean interparticle distance
depending on the total number density. Therefore, the inter-
action only slightly depends on the particles’ size and is
neglectable. Due to practically identical interactions between
all species in time average, as visible in Fig. 1, the partial pair
correlation functions gaa(7), g2as(r), and ggg(r) are identical.

3.1 Self dynamics

In Fig. 2, the reduced time-dependent self-diffusion coefficients
in a virtually binary mixture of identical particles (lhs) and
differently sized, but equally charged particles (rhs) are dis-
played. In the virtually binary mixture of identical particles, the
time-dependence of the self-diffusion coefficients is identical.
Opposite, in presence of a differently sized, smaller species, the
reduced long-time self-diffusion coefficient D(SI,});/DO,A is

—gaa(r/oa)
20F —'gBB(T/UA)
-=gaB(r/on)
1.5
=
S
~
E
=10t
[«
0.5}F
0.0 1 1 1 Il
0 10 20 30 40 50

r/oa

Fig. 1 Partial pair correlation functions g,4(r/aa) of a binary suspension of
Yukawa particles. The suspension consists of a large species with the
diameter o5 = 100 nm and a smaller species with the diameter g = 50 nm.
The number of effective charges of both species is Zegra = Zesrg = 400 at
identical number densities pa = 1pg = 5 x 10Y m~>.

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Reduced time-dependent self-diffusion coefficients Ds,(t)/Dyg , of a virtually binary suspension of identically sized species with diameters g5 =
og = 100 nm, identical number of effective charges Zesa = Zers = 400 and number densities *pa = *pg = 5 x 10¥ m~3 (left). Corresponding reduced time-
dependent self-diffusion coefficients of a binary colloidal mixture consisting of differently sized species with g5 = 100 nm and og = 50 nm, but still
identical number of effective charges Zea = Zerrs = 400 and number densities *pa = *pg = 5 x 10 m~3 (right). The corresponding long-time limits are
indicated as a dashed line for the virtually binary mixture and as dotted lines for the binary mixture.

enhanced while that D%};/DOYB is reduced. In the short-time
limit, consistently, the respective Stokes-Einstein diffusion
coefficients are approached. For intermediate times, a subdif-
fusive motion leading to formal time-dependent self-diffusion
coefficients is observed.

In contrast to the effective one-component system, different
Stokes-Einstein diffusion coefficients of a mixture’s constitu-
ents lead to a different time-dependence of their self-diffusion
coefficients: in the short-time limit, both self-diffusion coeffi-
cients approach the respective Stokes-Einstein diffusion coeffi-
cient, while in the long-time limit different reduced long-time
self-diffusion coefficients D(nggred are observed. The influence of
the identical number of effective charges Zeg o = Zegt g is visible
in Fig. 3 for a binary suspension consisting of particles with
diameter g, = 100 nm and og = 50 nm at identical particle
number densities *ps = 'pg =5 x 10" m~3. For comparison, the
self-diffusion coefficients in a virtually binary mixture of iden-
tical particles, i.e., an effective one-component system, is
depicted as well. With increasing number of effective charges
and therewith increasing interactions, the long-time self-
diffusion coefficient non-linearly decreases.

Generally, the long-time self-diffusion coefficients of a larger
species with smaller Stokes-Einstein diffusion coefficient are
enhanced by the presence of a smaller species with correspond-
ingly larger Stokes-Einstein diffusion coefficients and vice
versa. The differences of long-time self-diffusion coefficients
decrease at identical ratios of sizes and number densities with
increasing strength of electrostatic interaction.

As visible in Fig. 4, with increasing particle-size ratio, the
enhancement and reduction of reduced long-time self-diffusion

This journal is © The Royal Society of Chemistry 2024

coefficients increases, too. In suspensions with different num-
ber densities 'p, # ‘pp, reduced long-time self-diffusion

0.35 _§ o
\\ ? DS, A
\
i oy
0.30F ™\, 5 D)
% )
0.25 | \‘ N ’I‘DS,B
. v 0 1p{®
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Q 015} M ‘~~~ N
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~~A
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Fig. 3 Reduced long-time self-diffusion coefficients of a binary mixture
in dependence on the number of effective charges Zeg. Those of the large
species are depicted as open upper triangles while those of the small
species are represented by open lower triangles. For comparison, the
values for one-component systems of both species with the same total
number density are displayed as open circles and crosses. The dashed lines
are cubic splines as a guide to the eye.
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Fig. 4 Reduced long-time self-diffusion coefficients D(SL,L/DOJ for a binary
suspension with number of effective charges Ze¢ = 400 in dependence on
the diameter ratio ga/og and the ratio of their number densities lpB/lpA at
constant total number density 1pior = 1 x 10*® m~3. Circles denote the large
species A and triangles the small species B. The dashed lines are cubic
splines as a guide to the eye.

coefficients of the minority component change more than those
of the majority component. The numerical values of reduced
long-time self-diffusion coefficients in virtually binary, as well
as binary mixtures are compiled in Tables S1 and S2 of the ESL.¥
Let us define a reduced excess long-time self-diffusion
coefficient
pL _ pL)+

AD(S];B _ S, S,

DOAzx (21)

as difference of the reduced long-time self-diffusion coefficient
of species ¢ in a mixture with total number density . to that
of species o in a one-component system with 'p, = 'pior. As
visible in Fig. 5, for sufficiently large electrostatic interaction, a
nearly linear dependence of the modulus of this reduced excess
long-time self-diffusion coefficients on the ratio (o4 “peor)/(0s
'p,) is observed. The slope of this nearly linear dependence can
be considered as a dynamic coupling constant (. As visible from
Fig. 6, the dynamic coupling constant linearly depends on the
number of effective charges (Table S7 of the ESIt).

3.2 Collective dynamics

In addition to the self-dynamics, we investigate the collective
dynamics employing intermediate scattering functions obtained
by Fourier transform of distinct van Hove functions. The partial,
distinct time-dependent pair correlation functions are calculated
from simulation trajectories employing eqn (15). In Fig. 7, distinct,
time-dependent partial pair correlation functions G,4(r/o4, t) and
the corresponding partial dynamic structure factors S,4(Qoa, t) for
t=0,¢=10.0 ms and ¢ = 25.0 ms are displayed for a binary mixture
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Fig. 5 Modulus of the reduced excess long-time self-diffusion coefficient
in dependence on the ratio (64 Ypior)/ (s *p.). The dashed lines are linear fits
to the data.

o}
\
0.012 s
\
AN
Q
\\
0.010 “
R
N
\\\
0.008 | "
oN
\
\\\
0.006 [ >
\
N
N\
‘o
0-004 B \\
\\
~o
300 400 500 600
et

Fig. 6 Dependency of the coupling constant { on the number of effective
charges Zeg. The dashed line is a linear fit to the data.

with Zega = Zeges = 400, diameters o4 = 100 nm and ¢ = 50 nm at
identical number densities 'p, = 'pp =5 x 10" m™>.

In the here investigated liquid-like systems, all partial time-
dependent structure factors decay to zero in the long-time limit.
We quantify the collective short-time behavior by stretched
exponentials exp(—at)” as a heuristic approach at the wave-

vector Qnax at the maximum of the static structure factor.

This journal is © The Royal Society of Chemistry 2024
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Fig. 7 Partial, distinct pair correlation functions G,(r/o, t) displayed for t = 0, t = 10.0 ms, and t = 25.0 ms (upper row). The correlation functions result
from a system with Zegs o = Zesr.s = 400 with diameters g5 = 100 nm and o = 50 nm at identical number densities *pa = pg = 5 x 10Y m~3. In the lower
row, the corresponding partial intermediate scattering functions S,5(Qaa, t) obtained as spatial Fourier transforms are shown.

Let us first consider a virtually binary suspension consisting of
identical particles. In Fig. 8, the reduced partial, distinct inter-
mediate scattering functions Sf5es(Qmax £) are shown for a suspen-
sion of colloidal macroions with diameter 5 = g = 100 nM, Zeggp =
Zegep = 400 effective charges at identical number densities Loa =
'op =5 x 10" m . Here, the functional form of decay is identical
for all partial intermediate scattering functions.

The relaxation rates a and stretching exponents b of
stretched exponentials of virtually binary mixtures are extracted
from fits covering correlation times until S, 5(Qmax, ) = Sup(Qmax,
0)/2 is reached.

In Fig. 9, the relaxation rates a in effective one-component
systems are displayed in dependence on the number of effective
charges Z.¢ for different diameters. Normalized to the respec-
tive Stokes-Einstein diffusion coefficients D,, a universal
reduced relaxation rate, decreasing with the number of effective
charges Z. is obtained. The exponent b decreases in first
approximation linearly with increasing number of effective
charges and is independent of the particle size.

In a binary mixture of differently sized but still equally charged
particles, the time-dependence of partial intermediate scattering
functions differs as shown in Fig. 10 for particles with diameters
0a = 100 nm and o = 33 nm with Zga = Zegp = 400 effective
charges at identical number densities 'py = 'pg =5 x 10" m >, As
expected, the decay of Saa(Q, ) is the slowest and that of Sgp(Q, )

This journal is © The Royal Society of Chemistry 2024

the fastest. The relaxation of the correlation between both species
Sas(Q, 1) is in between Sxa(Q, £) and Sgp(Q, ©).

The relaxation rates a,; in binary mixtures of particles with
64 =100 nm and ¢y = 33 nm at the same number densities 'p, =
'pp =5 x 10”7 m~? in dependence on the number of effective
charges Zeg = Zegra = Zest,p is displayed in Fig. 11. For compar-
ison, those of effective one-component systems consisting of
particles with diameters g, = 100 nm and ¢ = 33 nm, respec-
tively, are depicted as well. The values of the relaxation rates
and the stretching exponents are compiled in the Tables S3-S6
of the ESL{ In analogy to self-diffusion, also the decay of
intermediate scattering functions is influenced by the presence
of a differently sized species: the relaxation rates of the correla-
tion between the larger particles are enhanced in the presence
of more mobile smaller particles and vice versa. As expected, the
relaxation rates of correlations between different species a,p
are in between the relaxation rates a,, and agg of correlations
between identical particles. With increasing number of effec-
tive charges Zegr = Zegra = Zefr,5, @ Nonlinear decay of relaxation
rates is observed, approaching a common limit in the case of
very strong electrostatic interactions.

Defining an excess relaxation rate as

Adyy = 22— o (22)

*
a%f}(
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Fig. 8 Reduced time-dependent, partial distinct structure factors

SEﬁ,;(Omax, t) of a virtually binary suspension of identical particles with
diameter ¢ = 100 nm at identical number density *p = 1pg = 5 x 10 m~3
with Ze = 400 effective charges. The stretched exponentials are displayed
as dashed grey lines.
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Fig. 9 Relaxation rates a,, normalized to the respective Stokes—Einstein
diffusion coefficient Dg , at Qmax in virtually binary mixtures of identical particles
in dependence on their number of effective charges Z.¢ for different particle
sizes g,. The dashed line is a cubic spline as a guide to the eye.

with «}, denoting the relaxation rate in a one-component
system and a,, that in a binary mixture at identical total
number densities. Analogously to self-diffusion, the modulus
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Fig. 10 Partial intermediate scattering functions S'D?f,;(@max, t) of a binary

colloidal suspension of particles with diameters o5 = 100 nm and og =
33 nm with identical number of effective charges Zega = Zesrg = 400 at
identical number densities *pa = 1pg = 5 x 10 m~3. The dashed grey lines
are stretched exponential fits of the data.
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Fig. 11 Relaxation rates a, in a binary mixture of particles with diameters g5 =
100 nm and og = 33 nm in dependence on the number of effective charges
Zetr = Zesin = Zetrp at identical number densities 1pA = 1;)3 =5 x 10 m~3. For
comparison, the corresponding relaxation rates for one-component systems
consisting of particles with 4 = 100 nm (x) and a5 = 33 nm (+) are displayed as
well. The dashed lines are cubic splines as a guide to the eye.

of excess relaxation rates of correlations between identical
particles depend in first approximation linearly on the ratio

This journal is © The Royal Society of Chemistry 2024
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(o4 *pro)/ (08 "p,) for sufficiently strong electrostatic interaction
as visible in Fig. 12.

Opposite to one-component systems, the stretching expo-
nents b, differ in binary mixtures of equally charged particles
with different sizes as shown in Fig. 13 for a mixture of particles
with 6, = 100 nm and o = 33 nm at identical number densities
'pa ="ps =5 x 10" m~>. The stretching exponents b,z of the
partial intermediate scattering functions Sf{iB(QmaX, t) are for
all investigated numbers of effective charges practically iden-
tical to one-component systems consisting either of the larger
species A or the smaller species B at the same total number
density. In presence of a smaller species B, the stretching
exponent by, is larger than b,p indicating a more compressed
relaxation. The stretching exponent bgg of the intermediate
scattering function Spp(Qmax, ¢) is reduced by the presence of a
larger species A indicating a more stretched relaxation.

With increasing number of effective charges and thus elec-
trostatic repulsion, a linear decrease of all stretching exponents
b,p is observed, where the differences bas—bgp also decrease
with Zgg.

Let us analogously to the excess relaxation rate Aa,, define
an excess stretching exponent

Abm = bm - b,

x (23)
with b} indicating the stretching exponent in a one-component
system with the same total number density. For sufficiently
strong electrostatic interaction, similar as for the reduced
excess long-time self-diffusion coefficient, a nearly linear
dependence on the ratio (54 'pwor)/(08 'p.) (Fig. 14) is observed
where the slope decreases with the number of effective charges
Zott.

This journal is © The Royal Society of Chemistry 2024
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3.3 Comparison of freezing criteria

The Hansen-Verlet criterion® uses the mean structure factor as
freezing criterion. Since in our case all partial structure factors
are identical, also the mean structure factor (S,3(Q)).; is
identical to the partial ones. We found that with a number of
effective charges larger than Z.; 2 450 the Hansen-Verlet
criterion max{(S,5(Q)),s] X 2.85 is exceeded, predicting a frozen
state for the entire binary mixture (Table 3).

Léwen et al.®® proposed a reduced long-time self-diffusion
coefficient D[S%Q/Doya < 0.098 as a dynamic freezing criterion for
species «. For an effective one-component system with Zeg =
450, opposite to the Hansen-Verlet criterion, the dynamic
freezing criterion predicts a non-frozen state. Due to the
reduced long-time self-diffusion coefficient of particles with
o =50 nm in presence of particles with ¢, = 100 nm at identical
number densities 'p, = 'pg, this dynamic freezing criterion
predicts a selectively frozen state of the more mobile subsystem
B and a non-frozen state of the less mobile species A in a binary
mixture. (¢f. Tables S1 and S2 in the ESL¥)

Both for one-component systems and binary mixtures, the long-
time limits of reduced partial intermediate scattering functions
S5(Q, t — o) decay to zero indicating a liquid-like state for all
here investigated systems. At a total number density of 'pr; = 1 x
10" m 3, systems with Zes = 450 effective charges do not melt
starting from a bec-structure. Hence, liquid-like ordered systems
with Z. 2 450 are metastable, supercooled liquids. Also for these
systems, the Debye-Waller factors vanish, indicating a non-arrested
state with still complete structural relaxation. Comparing the here
discussed freezing criteria, only the Debye-Waller factor reliably
distinguishes between a supercooled liquid and a colloidal glass.

Soft Matter, 2024, 20, 8897-8908 | 8905
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Table 3 Maximum max[(S,4(Q)),sl of the mean static structure factor in
dependence on the number of effective charges Ze¢ of identically charged
particles with diameters o5 = 100 nm and og = 50 nm at identical number
densities *pp = 2pg = 5 x 10 m™3

Zest max[(‘ga/i(Q))a/f]
300 2.107(23)

350 2.363(24)

400 2.65(4)

450 2.885(25)

500 3.14(4)

550 3.38(4)

600 3.57(5)

4 Conclusion

In this paper, we investigate structure and dynamics of binary
Yukawa systems. Preserving the strength of electrostatical
interaction, i.e., the number of effective charges, we study the
influence of different mobilities quantified by Stokes-Einstein
short-time diffusion coefficients of differently sized particles.
Due to practically identical interactions between all species,
also the partial correlation functions are identical. Mediated by
the electrostatic interaction, however, coupling effects both in
long-time self-diffusion and collective diffusion are observed.
The long-time self-diffusion coefficients of a less mobile
species are enhanced by the presence of a more mobile, smaller
species and vice versa. A dynamic coupling is also visible in
collective dynamics in the relaxation rates as well as the
functional form of the correlation decay in partial intermediate
scattering functions calculated from time-dependent, partial

8906 | Soft Matter, 2024, 20, 8897-8908
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correlation functions. These coupling effects are quantified by
respective excess quantities using pure systems with the same
interactions and total number densities as reference systems.
For sufficiently strong electrostatic interactions, in first
approximation a linear dependence of excess quantities on
the ratio (o5 'peor)/(cs 'p.) is identified.

Furthermore, we compare different freezing criteria for
metastable liquid-like structures. Despite for systems with
Zet 2 450 effective charges at a total number density of 'p =
1 x 10" m™® the static Hansen-Verlet criterion indicates a
completely frozen state and the dynamic Léwen criterion a
selectively frozen state, all intermediate scattering functions
asymptotically decay to zero in the long-time limit. Hence, a
structural arrest is not observed in the here investigated
systems.

We have demonstrated the feasability to calculate distinct
van Hove functions for considerably large systems including
mixtures giving access to partial, time-dependent pair correla-
tion functions using massive parallel computing either on
CPUs or GPUs. Due to correlation functions up to large correla-
tion lengths intermediate scattering functions as spatial Four-
ier transforms are accessible with high accuracy as well.
Intermediate scattering functions are valuable data for compar-
ison either with experimental data resulting from quasielastic
scattering experiments in the time domain or theoretical
approaches such as mode coupling theory.

Including hydrodynamic interactions is a remaining task
especially at higher volume fractions where a glass transition is
expected. Using the available partial static structure factors as
an input, multi-component mode coupling theory is capable to
predict time-dependent processes such as self- and collective
diffusion. The comparison of the here provided simulation data
with multi-component mode coupling theory is a promising
test for the latter approach.
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