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Dynamics of switching processes: general results
and applications in intermittent active motion

Ion Santra, †*a Kristian Stølevik Olsen b and Deepak Gupta †*cd

Systems switching between different dynamical phases is a ubiquitous phenomenon. The general understanding

of such a process is limited. To this end, we present a general expression that captures fluctuations of a system

exhibiting a switching mechanism. Specifically, we obtain an exact expression of the Laplace-transformed

characteristic function of the particle’s position. Then, the characteristic function is used to compute the

effective diffusion coefficient of a system performing intermittent dynamics. Furthermore, we employ two

examples: (1) generalized run-and-tumble active particle, and (2) an active particle switching its dynamics

between generalized active run-and-tumble motion and passive Brownian motion. In each case, explicit

computations of the spatial cumulants are presented. Our findings reveal that the particle’s position probability

density function exhibit rich behaviours due to intermittent activity. Numerical simulations confirm our findings.

1 Introduction

Switching between different dynamical phases is a widespread
phenomenon in a wide range of complex systems.1–3 Many
examples can be found in a biological setting, including transi-
tions between stages of the cell-cycle,4,5 changes in animal
motility patterns,6,7 diffusion of particles in mammalian cells,8,9

and target-binding proteins that switch between sliding motion
along DNA strands and three-dimensional excursions.10,11

Living or active systems are ideal candidates for displaying
dynamical switching.12–15 For example, such systems are often
capable of processing environmental information, leading to sub-
sequent adaptation and changes in motility patterns,16–18 a prop-
erty not shared with their passive counterparts. The study of
physical properties of life-like systems often falls under the
umbrella of active matter.19–22 A plethora of examples can be
found, ranging from motile cells23 and synthetic active colloids24

on the microscale all the way to macro-scale living organisms25 and
granular systems.26–28 Several theoretical investigations of active
particles that undergo dynamical switching has been seen recently,
including switching chirality29–32 and particles that switch between
many possible self-propulsion states.33–35 Furthermore, recent

theoretical investigations show how such intermittent active phases
can aid in spatial exploration and target search.17,36

A widespread type of switching found both on microscopic
and macroscopic scales is activity that only acts intermittently,
where directed motion is interspersed with passive or immobile
phases.37–54 Interestingly, from an experimental perspective,
intermittent activity can easily be achieved in systems of light-
activated particles.55 Such experimental modelling of active
behaviours has opened a door to design self-propelled particles
with a broad range of novel behaviours,56,57 including the
ability to make particles reverse their direction of motion with
a specified asymmetry in the forward and backward speeds.58

In this paper, we present a general framework that captures the
dynamics of a two-phase switching process (see Fig. 1). In particular,
we derive an exact expression for the (Fourier–Laplace transformed)
probability density function of an observable that evolves according
to the rules of two different phases. We employ the (Fourier–Laplace
transformed) probability density function to compute the expres-
sion for the effective diffusion of the switching process, finding
conditions on the waiting-time distribution that minimises the
effective diffusivity. Motivated by the experiment based on light-
activated particles,55 we study a minimal stochastic model in one-
dimension involving a generalized run-and-tumble particle with
intermittent passive phases. Using the results of the switching
formalism, we first study the generalized run-and-tumble particle
and characterise its position fluctuations, and find an optimal
switching rate that maximises long-time diffusion. Then, we explore
the same process with intermittent passive phases by obtaining the
first few position’s cumulants exactly. We also discuss the time
evolution of the position distribution of the active particle with
intermediate passive phases, and show interesting short- (obtained
by a perturbative analysis) and long-time behaviors.
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The rest of the paper is organised as follows. Section 2 builds
the general framework of the switching process and discusses
the method to compute the fluctuations of the particle’s posi-
tion. Section 3 contains the derivation of the effective diffusion
constant for a general scenario. In Section 4, we discuss two
examples of switching processes, with detailed analysis of their
time-dependent properties. Then, we discuss the position prob-
ability density function for a generalized run-and-tumble particle
switching its behaviour to Brownian motion intermittently in
Section 5. Finally, we summarize the paper in Section 6. Some of
the detailed expressions are relegated to Appendices.

2 General formalism

In the past several decades, the theoretical statistical physics
community has explored the fascinating nature of dynamical
switching processes by investigating their statistical properties.
Examples include modelling of dynamical coexistence of slow-
and fast-diffusion in liquids and caging effects in glassy
materials,59,60 as well as theoretical work on the dynamical
disorder.61–63 Additionally, stochastic resetting,64–71 diffusive sys-
tems with a switching diffusion coefficient,72–76 alternating dyna-
mical phases,77–81 and even the blinking of quantum dots82,83 fall
under the umbrella of the stochastic switching process. Several
frameworks have been proposed to deal with systems exhibiting
dynamical switching, such as hybrid and composite stochastic
processes,72,84,85 piece-wise deterministic Markov processes86 and
hidden Markov models.87–89 Here, we consider a general approach
to model systems with switching mechanisms, which enable us to
reproduce many some of the above examples.

In this paper, we consider a general dynamical process, where a
system switches stochastically between two phases, 1 and 2 (Fig. 1).

Stochastic dynamics characterize the evolution of this switching
mechanism.90 Without loss of generality, we assume that the
particle’s trajectory begins in the phase 1 and remains in this phase
for a time-interval t1 before switching its phase to phase 2. It
executes the phase 2 dynamics for a time-interval t2, and then, its
phase switches back to phase 1. This process iterates until the
observation time t ¼

P
j¼1

tj . The waiting time-intervals t1, t3, . . . (t2,

t4, . . .), which correspond to a switch from phase 1 to phase 2 (phase
2 to phase 1), are drawn from the probability density function
W12(t) � W1-2 (W21(t) � W2-1), see Fig. 1. Then, the survival
probabilities S1(t) or S2(t), respectively, denote the probability that
the particle starting from phase 1 or phase 2 has not switched to its
complementary phase until time t. Mathematically, these read as

S1ðtÞ �
ð1
t

dtW12ðtÞ; (1a)

S2ðtÞ �
ð1
t

dtW21ðtÞ: (1b)

To proceed further, we write the propagator of the particle
(probability density function of particle’s position) evolving solely
in phase 1 (or phase 2) until time t, having started from position -

x0

at time t0; this is denoted by P1(-x, t|-x0, t0) [or P2(-x, t|-x0, t0)], where -
x

is the particle’s position at time t. Further, we assume no potential
energy landscapes in either of these phases; therefore, the particle’s
dynamics in each phase depends on the distance covered from its
initial location in time t � t0. Thus, we write

Pj (
-
x � -

x0, t � t0) � Pj (
-
x � -

x0, t � t0|0,0) = Pj (
-
x, t|-x0, t0),

(2)

for the phase index j = {1, 2}.
For simplicity of notation, we assume that the particle starts

from the origin, i.e., -
x0 = (0, 0,. . .), at time t = 0 in phase 1. Let the

time-interval between the i’th and the (i + 1)’th switching event be
ti+1, and the displacement in that time-interval be -

xi+1. Then, the
propagator accounts for the contributions arising from trajectories
experiencing different numbers of switching events until time t.

Let us first compute the contribution to the probability
density function of the particle’s position -

x in time t, from a
trajectory that has not experienced a single switching event
until time t. This is given by

f0(-x, t) � S1(t)P1(-x, t). (3)

Note that, the right-hand side of the above eqn (3) is in a product
form. This is because the switching between the phases and the
individual dynamics in each phase are independent events.

Now, suppose a single switching event occurs from phase 1
to 2 in time-interval t1, and in the remaining time t2 = t � t1, no
switching occurs. Then, we have

f1ð~x; tÞ �
ð1
�1

d~x1

ð1
�1

d~x2

ðt
0

dt1W12 t1ð ÞP1 ~x1; t1ð Þ

�
ðt
0

dt2S2 t2ð ÞP2 ~x2; t2ð Þd ~x�~x1 �~x2ð Þd t� t1 � t2ð Þ;

(4)

Fig. 1 (a) Schematic representation of a two state stochastic process,
where a particle iteratively switched between two arbitrary abstract dyna-
mical phases. (b) The particle switches between phase 1 and 2 iteratively,
with corresponding waiting times t, where t is chosen from the probability
density functions W1-2(t) � W12(t) and W2-1(t) � W21(t).
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for d-
x � dx1dx2dx3. . .. Several comments are in order. The

first part, i.e., W12(t1)P1(-x1, t1), indicates that the particle
is evolved by the phase 1 dynamics for a time-interval
t1, and then, underwent a switching event. Further, the
second part, i.e., S2(t2)P2(-x2, t2), is for the particle that followed
the phase 2 dynamics and did not undergo further switching
events in the remaining time-interval t2. The intervals t1 and t2

are arbitrary and hence they have to be integrated over along with
a delta function ensuring that the total observation time is t = t1 +
t2. Another delta function ensures that the particle reaches -

x after
travelling -x1 and -x2, respectively, in phases 1 and 2.

The upper limits of the ti integrals can be set to +N, since
the delta-function still ensures that the region of integration in
the (t1, t2) plane remains the same. Then, we have

f1ð~x; tÞ �
ð1
�1

d~x1

ð1
�1

d~x2

ð1
0

dt1W12 t1ð ÞP1 ~x1; t1ð Þ

�
ð1
0

dt2S2 t2ð ÞP2 ~x2; t2ð Þd ~x�~x1 �~x2ð Þd t� t1 � t2ð Þ:

(5)

It is easy to generalize the above procedure for any number
of switching events. For instance, for an odd number of switch-
ing events (particle ends up in phase 2 at time t), the contribu-
tion to the probability density of particle’s position is

f2mþ1ð~x;tÞ �
Y2mþ2
j¼1

ð1
�1

d~xj
Y2mþ2
k¼1

ð1
0

dtkW12 t1ð ÞP1 ~x1;t1ð Þ

�W21 t2ð ÞP2 ~x2;t2ð Þ . . .W12 t2iþ1ð ÞP1 ~x2iþ1;t2iþ1ð Þ

�W21 t2ið ÞP2 ~x2i;t2ið Þ . . .S2 t2mþ2ð ÞP2 ~x2mþ2;t2mþ2ð Þ

�d ~x�
X2mþ2
i¼1

~xi

 !
d t�

X2mþ2
i¼1

ti

 !
;

(6)

for a positive integer m Z 0. Similarly, for an even number of
switching events (particle ends up in phase 1 at time t) the
probability density of particle’s position becomes (m Z 0)

f2mþ2ð~x;tÞ �
Y2mþ3
j¼1

ð1
�1

d~xj
Y2mþ3
k¼1

ð1
0

dtkW12 t1ð ÞP1 ~x1;t1ð Þ

�W21 t2ð ÞP2 ~x2;t2ð Þ . . .W12 t2iþ1ð ÞP2 ~x2iþ1;t2iþ1ð Þ

�W21 t2ið ÞP2 ~x2i;t2ið Þ . . .S1 t2mþ3ð ÞP1 ~x2mþ3;t2mþ3ð Þ

�d ~x�
X2mþ3
i¼1

~xi

 !
d t�

X2mþ3
i¼1

ti

 !
:

(7)

Therefore, using eqn (5)–(7) the probability density function
particle’s position -x at time t is

pð~x; tÞ �
X1
n¼0

fnð~x; tÞ ¼
X1
m¼0

f2mð~x; tÞ þ f2mþ1ð~x; tÞ
� �

: (8)

The summation on the right-hand side (8) can be evaluated in

the Fourier–Laplace transform defined by,

~�f ð~k; sÞ ¼L �f ~k; t
� �h i

¼
ð1
0

dte�st
ð1
�1

d~x ei
~k�~xf ~x; tð Þ; (9)

where s and
-

k, respectively, are the conjugate variables with
respect to time t and position -

x, and the overhead bar and tilde,
respectively, denote the Fourier and Laplace transformed
expressions. This gives

~�p ~k; s
� �

¼
X1
m¼0

~�f2m
~k; s
� �

þ ~�f2mþ1
~k; s
� �h i

; (10)

for

~�f2mð~k; sÞ ¼ L W12ðtÞ �P1
~k; t
� �h i� �m

L W21ðtÞ �P2
~k; t
� �h i� �m

�L S1ðtÞ �P1
~k; t
� �h i

;

(11)

~�f2mþ1ð~k; sÞ ¼ L W12ðtÞ �P1
~k; t
� �h i� �mþ1

L W21ðtÞ �P2
~k; t
� �h i� �m

�L S2ðtÞ �P2ð~k; tÞ
h i

:

(12)

Then, we perform the summation in eqn (10), and this gives
Fourier–Laplace transformed probability density function:

~�p ~k;s
� �

¼
L S1ðtÞ �P1

~k;t
� �h i

þL W12ðtÞ �P1
~k;t
� �h i

L S2ðtÞ �P2
~k;t
� �h i

1�L W12ðtÞ �P ~k;t
� �h i

L W21ðtÞ �P2
~k;t
� �h i :

(13)

The above eqn (13) is the characteristic function for the switch-
ing process in the Laplace space. The above formula is true for
both Markovian and non-Markovian switching protocols. Simi-
lar results are found in ref. 59 and 91–94.

3 Effective diffusion coefficients

The propagator (13) is applicable to a wide range of switching
processes. However, in several situations, it might be difficult to
analytically invert the Fourier–Laplace transformed probability
distribution (13). Nevertheless, the propagator (13) is useful to
extract dynamical information for a general class of systems.
Herein, we derive an exact expression for the effective diffusion
coefficient valid for any two unbiased dynamical phases.

The n’th order position fluctuations along the one-
dimensional coordinate x can be obtained by differentiating

the Laplace transformed characteristic function ~�p ~k; s
� �

(13)

with respect to kx and setting ki = 0 (for all i = x, y, z,. . .), and
then, inverting the Laplace transform. For simplicity, in what
follows we discuss one-dimensional processes. Therefore, the
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nth order position moment is

xnðtÞh i ¼ ð�iÞnL�1 @n~�pðk; sÞ
@kn

����
k¼~0

� �
: (14)

The second derivative of the switching propagator (13) takes
the form

~�p
0 0 ðk ¼ 0; sÞ ¼ AðsÞ

1� ~W12ðsÞ ~W21ðsÞ
þ BðsÞ

1� ~W12ðsÞ ~W21ðsÞ
� �2; (15)

where prime indicates a derivative with respect to k, and we

used the zero-mean property ~P
0
i ðk ¼ 0; tÞ ¼ 0 as well as normal-

ization P̃i(k = 0,t) = 1 for both phases. For brevity, we have
introduced the functions

AðsÞ � L S1ðtÞP
00
1ðk; tÞ

h i
þ ~W12ðsÞL S2ðtÞP

00
2ðk; tÞ

h i
þ ~S2ðsÞL W12ðtÞP

00
1ðk; tÞ

h i���
k¼0

;

(16)

BðsÞ � ~S1ðsÞ þ ~S2ðsÞ ~W12ðsÞ
� �

~W21ðsÞL W12ðtÞP
00
1ðk; tÞ

h ih
þ ~W12L W21ðtÞP

00
2ðk; tÞ

h ii���
k¼0

:

(17)

To obtain the long-time mean squared displacement and the
effective diffusion coefficient, we have to consider the domi-
nant pole in s as s - 0. First, we note that the term [1 �
W̃12(s)W̃21(s)] in the denominator of both fractions in eqn (15)
can be written for small s-values as‡

1� ~W12ðsÞ ~W21ðsÞ ¼ s t1h i þ t2h ið Þ þ O s2
	 


; (18)

by noting that Wij(t) denotes the probability density function
and W̃ij(s = 0) = 1. Since the second term in eqn (15) has
denominator [1 � W̃12(s)W̃21(s)]2, this term will be the leading
contribution at late times (e.g. small s). Hence, the long-time
behaviour is given by

gx2h i ¼ � Bð0Þ
s t1h i þ t2h ið Þ½ �2

þ O s�1
	 


: (19)

where Bð0Þ � 0. Upon inverting the Laplace transform, one
finds that at long times, hx2(t)i E 2Defft, with the effective
diffusion coefficient:

Deff � lim
t!1

x2ðtÞ
� �

2t
¼ � Bð0Þ

2 t1h i þ t2h ið Þ2
: (20)

Finally, from eqn (17) we can calculate Bð0Þ by using the fact
that S̃i(0) = htii, W̃ij(0) = 1, as well as

L WijðtÞP
00
i ðk ¼ 0; tÞ

h i
ðs ¼ 0Þ ¼ �

ð1
0

dtWijðtÞ x2ðtÞ
� �

i
(21)

By combining the above we find the effective diffusion

coefficient

Deff ¼
Ð1
0 dtW12ðtÞ x2ðtÞ

� �
1

2 t1h i þ t2h ið Þ þ
Ð1
0 dtW21ðtÞ x2ðtÞ

� �
2

2 t1h i þ t2h ið Þ : (22)

This expression is valid for any two symmetric processes with
mean squared displacements hx2(t)ii (i = 1, 2), for any switching
protocol as long as the mean waiting times are well-defined
htiio N. When the particle is immobile in one of the phases,
e.g., hx2(t)i2 = 0, and the waiting time in the first phase is
exponential, we recover the results obtained in ref. 95. When
both phases are diffusive and the waiting times exponential, we
recover existing results from models with switching diffusion
coefficients.74

In the case of intermittent active systems where the motion
is interspersed with passive periods, we can use the above
general formula (22) together with the known expression for
the mean squared displacement of an active particle to obtain
the effective diffusion coefficient. We let phase 1 correspond to
the active phase, and phase 2 to the passive Brownian motion.
Active particles are characterized by a persistence time tp, and
the mean squared displacement takes the form96,97

hx2(t)i1 = 2v2tp[t + tp(e�t/tp � 1)], (23)

where v is the self-propulsion speed. As the persistence time
becomes smaller, a passive-like behaviour appears. Hence,
active–passive switching can be thought of as the motion of
an active particle that switches from the persistent motion, to
less persistent motion, for example as part of an intermittent
search strategy.

The passive phase is diffusive with hx2(t)i2 = 2Dt where the
passive diffusion coefficient is D. Eqn (22) then gives

Deff ¼
t1h i

t1h i þ t2h i
v2tp þ

t2h i
t1h i þ t2h i

D

þ
v2tp2 ~W12 tp�1

	 

� 1

	 

t1h i þ t2h i

:

(24)

We note here that while the long-time effective diffusion
coefficient of the active particle without passive phases would
have been simply v2tp, the long-time diffusion in the presence
of switching also depends on the transient behavior coming
from the mean squared displacement of the active phase,
eqn (23). While this transient is irrelevant at late times in the
absence of switching, the recurrent restarts of the active phase
make it relevant at late times once switching is considered. The
above calculation remains general, and is valid for any waiting
time density W12(t) in the active phase.

Therefore, a relevant question is how the choice of distribu-
tion of the active phase durations affects the effective diffusion
coefficient. Since W̃12(tp

�1) = he�t/tpi, we note that by Jensen’s
inequality, we have W̃12(tp

�1) Z e�ht1i/tp. At fixed mean dura-
tions of the active phase, this inequality is saturated only by the
deterministic case W12(t) = d(t � ht1i). Hence, at fixed durations
of the two phases, the effective diffusivity is always smallest
when the duration in the active phase is deterministic:‡ ~WijðsÞ ¼

Ð t
0dt e

�stWijðtÞ � 1� s
Ð t
0dttWijðtÞ þ O s2

	 

¼ 1� shti þ O s2

	 

:
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Deff[W] Z Deff[d] � Dmin
eff . (25)

Hence, fluctuations in the active phase durations are needed
for effective spatial exploration.

Furthermore, since W̃12(s) r 1 by monotonicity of integrals,
we also have the upper bound

Dmax
eff ¼

t1h i
t1h i þ t2h i

v2tp þ
t2h i

t1h i þ t2h i
D: (26)

Hence, the effective diffusion coefficient is bounded as Dmin
eff r

Deff r Dmax
eff , with the explicit expressions given above (25) and

(26).
To illustrate the above results, we specifically consider the

case when the active durations are drawn from a gamma
distribution:

W12ðtÞ ¼
tg�1

tg0GðgÞ
e�t=t0 ; (27)

where G(�) is the Gamma-function. Its Laplace transform reads

~W12 tp�1
	 


¼ tp þ t0
tp

 ��g
; (28)

From this, the effective diffusion coefficient can be easily
obtained from eqn (24). We note that in this case, the depen-
dence on the duration of the passive Brownian phase enters
only through its first moment, and is insensitive to further
details of the distribution W21(t).

Fig. 2a shows the mean squared displacement obtained
numerically together with the theoretical prediction [i.e.,
eqn (24) with (28)], verifying that the system’s long-time behaviour
will be diffusive with the effective diffusion coefficient Deff (22).

Fig. 2b shows the effective diffusivity rescaled with the late-
time pure run-and-tumble diffusion coefficient DRT � v2tp, as a
function of the ratio ht1i/ht2i.

4 Model: active particles with
intermittent passive phases

Section 2 discusses the framework of modelling processes
switching between two arbitrary homogeneous dynamical
phases. While general properties of such systems can be
studied for symmetric processes, such as the effective diffusion
coefficients in Section 3, the framework is also capable of
handling more involved processes with bias. In this section,
we consider in detail the case of a (potentially biased) run and
tumble particle (RTP) that intermittently switches to passive
Brownian motion (see Fig. 3).

Let us consider the dynamics of an overdamped self-
propelled particle in one dimension. Similar to the dynamics
of the light-activated Janus particles,58 this particle has three
phases of motion: (i) a forward propulsion with a speed vf,
when irradiated by a UV light; (ii) a backward propulsion with a
speed vb when irradiated by a green light; and (iii) a diffusive
motion in the absence of light. Mathematically, the following
equations model these phases:

_xðtÞ ¼

vf forward propulsion;

�vb backward propulsion;ffiffiffiffiffiffiffi
2D
p

ZðtÞ passive diffusion;

8>>><>>>: (29)

where vb,f Z 0, and Z(t) is a delta-correlated Gaussian white
noise with zero mean: hZ(t)Z(t0)i = d(t � t0) and D is the diffusion
coefficient for the phase (iii).

We define the following switching mechanism between the
three phases. The switching between the forward to backward
propulsion and backward to forward propulsion (i.e., switching
between UV and green light, and vice versa, respectively) happens
at a rate afb and abf, respectively. The switching from the active
propulsion phase to the passive diffusive phase, (i.e., any light
being turned off) occurs at a rate %rap; while the switching from
the passive to the active phase, (i.e., any light being turned on)
occurs at a rate %rpa. Notice that we assume that when the lights
are turned on, the particle can be either exposed to the UV or
green light with equal probability. Furthermore, for simplicity,
we consider a case where the particle always starts from the

Fig. 2 (a) Mean squared displacement of an active run-and-tumble
particle intermittently switching to a passive phase. Active durations are
drawn from a gamma distribution (27) with shape index g = 3. The dashed
line shows theoretical prediction based on the effective diffusion coeffi-
cient [i.e., eqn (24) with (28)], while circles show numerical simulation data.
For simplicity, the passive phases have deterministic duration ht2i = 1/2.
Remaining parameters used are v = 1, D = 1, tp = 0.5. (b) Effective diffusivity
rescaled with DRT � v2tp as a function of the ratio of active durations to
passive durations, again for the case when active durations are drawn from
a gamma distribution (27) with shape index g = 3. In this case, we have set
D/DRT = 0.1, so that passive phases are slow compared to the active
motion.

Fig. 3 Trajectory of a generalized run-and-tumble particle (orange and
blue) with intermittent passive phases (red).
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origin x = 0 at time t = 0 from any one of the active phases with
equal probability.

It is always convenient to define a characteristic length – c �
vf/afb and a time-scale T � ‘=vf . Then, eqn (29) can be
expressed in the dimensionless variables x0 = x/c and
t 0 ¼ t=T, and dimensionless (rescaled) diffusion coefficient
D0 � DT

�
‘2. For convenience, we drop prime from these

quantities, and write

_xðtÞ ¼

1 forward propulsion;

�y backward propulsionffiffiffiffiffiffiffi
2D
p

ZðtÞ passive diffusion;

8>>><>>>: ; (30)

where y � vb/vf measures the asymmetry in the backward
to forward speed. The noise is again delta-correlated in
time hZ(t1)Z(t2)i = d(t1 � t2). In the dimensionless units, the
relative switching between backward to forward motion occurs
at a rate A = abf/afb, and active–passive switching rates become
rap and rpa.

In the following sections, we investigate this three-phase
dynamics using the general switching formalism. To this end,
we divide the dynamics eqn (30) into (1) an active phase where
the particle switches between a forward propulsion state and a
backward propulsion state; and (2) a passive diffusive phase.
The active phase, a generalized version of the one-dimensional
RTP, is itself an example of a switching process, which we first
analyze in the following subsection.

4.1 Generalized run-and-tumble particles in one dimension

Several interesting extensions of the symmetric run-and-tumble
particle have been considered over the years, including non-
uniform and anisotropic tumbles.98–100 Here, we apply the
above framework to the case of a run-and-tumble process in
one dimension with biased run speeds,101 before subsequently
including intermittent passive phases.

Here, we discuss the scenario (1). The forward and backward
propulsion are given by eqn (30) (top two lines), they have the
respective propagators,

Pf(x, t) = d(x � t), (31)

Pb(x, t) = d(x � yt), (32)

which in the Fourier–Laplace space read:

~�Pfðk; sÞ ¼
1

s� ik
; (33)

~�Pbðk; sÞ ¼
1

sþ iky
: (34)

Suppose the particle begins in the forward phase. Using
eqn (13) for the exponential switching rate A measuring relative
rate with respect to forward-to-backward propulsion rate afb, we
have for the Fourier–Laplace transform of the distribution
~�pfðk; sÞ:

~�pfðk; sÞ ¼
1þ sþ Aþ iky

sþ ikyþ ðs� ikÞðsþ Aþ ikyÞ: (35)

Similarly, for the particle starting in the backward phase,

~�pbðk; sÞ ¼
1þ sþ A� iky

sþ ikyþ ðs� ikÞðsþ Aþ ikyÞ: (36)

We assume that the initial propulsion state of the active
particle is chosen from the stationary state, pf = A/(1 + A) and
pb = 1/(1 + A). Using this, the Fourier–Laplace transform of the
position distribution becomes

~�pðk; sÞ ¼ ~�pfðk; sÞpf þ ~�pbðk; sÞpb

¼ kð1� AyÞ þ ið1þ AÞ2 þ isð1þ AÞ
ð1þ AÞ sþ ikyþ ðs� ikÞðAþ sþ ikyÞð Þ:

(37)

It is difficult to invert the above equation exactly to obtain a
closed-form expression for the position distribution at all
times. Nevertheless, the n’th moment of the position fluctua-
tions can be obtained by using eqn (14). It turns out that the
RTP is characterized by a non-zero mean,

hxðtÞi ¼ A� y
ð1þ AÞt; (38)

as expected. Interestingly, the mean vanishes when A = y. We
call this the ‘unbiased limit’ of the generalized RTP, where it
has a zero mean in spite of having different velocities in the
forward and backward propulsion phases. More precisely, the
particle spends less time in the propulsion state with higher
velocity, and more time in the lower velocity state, such that
there is no net drift. This can be intuitively understood as
follows. The system is initialized from the stationary probabil-
ities of its forward and backward propulsion states, thus, at any
time t, the average-time spent by the particle in the forward and
backward phase, respectively, is At/(1 + A) and t/(1 + A), which
amounts to the total displacements in the respective phase At/
(1 + A) and Ayt/(1 + A), respectively. The sum of these two
displacements leads to (38). Interestingly, the mean vanishes
for A = y. Notice that this is different from the ‘standard RTP’
limit (i.e., A = y = 1), where again the mean is zero.

The variance s(t)2 � hx2(t)i � hx(t)i2 is obtained as,

s2ðtÞ ¼ 2Að1þ yÞ2
ð1þ AÞ4 e�ð1þAÞt þ tþ At� 1

h i
: (39)

Therefore, similar to the usual RTP, the variance shows
two dynamical regimes depending on the value of tRT �
min(1, A�1),

s2ðtÞ �
veff

2t2 for t	 tRT;

2DRTt for t
 tRT;

(
(40)

where veff and DRT denote the effective velocity of the fluctua-
tions,

veff ¼
ffiffiffiffiffiffi
2A
p ð1þ yÞ

ð1þ AÞ; (41)

and the diffusion coefficient

DRT ¼ A
ð1þ yÞ2
ð1þ AÞ3; (42)
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respectively. Fig. 4a discusses s2(t) for different values of A
showing the ballistic and diffusive regimes of the variance.
Fig. 4b displays veff and DRT as functions of A. Both are zero in
the limits A - 0 and A - N, as in these limits, the particle is
almost deterministic with very few tumbling events. However,
at the intermediate values of A, veff and Deff reach a maximum at
A = 1 and A = 1/2, respectively. The magnitude of the relative
propulsion speed y does not influence the position of the
maximum; however, it determines their respective maximum
values.

We further compute the skewness, SðtÞ ¼
x� hxið Þ3

D E
sðtÞ3 ; of

the position distribution, which quantifies the asymmetry of a
distribution with respect to its mean value. The skewness
vanishes over long time, with the leading order behaviour,

SðtÞ � 3ð1� AÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Aþ A2ð Þ

p t�1=2: (43)

The distribution becomes symmetric about its mean from a
positively or negatively skewed distribution depending on A 4
1 or A o 1. This is because for A o 1, the time spent in the
positive velocity phase is lesser compared to the time spent in
the negative velocity phase. This is shown in Fig. 5a for
different values of A.

Moreover, excess kurtosis, KðtÞ ¼
ðx� hxiÞ4
� �

sðtÞ4 � 3; can also
be computed exactly and goes to zero as,

KðtÞ � �
6 1� 4Aþ A2
	 

Að1þ AÞt : (44)

The distribution thus tends to a Gaussian distribution from a
platykurtic (negative kurtosis) or a leptokurtic side (positive

kurtosis) for 2�
ffiffiffi
3
p

oAo 2þ
ffiffiffi
3
p

; and A 2 0; 2�
ffiffiffi
3
p	 

[

2þ
ffiffiffi
3
p

;1
	 


; respectively, as shown in Fig. 5b. For very small
or large A, the particle spends more time moving in one
direction, thus the distribution approaches the corresponding
normal distribution from one which is more sharply peaked,
leading to the positive kurtosis. The negative kurtosis for
intermediate values of A, on the other hand, occurs due to
the competition of the time spent in the forward and backward
motion, which are of the same order, causing more fluctuations

resulting in the approach to the corresponding Gaussian dis-
tribution to happen from a flatter side.

4.2 Run-and-tumble particles with intermediate passive phases

In the previous Section 4.1, we discuss the case of an active
particle in one dimension switching its directions (forward 2

backward), i.e., the generalized RTP. Herein, following the
framework developed in Section 2, we extend our analysis to
a case of a particle switching its motion between the general-
ized RTP and a passive (Brownian) dynamics. For convenience,
we consider a case in which the particle is initialized in the
generalized RTP phase (we refer to this phase as ‘phase 1’). The
Fourier–Laplace transform of the propagator reads

~�P1ðk; sÞ ¼ ~�pðk; sÞ; (45)

where ~�pðk; sÞ is given in (37). ‘Phase 2’, on the other hand, is a
passive diffusion phase with its propagator in the Fourier–
Laplace space:

~�P2ðk; sÞ ¼
1

sþDk2
: (46)

The general formula for the Fourier–Laplace transform of
the position distribution (13) for waiting times being governed
by Poisson distribution (Wij(t) � rije

�rijt), is

~�Pðk; sÞ ¼
~�P1 k; sþ rap
	 


1þ rap
~�P2 k; sþ rpa
	 
h i

1� raprpa
~�P1 k; sþ rap
	 
~�P2 k; sþ rpa

	 
: (47)

Thus, using the aforementioned ~�P1ðk; sÞ (45) and ~�P2ðk; sÞ (46)

we find ~�Pðk; sÞ exactly [see Appendix A]. The expression of
~�Pðk; sÞ is rather long, and we relegate it to the Appendix A.
Further, it is also difficult to invert this Fourier–Laplace trans-
formed expression. Nonetheless, we compute the first four
cumulants to understand the statistics of this switching process
(i.e., generalized RTP 2 Brownian dynamics).

Employing (14) for eqn (47), we compute the first position
moment:

hxðtÞi ¼ ðA� yÞ
ð1þ AÞ

rap 1� e� rapþrpað Þt
h i

þ rpa rap þ rpa
	 


t

rap þ rpa
	 
2 : (48)

The mean position is independent of the diffusion coefficient,

Fig. 4 Position fluctuations of a generalized RTP. (a) The variance of the
particle for different values of A, crosses over from an initial ballistic phase
to a late time diffusive phase at times t B min(1, A�1). Color intensity
increases with increasing value of the relative switching rate between
backward to forward motion, A. (b) The variation of the effective velocity
veff of the fluctuations and the effective diffusivity Deff with respect to A. For
both plots y = 1.

Fig. 5 Approach of the position fluctuations of generalized run and
tumble particle to a Gaussian distribution. Skewness (a) and kurtosis (b)
as a function of time t. Color intensity increases with increasing value of A.
We fix the speed asymmetry in backward to forward motion to y = 1.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 7
:0

1:
50

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm01054j


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 9360–9372 |  9367

D, of the passive phase, since the only drift comes due to the
particle’s active motion.

At short-time, the mean position retains exactly the same
property as the generalized RTP (38):

lim
t!0
hxðtÞi ¼ ðA� yÞ

ð1þ AÞt: (49)

This can be understood as we consider that the particle always
begins in the active phase, and in the short-time regime, t {
(rap), there are typically no switching events. In the long-time
regime, though there have been an appreciable number of
switching events, the mean is the same as eqn (49), however,
now weighed by the average time spent in the active phase:

lim
t!1
hxðtÞi ¼ rpa

rap þ rpa

ðA� yÞ
ð1þ AÞt: (50)

The variance or the second cumulant captures the position
fluctuations. In the following, we discuss its asymptotic beha-
viours [however, the full-time dependent form can be calcu-
lated using (14) for eqn (47)]:

s2ðtÞ �
Drap þ

Aðvþ 1Þ2
ðAþ 1Þ2

� �
t2 t	 min 1;A�1rap�1

� �
2Deff t t
 max 1;A�1rap�1

� �
;

8>><>>:
(51)

where the effective diffusive coefficient is

Deff ¼
Drap

rapþ rpa
þ
rpaðAþ1Þrap2 Aþy2

	 

þArpa

2ðyþ1Þ2

ðAþ1Þ2 Aþ rapþ1
	 


rapþ rpa
	 
3

þ
rparap A3þ2Arpaðyþ1Þ2þy2þA2ð1�2yÞþAðy�2Þy

� �
ðAþ1Þ2 Aþ rapþ1

	 

rapþ rpa
	 
3 :

(52)

Fig. 6a displays the time evolution of the variance for
different values of rap, indicating the short-time ballistic and
long-time diffusive regime [see eqn (51)].

To investigate how the effective diffusion coefficient Deff (52)
changes with respect to the switching rates, we analyse Deff in
the (rap, rpa) plane. To this end, we note that, in the limit rap -

0, the effective diffusion coefficient Deff - DRT. Moreover, since
we consider the diffusion coefficient in the active phase DRT is
larger than the diffusive phase (so that the diffusive phase is
slower than the active phase), the effective diffusion coefficient
of the particle is always peaked at the line rap = 0. For finite
values of rap, Deff increases with the increase in rpa as the time
spent in the diffusive phases decreases. This is illustrated in
Fig. 6b.

For the higher cumulants, we specifically focus on the case
where A = y (unbiased limit of the generalized RTP). It turns out
that the skewness goes to zero in the long-time limit as

SðtÞ ¼ 3rpaðy� 1Þy ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rap þ rpa
pffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rap þ yþ 1
p

Drap rap þ yþ 1
	 


þ rpay
	 
3=2t�1=2;

(53)

indicating the resulting distribution to be a symmetric one.
Depending on the case, if y is smaller or larger than unity, the
distribution becomes symmetric from a positively or a
negatively skewed distribution, respectively (Fig. 7a). Thus,
though temporal-scaling remains unchanged compared to the
generalized RTP model [cf. (43)], the prefactor is modified.

The kurtosis can also be exactly computed and the leading
order behaviour at long-time limit is given by,

KðtÞ� t�1� 6

rapþrpa
	 


rapþyþ1
	 


Drap rapþyþ1
	 


þrpay
	 
2

� �D2rap rap�rpa
	 


rapþyþ1
	 
3þDrapy rapþyþ1

	 
h
� rap

2þrap �5rpaþyþ1
	 


�rpa 2rpaþ3yþ3
	 
	 


þrpay rap
2 y2þ1
	 


þ2rap rpaðy�3Þyþrpaþy2þyÞ
		

þrpa
2 ðy�4Þyþ1ð Þ


�
:

(54)

The t�1 – coefficient’s sign determines if the kurtosis
approaches Gaussian from a platykurtic or leptokurtic distribu-
tion. For very small or large y, the particle when in the active
phase spends more time in moving in one of the run phases,
leading to sharper distribution than the corresponding Gaus-
sian distribution at a long-time; leading to KðtÞ approach zero
from the positive side. For intermediate y, on the other hand,

Fig. 6 Position fluctuation of a generalized run-and-tumble particle with
intermediate passive phases. (a) Variance as a function of time t. The color
intensity increases with active to passive switching rate rap. We fix rpa = 1.
The red and magenta dashed lines, respectively, indicate the short-time
ballistic and long-time diffusive behaviour. (b) Effective diffusion coeffi-
cient in the (rap, rpa) plane. Here, we fix A = 1 and D = 0.01.

Fig. 7 Approach of the position fluctuations of generalized run and
tumble particle to a Gaussian distribution with intermediate passive phases.
Skewness (a) and kurtosis (b) as a function of time t. Here, we fix rpa = 0.01,
rap = 1, D = 0.01 and different values of y = A.
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the competition between the forward and backward runs is
stronger, leading to stronger position fluctuations causing the
distribution to approach Gaussianity from the negative side.
This is shown in Fig. 7b for different values of y.

5 Time evolution of the position
distribution

In the previous section, we discussed the cumulants of the two
different switching processes. Here, we analyse the time-
dependence of the density of a large number of non-interacting
active particles with intermittent passive phase. For simplicity, we
specialized to the case of the standard RTP (i.e., A = y = 1) with
rap = rpa = r. The Fourier–Laplace transform of the probability
distribution (47) in this case has a simpler form:

~�Pðk;sÞ¼
ðrþsþ2Þ Dk2þ2rþs

	 

Dk2 k2þðrþsÞðrþsþ2Þ½ �þk2ðrþsÞþsðrþsþ2Þð2rþsÞ:

(55)

Since the above (55) Fourier–Laplace transform is difficult to
invert, we first discuss the time evolution behavior of the position
distribution as seen from numerical simulations. Thereafter, we
perform some asymptotic analysis.

Let us first discuss the time evolution of the position
distribution qualitatively. From Fig. 8, we see that at short-
time t { {1, r�1}, the distribution has two different dynamical
regions characterized by an RTP like behavior till x = �t,
followed by non-trivial tail behavior, which we find asymptoti-
cally in eqn (66); at x = �t, there are two Dirac-delta function-like
peaks which can be attributed to the particles that have not
changed propulsion states, or switched to passive state, in time t.
With the increase in time, this peak vanishes, and the two

dynamical regions combine, eventually becoming Gaussian-like
at long-time, as also predicted from the cumulant analysis in the
previous sections, see Fig. 5. In the following, we also find the
asymptotic distribution at very long-time, starting from eqn (55).

5.1 Short-time distribution

To understand the short-time distribution t { (r�1, a�1), we
perform a trajectory-based calculation based on the number of
tumbles and switches that the particle has undergone. We write
the distribution as a perturbative series in the active–passive
switching rate r and the RTP’s tumbling rate afb = abf = a = 1:

Pðx; tÞ ¼
X1
m;n¼0

Pðn;mÞðx; tÞ; (56)

where P(n,m)(x,t) denotes the contributions of trajectories with n
switches and m tumbles and is of the order O rnamð Þ. For time
t { (a�1, r�1), the first few terms in the above series is expected
to provide a good description of the short-time distribution. Let
us systematically compute the first few order contributions.

For trajectories that have undergone neither tumbling nor
switching events, we have the following contribution:

Pð0;0Þ ¼ e�ðaþrÞt
1

2

X
j¼�1

dðx� jtÞ; (57)

where we assumed that the particle starts from x = 0 in the
active phase j = �1 with equal probability 1/2. Notice that the
above contribution (57) is non-zero only at x =�t, and its weight
decreases as time increases. Fig. 8a and b demonstrates these
delta functions at x/t = �1.

Next for trajectories with one switch but no tumbling events,
i.e., the contribution of OðrÞ, we have

Pð1;0Þðx; tÞ ¼
X
j¼�1

1

2

ðþ1
�1

dx1

ðt
0

dt1 re�ðrþaÞt1d x1 � jt1ð Þ
h i

� e�r t�t1ð Þe
� x�x1ð Þ2
4D t�t1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD t� t1ð Þ
p

264
375:

(58)

The terms in the first squared brackets denote the probability
that the particle, starting from x = 0 in the active state j, does
not undergo any tumbling or switching event till time t1 and
reaches to x1 = jt1, then, it switches to the passive-phase. The
terms in the second squared brackets denotes the probability
that once the particle in the passive-phase it stays in the same
phase in the remaining time t � t1 and reaches to the position
x. The integration (58) over x1 gives

Pð1;0Þðx; tÞ ¼
X
j¼�1

1

2
re�rt

ðt
0

dt1e
�at1 e

� x�jt1ð Þ2
4D t�t1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD t� t1ð Þ
p

for jxj4 t:

(59)

An exact closed form of the above integral cannot be obtained.
Nevertheless, the integration can be performed numerically.

Next we consider terms of order OðraÞ. This comes from
trajectories which have undergone one tumbling event at time

Fig. 8 Time evolution of the position distribution of the standard run-
and-tumble particle with intermittent passive phases. Symbols: numerical
simulations. (a) and (b) Correspond to short-time distributions for t { (r�1,
g�1), and g�1 o t o r�1 respectively. The red dashed lines denote the short-
time analytical prediction (66) for the tails, while the solid purple lines
denote eqn (65). The dashed vertical lines denote the position of the delta
function (57). The dot-dashed lines in (c) and (d) denote the large-time
Gaussian behavior (69). Here, we fix D = 1 and r = 0.1.
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t1 before switching to the passive-phase at time t1 + t2,

Pð1;1Þðx; tÞ ¼
X
j¼�1

1

2

ðþ1
�1

dx1

ðt
0

dt1

ðt�t1
0

dt2 are�ðrþaÞ t1þt2ð Þ
h

� d x1 � j t1 � t2ð Þð Þ� e�r t�t1�t2ð Þe
� x�x1ð Þ2
4D t�t1�t2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD t� t1 � t2ð Þ
p

264
375;

(60)

where x1 denotes the distance travelled till time t1 + t2, and the
second brackets correspond to the particle staying in the
passive phase in the remaining time t � t1 � t2. The integral
(60) over x1 can be performed, and it gives

Pð1;1Þðx; tÞ ¼ are�rt

2

X
j¼�1

ðt
0

dt1

ðt�t1
0

dt2
e�a t1þt2ð Þe

� x�j t1�t2ð Þð Þ2
4D t�t1�t2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD t� t1 � t2ð Þ
p

264
375:

(61)

Now let us evaluate the contribution from trajectories, which
have undergone tumbling events, but have never switched to
the passive phase. Such contributions P(0,1)(x,t) is given by

Pð0;1Þðx; tÞ ¼ e�rt

2

X
j¼�1

ðt
0

dt1ae�at1 e�a t�t1ð Þd x� j t1 � t� t1ð Þ½ �ð Þ:

(62)

The right-hand side of above equation can be understood as
follows: e�rt accounts for no switching in the entire duration t,
the factor ae�at1 denotes that the particle undergoes the first
tumble event at t1; e�a(t�t1) denotes that the particle does not
undergo any further tumbling event in the remaining time
t � t1, and finally the delta function denotes the position of the
particle having started in a state j. Performing the integral over
t1, we get

Pð0;1Þðx; tÞ ¼ ae�ðaþrÞt

2
Y t� jxjð Þ: (63)

Similarly, for two tumbles (and no switching event), the con-
tribution to the probability distribution is

Pð0;2Þðx; tÞ ¼ a2e�ðaþrÞt

4
Y t� jxjð Þ: (64)

Analogously, one can find higher-order terms systematically.
However, to understand the observed distributions we truncate
the series (56) for short-time as

Pðx; tÞ ¼ Pð0;0Þðx; tÞ þ Pð0;1Þðx; tÞ þ Pð0;2Þðx; tÞ þ Pð1;0Þðx; tÞ

þ Pð1;1Þðx; tÞ þ O min r2; a3
� �	 


:

(65)

Note that the Heaviside theta functions in both P(0,1) and P(0,2)

indicate that the contributions from these trajectories
remain confined with |x| o t. Thus, the contribution to the
distribution |x| 4 t comes from trajectories with at least
one switch, and for short-time the tails’ distribution can be
approximated as

Ptail(x,t) E P(0,1)(x,t) + P(0,2)(x,t). (66)

Fig. 8 shows the comparison of tails’ analytical results (66) with
the numerical simulations, and it shows a good agreement.

The inner region |x| o t, however, requires the contribution
from all the terms on the right-hand side of eqn (65). Fig. 8a
and b show the comparison of analytical results [eqn (65) and
(66)] with the numerical simulation for the inner region. We
find that a�1 o t o r�1, we see that the inner region shows a
deviation. This is due to the fact that the particle’s trajectories
have undergone multiple tumbles without any switching
events, and higher-order terms in eqn (65) are required.

5.2 Long-time distribution

The behaviour of the distribution near the tails is dominated by
contributions coming from small-k behaviour. In this limit, the
Fourier–Laplace transform simplifies eqn (55) to,

~�Pðk; sÞ � ðrþ sþ 2Þ 2rþ sð Þ
ðrþ sþ 2Þ ðrþ sÞ Dk2 þ sð Þ þ s½ � þ k2ðsþ 1Þ: (67)

Additionally, in the limit s - 0, which corresponds to the long-
time behaviour, the above eqn (67) simplifies to:

~�Pðk; sÞ � 1

sþ k2 Dþ ð2þ rÞ�1½ �=2; (68)

which by inverting the Fourier and Laplace transform, leads to
a diffusive Gaussian scaling of the tails over long-time:

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pt Dþ ð2þ rÞ�1½ �

p exp � x2

2t Dþ ð2þ rÞ�1½ �

 �
: (69)

Fig. 8c and d show a good agreement of the Gaussian description
(69) with the numerical simulation for longer times (t c r�1).

6 Summary

We analyzed a dynamical process characterized by a stochastic
switching mechanism. By employing a trajectory-based
approach, we derived the Fourier–Laplace transform of the
position distribution for a particle undergoing such switching
dynamics, with arbitrary waiting times. We calculated the
generalized diffusion coefficient for this system, assuming
the waiting time distributions possess a finite mean. We then
applied this framework to an example of an active particle
exhibiting intermittent diffusive phases, where we computed
the exact expressions for the first few position cumulants.
Additionally, we derived asymptotic expressions for the tails
of the probability density function at all times, and our results
were corroborated by numerical data.

Although our study focuses on one-dimensional processes, the
general formulas we developed are applicable to any number of
dimensions and can be utilized to investigate switching processes
in higher-dimensional settings. The first-passage properties of
these active processes display intriguing characteristics, particu-
larly when compared to standard diffusion.102 It would be inter-
esting to explore whether intermittent diffusive phases could
potentially enhance the first-passage times of active particles.
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Furthermore, another promising direction for future research
is to examine the role of confining potential,103 many interact-
ing particles, and stochastic resetting64 on the distribution of
switching processes. Finally, there are multiple intriguing
extensions to more than two dynamical phases. Processes that
switch between N dynamical phases can often be decomposed
into multiple two-phase systems. For such decomposition, one
has to modify the rates of switching from one phase to another
and vice versa in the effective sense.104 This is an interesting
topic, and could be considered for future research. In the
future, repeated application of eqn (13) could be used to
study such higher-order switching dynamics. In such cases,
one could also consider cases where switching is coupled to the
system’s state, e.g., by only allowing switching transitions in a
subset of the phases. Furthermore, in this paper, we discussed
switching mechanism by an instantaneous protocol, our
results, however, can be generalized to non-instantaneous
switching protocols by introducing an additional intermediate
phase; such generalization and application of different tem-
poral distribution of intermediate phase will be considered for
future research.
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Appendices
A Exact expressions used in the main text

In this section we provide the exact expressions for some of the
expressions whose asymptotes or derivatives have been shown
in the main text, namely skewness and kurtosis for the general-
ized RTP supplementing Section 4.1 and the generating func-
tion of the RTP with intermediate passive phases used in
Section 4.2.

A.1 Generalized RTP. Using the generating function
eqn (37) and (14), the skewness of the position of the general-
ized RTP is given as,

SðtÞ ¼ �
3ðA� 1Þe�ðAþ1Þt Atþ eðAþ1ÞtðAtþ t� 2Þ þ tþ 2

	 
ffiffiffi
2
p ffiffiffiffi

A
p

Atþ e�ðAþ1Þt þ t� 1ð Þ3=2

(70)

which at large time, reduces to eqn (43). Similarly, from the
fourth moment of the position distribution, the kurtosis can be

obtained as

KðtÞ ¼ 1

A eðAþ1ÞtðAtþt�1Þþ1ð Þ2
3e2ðAþ1Þt�3A
�

� �6A2þ2ðAþ1Þ ðA�3ÞAþ1ð Þtþ17A�6Þþ3eðAþ1Þt
�
� A2�1
	 
2

t2þ4ðAþ1ÞððA�3ÞAþ1Þtþ2Að3A�8Þþ6
�
:

(71)

The above equation at long-times reduces to eqn (44).
A.2 RTP with intermittent passive phases. The Fourier–

Laplace transform of the distribution is given by,

~�Pðk; sÞ ¼ Dk2 þ rap þ rpa þ s
	 


ðk� Aykþ iðAþ 1ÞðAþ rap

þ sþ 1ÞÞ
�
ðaþ 1Þz H Dk2 þ rpa þ s

	 

� raprpa k� Akð

	�
þ iðaþ 1Þ Aþ rap þ sþ 1

	 


�
:

(72)

Here,

H � (A + 1)(A(k + i(rap + s)) + (k + i(rap + s + 1))(iky + rap + s)).
(73)
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