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1 Introduction

Chirality is a fundamental property of most chemical, physical,
and biological systems that is expected to naturally occur in

Emergent mesoscale correlations in active solids
with noisy chiral dynamicsf

2 Silke Henkes*® and Cristian Huepe (2 ¥2<9

Amir Shee,
We present the linear response theory for an elastic solid composed of active Brownian particles with
intrinsic individual chirality, deriving both a normal mode formulation and a continuum elastic
formulation. Using this theory, we compute analytically the velocity correlations and energy spectra
under different conditions, showing an excellent agreement with simulations. We generate the
corresponding phase diagram, identifying chiral and achiral disordered regimes (for high chirality or
noise levels), as well as chiral and achiral states with mesoscopic-range order (for low chirality and
noise). The chiral ordered states display mesoscopic spatial correlations and oscillating time correlations,
but no wave propagation. In the high chirality regime, we find a peak in the elastic energy spectrum that
leads to a hon-monotonic behavior with increasing noise strength that is consistent with the emergence
of the 'hammering state’ recently identified in chiral glasses. Finally, we show numerically that our
theory, despite its linear response nature, can be applied beyond the idealized homogeneous solid
assumed in our derivations. Indeed, by increasing the level of activity, we show that it remains a good
approximation of the system dynamics until just below the melting transition. In addition, we show that
there is still an excellent agreement between our analytical results and simulations when we extend our
results to heterogeneous solids composed of mixtures of active particles with different intrinsic chirality
and noise levels. The derived linear response theory is therefore robust and applicable to a broad range
of real-world active systems. Our work provides a thorough analytical and numerical description of the
emergent states in a densely packed system of chiral self-propelled Brownian disks, thus allowing a
detailed understanding of the phases and dynamics identified in a minimal chiral active system.

bacteria'®*? and sperm cells."*** It has been studied theoreti-

cally for single circle swimmers,">™>* for the clockwise circular
dynamics of E. coli,>*** and for circular and helical motion
under chemical gradients.>**” Groups of chiral swimmers have

active matter. Indeed, in the context of self-propelled particles,
chiral motion has been shown to spontaneously arise due to
asymmetries in the self-propulsion forces or in the particle
geometry," * or as a result of interactions with external fields.>®

The relationship between activity and chirality has been
considered in multiple contexts. Chiral motion has been
observed experimentally in active biomolecules” such as
proteins,® in microtubules,” and in single cells, including
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been shown to display unique forms of collective dynamics,
whether chirality resulted from shape asymmetry,>® > mass
distribution,® or catalysis coating.** Chiral particles can also
display a range of non-equilibrium phases, including a gas of
spinners and aster-like vortices, rotating flocks with either
polar or nematic alignment,®* and states displaying phase
separation, swarming, or oscillations, among others.*

Several theoretical studies have shown that chirality can
strongly affect the collective states that are typically found in
achiral active systems. In cases with explicit mutual alignment
interactions (as in the Vicsek model), it has been shown that
chiral polar swimmers display stronger flocking behavior than
achiral ones, with higher levels of polarization in the ordered
phase,®® and that large rotating clusters with enhanced size and
shape fluctuations can emerge.*” In cases with other types of
angular interactions, a marked attenuation of motility-induced
phase separation (MIPS),*® the emergence of vortex arrays,*®
and chirality-triggered oscillatory dynamic clustering*® have
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been observed. Chirality has also been found to affect the
collective states of active particles without explicit alignment
interactions. For instance, chiral active Brownian particles can
suppress conventional MIPS due to the formation of dynamical
clusters that disrupt the MIPS clusters,’"**> and a quantitative
field theory was developed to account for this suppression.*®
Furthermore, chiral active particles with fast rotation have been
found to form non-equilibrium hyperuniform fluids.***>

Novel collective states have also been identified in inhomo-
geneous systems that combine different types of activity and
chirality. For example, in a low-density environment, binary
mixtures of passive and active chiral self-propelled particles
exhibit transitions from mixed gels to rotating passive clusters,
and then to homogeneous fluids.*® In addition, a mixture of
active particles with different chirality frequencies can create
complex combinations of clusters of different sizes, rotating
at different rates.”” At low density, active chiral mixtures
with opposite chiralities can also give rise to spontaneous
demixing.*® Moreover, the combination of chiral and achiral
swarming coupled oscillators leads to a range of novel beha-
viors, such as the formation of vortex lattices, pulsating clus-
ters, or interacting phase waves.*’

Although most research on chiral systems has focused on
liquid- and gas-like states, solid chiral active states have been
found to naturally arise in systems such as groups of spinning
magnetic particles®® or of starfish oocytes® when hydro-
dynamic torque couplings are included, resulting in active
chiral crystals.”' ™ The interactions in these cases can be cast
as nonreciprocal odd-elastic viscous active couplings, to place
them within the framework of odd active matter.”® The elastic
coefficients then acquire non-symmetric contributions, and the
resulting lack of energy conservation, as well as the polarity-
position coupling, allow for wave propagation and work cycles.
Here we will consider a different class of systems, focusing on a
minimal model of solid “dry” active matter, where chirality is
introduced as part of the active forces, not as an active stress.
Since in this case there are no action-reaction effects in the
active driving, activity cannot be recast as part of the stress
tensor or in the elastic coefficients, and an odd-elasticity
framework is not applicable.

Solid and dense active systems without chirality have
received significant interest in recent years. On one hand, the
emergent states of self-propelled particles with self-alignment
interactions have been studied in multiple contexts.”*"** On the
other hand, various dense and glassy active matter systems®>
without any alignment interaction have been described theore-
tically, using active Brownian particles in ref. 69-81 and active
Ornstein-Uhlenbeck particles in ref. 82-88. However, their
chiral counterparts have so far received limited attention.
In one study, Debets et al.* examined the glassy dynamics of
chiral active Brownian particles, showing that they exhibit
highly nontrivial states and a non-monotonic behavior of the
diffusion constant versus noise at high chirality that we also
find in our system. In another study, Caprini et al.°® showed the
emergence of rotating and oscillating states, deriving an analy-
tical phase diagram by applying an active solid approach
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similar to that presented below, but in a different context.
Lastly, in recent work, Kuroda et al.® used linear elasticity
theory to deduce the presence of long-range translational order
in active chiral crystals with zero noise.

In this paper, we investigate the collective dynamics of chiral
active Brownian disks with elastic repulsive interactions at high
densities, in the solid state. We identify and describe the
different phases, finding an emergent mesoscopic length scale
that can display or not oscillatory time correlations, depending
on the ratio of chiral motion to rotational noise. We derive an
analytical active solid theory to describe these phases, using a
normal mode approach and a continuum elasticity approach,
both of which match our simulations. In addition, we show that
these results remain valid well into the nonlinear regime, just
below the melting transition, and inform the dynamics of the
fluid state. They also extend to different kinds of active binary
mixtures, including mixtures of chiral and achiral particles,
of chiral particles with different rotational speeds, and of chiral
particles with different levels of rotational diffusion.

The paper is organized as follows. In Section 2, we describe
our two-dimensional active solid model of densely packed
self-propelled disks with elastic interactions and intrinsic
individual chirality. In Section 3, we overview the phase space
of dynamical regimes as a function of chirality and rotational
diffusion. In Section 4, we present our analytical results.
We first calculate the orientation autocorrelation functions
using a Fokker-Planck approach; then describe the normal
mode formalism for active solids, calculating the average
energy per mode and the spatial velocity correlations; and
finally describe the continuum elastic formulation. In Section 5,
we characterize the dynamics described by our results and
compare them to simulations. In Section 6, we examine the
melting regime by increasing the level of activity. In
Section 7, we extend our results to heterogeneous mixtures of
disks with different levels of activity and chirality. Finally,
Section 8 presents our conclusions.

2 Model

We consider a system of N densely packed soft chiral self-
propelled disks following overdamped dynamics in a two
dimensional periodic box of size L x L. Disregarding passive
translational diffusion, the dynamics of the position r; = (x;y,)
and of the heading direction or orientational unit vector 7; =
(cos(0;),sin(0;)) of the i-th disk will be given by

I; = Volt; + uF; 0

fis = [@+ V2D (1) i )

Here, v, is the self-propulsion speed, u is the mobility (inverse
damping coefficient), Q is the chiral angular speed (often
referred to as chirality) of the disks, D, is their rotational
diffusion coefficient, and 77 is a unit vector perpendicular
to #i;. Noise is introduced through the random variable 7(t),

This journal is © The Royal Society of Chemistry 2024


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00958d

Open Access Article. Published on 18 September 2024. Downloaded on 1/17/2026 1:29:36 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

following Gaussian white noise with (4t)) = 0 and (n,()y;(t')) =
050(t — t'). The sum of all contact forces over disk i is

F; = Y f;, where S; is the set of indexes of all disks that overlap
JESi

disk i. These forces are modeled as linear repulsion, with f; =
k(|ry| — L)yl |xy| if [r;| < Ip and f;; = 0 otherwise, were r;=r1; — r;
and [, = 2ry is the equilibrium center-to-center distance
between two neighboring disks of radius r,. We note that, in
real-world scenarios, 2 and D, cannot be exactly the same for all
disks. In Section 7, we thus conduct a comprehensive investiga-
tion into binary and complex mixtures of disks with different D,
and Q values, substituting D, by D and Q by Q' in eqn (2).

We note that the orientation dynamics in eqn (2) are
decoupled from the position dynamics in eqn (1), and result
from the interplay between deterministic chirality and angular
diffusion. The deterministic angular speed Q sets a rotational
timescale 7, = Q%; the diffusion constant D, sets a persistence
timescale 7, = D,”'. We will show below that the interplay
between rotational, persistence, and elastic timescales can
generate different collective states.

3 State space overview

We begin by characterizing the different regimes that can be
reached by the model introduced above. Fig. 1(a) presents a
diagram of the resulting phases as a function of the chiral
angular speed Q and the angular diffusion coefficient D,, with
the boundaries computed analytically as we will detail in
Section 4. Broadly speaking, the system develops mesoscopic
range order for low enough Q and D, values (below the blue
line), where patches of disks with strong velocity correlations
spontaneously appear at different scales. For high Q/D, ratios
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(above the red line) the velocity directions displayed by these
patches rotate with a clearly defined chirality, determined by £,
defining the chiral mesoscopic range order (CMRO) regime.
For low Q/D; ratios, no clear chirality is observed and we define
the mesoscopic range order (MRO) regime. In the high Q and
high D, regimes (beyond the blue line), we find instead no
extended regions of high velocity correlation. The individual
particle motion is dominated by deterministic chiral rotation
for high Q/D, ratios (above the red line), in the chiral disorder
(CD) regime, and by stochastic rotational diffusion for low Q/D;
ratios (below the red line), in the dynamic disorder (DD)
regime. Note that the transitions between the four regimes
are smooth and determined by the spatiotemporal dynamics.

Fig. 1(b) and (c) present snapshots of the velocity vectors
and kymographs, respectively, describing the spatiotemporal
dynamics of the velocity angles, for simulations in each one of
the four regimes. Here the sub-panels correspond to: (i) the
MRO regime for D, = 102, = 107, see ESI, (ref. 92) Movie
$1;°* (i) the CMRO regime for D, = 10*, Q = 10>, see Movie S2
(ESIt);%? (iii) the DD regime for D, = 5, Q = 10”2, see Movie S3
(ESI1);*” and (iv) the CD regime for D, = 1072, Q = 5, see
Movie S4 (ESIt).”

All simulations were carried out for N = 3183 disks of radius
7o =1 in a periodic square box of side L = 100, which results in a
packing fraction of ¢ = Nmry*/L> ~ 1, and for the following
simulation parameters (unless otherwise stated): mobility p =1,
elastic repulsive strength k = 1, and active speed v, = 0.01. The
simulations were performed at sufficiently high density and low
active speed to avoid melting, phase separation, and clustering,
in order to focus on the linear response regime. Spatially, the
disks form a crystalline triangular packings without defects,
well in the solid phase, without rearrangements for the

Fig. 1 Dynamical regimes and collective states identified in an active solid with noisy chiral dynamics. (a) Phases on the D, — Q plane: mesoscopic range
order (MRO), chiral mesoscopic range order (CMRO), dynamic disorder (DD), and chiral disorder (CD). The red line traces D, = Q, separating the chiral
(D, < Q) and achiral (D, > Q) regimes. The blue line represents &t = lg, where (g is the equilibrium distance between neighboring particles. The dashed
green line and open green diamonds trace two analytical approximations of the maxima of the elastic energy. The magenta dashed line shows an
analytical expression for the minima of the mean-squared velocity, and thus also of the kinetic energy. The black open circles curve provides the
analytical result for the maximum of the steady-state mean-squared displacement of a single particle in a harmonic well (see Appendix B). (b) Snapshots
of simulations in the four regimes: (i) MRO, (i) CMRO, (iii) DD, and (iv) CD. Each arrow is colored by angle and represents the direction and magnitude of
the velocity vector of the disc at its location. (c) Kymographs corresponding to the snapshots, depicting space-time plots of the velocity angles obtained
from simulations, following the dynamics in time of a slice of the system along the x direction. The snapshots and kymographs display results of
simulations performed with the parameter combinations indicated by crosses in the phase diagram in panel (a).
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duration of the simulation. In the snapshots, each disk is
represented by a small arrow starting at r;, pointing towards
i;, with length proportional to | i;|/, and colored by angle. In the
kymographs, we use colors to display the angle of the velocity f;
of all disks located within a narrow slit, with —r, < y < +ry, as
a function of their x position and time.

The snapshots in sub-panels (i) and (ii) of Fig. 1(b) clearly
show the emergence of mesoscopic-range order, while the
kymographs in sub-panels (i) and (ii) of Fig. 1(c) show that
their temporal dynamics is distinct, with only sub-panel (ii)
showing periodic dynamics that result from a close to determi-
nistic local rotation of the #; vector. Correspondingly, the
snapshots in sub-panels (iii) and (iv) of Fig. 1(b) show dis-
ordered states, while the kymographs in sub-panels (iii) and
(iv) of Fig. 1(c) show that the dynamics in the DD regime is
random in time while the CD regime dynamics is quasiperio-
dic. Note that the periodicity of the angular dynamics in sub-
panels (ii) and (iv) of Fig. 1(c) matches the expected full rotation
period T = 27/Q, with T =200n ~ 628.32 for (ii) and T =2n/5 ~
1.26 for (iv).

In addition to the four regimes described above, the diagram
in Fig. 1(a) also contains dashed green and magenta lines, as
well as lines of open black circles and green diamonds. These
trace four different analytical approximations for the location
in the diagram of the ‘hammering state’ identified in ref. 89,
where the elastic energy contained by the system is maximal
and its kinetic energy is minimal (see ESL, (ref. 92) Movie S5°
for a simulation with D, = Q = 10).

We will deduce analytically below the dynamics and bound-
aries of the different regimes described above.

4 Analytical results

In this section, we present the analytical formulations used to
describe the system. We begin by computing the orientation
dynamics of the heading direction in Section A, since they are
not coupled to the positions. We then formulate a linear response
theory, adopting the method in Henkes et al.> to describe the
linear response in terms of normal modes in Section B, to then
calculate the energy per mode and spatial velocity correlations. We
further simplify the analytical description by implementing a
continuum elasticity framework in Section C, to compute mean-
squared velocity and velocity autocorrelation functions.

4.1 Orientation dynamics

Given that the orientation evolves independently in eqn (2), the
probability distribution P(7,t) for the heading direction 7 as a
function of time will follow the Fokker-Planck equation

0,P(A,t) = DV ;P — QA*-V;P, (3)

where V; is the Laplacian in orientation space. Using a Laplace
transformation approach described in detail in Appendix A, we
can compute an exact expression for the heading orientation
autocorrelation, which is given by

(A(t)-A(0)) = e " cos(Q1). (4)
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Here, the decay rate of the exponential term is given by
7. =D, " and the period of chiral rotation, by 1, = Q' We thus
define D, = Q as the critical line between a regime dominated by
the angular noise and a regime dominated by the deterministic
chirality, which we highlighted as the red diagonal line in
Fig. 1(a). Note that this boundary is formally analogous in
eqn (4) to the limit between damped and overdamped oscilla-
tions, where the high angular diffusion case corresponds to the
overdamped regime, as the mean temporal heading correla-
tions display no oscillatory component.

4.2 Normal mode formulation

In order to express the dynamics in terms of the normal modes
of vibration of the passive system, we first define as r{ the
equilibrium position of disk i for v, = 0, which corresponds to a
minimum of the elastic energy. Using eqn (1), we then find that
the dynamics of small displacements dr; = r; — ¥ around these
equilibrium positions are described by

81",‘ = V()ﬁ,' — Z Kij . 6l'j, (5)
J

where each [{; corresponds to a 2 x 2 block of the 2N x 2N
dynamical matrix. We are interested in expressing the dynamics
over the normal elastic modes of the system, ie., over the
eigenvectors of the dynamical matrix. Each of these 2N normal
modes corresponds to a 2N-dimensional eigenvector that can be
written as a list of N two-dimensional vectors, given by (&7,. . .,&x),
where v = 1,...,2N labels the eigenvector mode associated to the
eigenvalue /,.

We can formally write the displacements in terms of the

N
eigenmodes described above as dor; =) a,&}.
v=1
eqn (5) onto the normal modes, we then obtain the following
uncoupled equations for the dynamics of the normal mode

amplitudes:

Projecting

a;/ =Ny, — )"I/al/) (6)

where 7, is the projection of the self-propulsion force onto the
normal mode v, given by

n,=voy A&l 7)

We note that 5, is the sum of N statistically independent
contributions with bounded moments, each one resulting from
the correlated noise dynamics in time that is followed by its
corresponding 7;. The central limit theorem then implies that
1, must follow a Gaussian distribution, here with (1,(¢)) = 0.
Additio]rvlally, since the eigenvectors form an orthonormal basis
where ) &/ - é;’l = 0,,/, the corresponding two-time correlation
function will be given by (n,(n.(¢)) = o /2)(A()-AE))S,,.-
Replacing the heading autocorrelation expression in eqn (4),
we finally obtain (1,(£)1,(0)) = (v,>/2)e” " cos(Qt), which implies
that the statistical properties of the noise 7, are the same for
any mode v.

This journal is © The Royal Society of Chemistry 2024
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We now calculate the mean potential energy stored in each
mode (see ESIL{ (ref. 92) Section SII for details). By solving
eqn (6), we first find

11
a,(t) = a,(0)e™" +J de'n, (t")e =1, (8)
0

From here, we can obtain the steady state mean squared value
of a,(t) by computing lim (a,?(¢)) to obtain
1—00

2 Dr )‘11/
(a2) = Dt h) ©
22, [(Ds + 2+
The mean energy per mode is given by E, = 1,{a,*)/2 and can
thus be expressed as
2
g, = (Pt h) (10)

4[(Dr )]

We note in this equation that there is a critical curve in the D, —
Q plane that maximizes the mean potential energy injected into
the system by the combined activity of all modes (as shown in
Fig. S2 of the ESI,T (ref. 92)). We can obtain an approximate
expression for this curve by finding the conditions that max-
imize the energy of the stiffest mode only (i.e., the mode least
excited by the activity), which we identified as the main
responsible for the maximum in the total potential energy.
Since the stiffest mode corresponds to the largest eigenvalue
Ay = Amax, its energy will be E* = E,|; _; and its maximum can
be computed using 0E*/0D, = 0. We thus find that the potential
energy injected by activity is approximately maximized for
D? = Q — Amax, corresponding to the dominant mode, i.e. the
maximum eigenvalue A,y = 5.93 + 0.01. This curve is displayed
as the open green diamonds in Fig. 1(a).
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In Fig. 2(c), we visualize a color map of the energy E/Nvy® =
> E,/Nvg® on the D, — Q plane that clearly shows an increase
14

of elastic energy in the low D, and low Q regimes. Fig. 2(e)
presents E/Nv,’ as function of D, for three different Q =1, 10, 20
values, showing the presence of a maximum at intermediate D,
noise strengths, for high chirality (2 = 10, 20). In this regime,
we thus find that the elastic energy can grow despite an
increase in noise strength. In Fig. 2(g), we plot E/Nv,> as
function of Q for three different D, = 1, 10, 20 values, showing
a monotonic decrease of the elastic energy. We display the
maximum of E/Nv,® in the D, — Q plane as the dashed green
line in Fig. 1(a), which matches the previously computed D} =
Q — Jmax curve. This curve suggests that an increase in elastic
energy with noise strength indicates the presence of the
‘hammering state’.*®
Eqn (10) also provides us with expressions for the low and
high limits of angular noise or chirality. In the high noise
case, D;/, > 1 and the mean energy per mode reduces to E,, ~
’D./4(D,> + Q7), which gives rise to two limits: (i) a low
chirality limit Q — 0, where E, — v,>/4D,, and (ii) a high
chirality limit @ — oo, where E, — 0. This latter limit is
connected to the fact that very high chirality disrupts the
persistent translation driven by self-propulsion. In a chiral
crystal with infinite chirality, particles turn in place and dis-
placements behave like in a zero-temperature system, which
also suppresses wall accumulation®® and MIPS.*" In the low
noise case D, — 0, we find E, = v,*/4[4,” + Q*], which also gives
rise to two limits: (i) a low chirality limit with E, — v,*/42,%,
where the lowest modes with /, « 1 are enhanced, and (ii) a
high chirality limit with E,, — v,%/4Q>. On the other hand, for
any noise value, in the Q — 0 limit, we recover from eqn (10)
the same expressions previously obtained in ref. 70 and 93 for
standard (non-chiral or achiral) active particles, as expected.
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Fig. 2 Analytical features of the characteristic length scales, energy, and mean-squared velocity in an active solid with noisy chiral dynamics. (a) and (b)
Color maps of the longitudinal & and transverse &t characteristic length scales on the D, — Q plane, respectively, computed using the continuum elastic
formulation in egn (19). (c) Color map of the energy E/Nvo2 = EE,,/NvO2 on the D, — Q plane, as derived from the normal mode formulation in egn (10).
(d) Color map of the mean-squared velocity (|v|?)/vo? on the D,"— Q plane, resulting from the continuum elastic formulation in egn (20). (e) and (f) Plot of
E/Nvgo? and of <|v|2>/v02, respectively, as a function of D,, for Q = 1, 10, 20. The inset zooms into the minimum of (|v|2>/v02 that appears at high Q values. (g)

and (h) Plot of £/Nve® and of (|v|?)/vo?
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Finally, in order to identify the emergence of mesoscopic
order, we are interested in finding the mean velocity spectrum
(see ESL T (ref. 92) Section SIIA for details). We begin by
expressing the velocity in Fourier space, computing its discrete

N o,
Fourier transform v(q) = Y- ¢ 8F; /N in terms of the r{ equili-
j=1
brium reference positions of the disks. Expanding 6f; in the
normal mode basis, we find

(v@?]) = (v(@) v (Q) =D (@vav)é,(q) - & (q)

v/

S (a2)E @) o,

v/

(11)

N
where we defined ¢,(q) = 3 iy é;.’/N as the discrete Fourier
=

transform of the eigenvectors. Using eqn (6), we then replace
(@) = 2,2{a?) — 22, a,n,) + (n,?) into eqn (11). Here, the (a,*)
term is known from eqn (9), the equal-time correlation (i,%) =
vo’/2 can be computed from eqn (7), and the expression for
(@) =vo*(Dr + 7,)/2[(D: + 1,,)% + Q] in the steady-state (¢t — o)
can be obtained from eqn (8). This leads to the following
explicit expression for the velocity correlation function:

(v =5

v

2 (Dr 4+ A)

M\ T ) 2
|

(12)

This equation allows us examine different limits. For Q = 0,
it simplifies to the velocity correlation function (|v(q)*|) =

(v?/2) 2 [D:/(Dr + 4,)]|€,(q)]*, previously obtained for achiral

active particles in ref. 93. For D, = 0, it simplifies to the velocity
correlation  function  (|v(q)?|) = (v?/2) 3 [@*/(2* + 4.%)]

|€,(q)|* for disordered deterministic rotators.

In most experimental contexts, the extraction of the normal
modes or their eigenvalues is unfeasible, except in specific
scenarios like colloidal particle experiments.”>™” Current
methods are often restricted to measuring in thermal equili-
brium conditions and necessitate extensive data gathering. In
the next subsection, we will therefore extend our findings to the
framework of continuum elasticity theory, which only requires
knowing the elastic constants of the material and is thus much
easier to compute for real-world systems.

4.3 Continuum elastic formulation

To derive the continuum formulation, we begin by writing the
equation of motion for the displacement vector field u(r) =
r'(r) — r, which describes the deformed state r'(r) with respect
to the equilibrium reference state r. As detailed in the ESL ¥
(ref. 92) in the presence of active forces this equation is given by
=V +f (13)
Here, o is the passive stress tensor, with components
< 1 C
Oup = Boypuy, +2G (ux,; - iéa/m},y), and activity is introduced
through self-propulsion forces defined by f,.i(r,t) = vofi(r,f). In
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this expression for the stress tensor, B and G correspond
respectively to the bulk and shear moduli of the isotropic solid,

. 1 .
the strain tensor components u,s = 5[6(11/1/} + 8,;%_} are written

in terms of spatial derivatives of the displacement vectors u(r)
with respect to o, € {x,y}, and the summation over repeated
indexes is assumed. We can see explicitly in eqn (13) that this
active solid is distinct from odd active matter, which only
considers internal active stresses that can be written in terms
of effective moduli.*®

To proceed with the computations, we define the direct and
inverse spatiotemporal Fourier transforms as

1

u(r,7) = g

szqjdcuﬁ(q7 w)e~arron,

ii(q,0) = szrszu(r, fefarton,

and write the continuum equation of motion (13) in Fourier
space as

—ii(q,) = fae(q,0) — D(q)a(q,0). (14)

Here, D(q) is a 2 x 2 dynamic matrix in Fourier space, given by

quz + qu Bq.q,

D(q) =

)

Bqvqy  Bq? +Gq?

where ¢* = ¢,” + q,” (see ESL (ref. 92) for a detailed derivation),
and we defined the active force f,.(r,t) in Fourier space as

fact(q, 0) = V()szl‘J drii(r, 1)e’@r+en,

—00

(15)

We are interested in computing the velocity correlation
functions. To do this, we begin by writing the orientational
correlation in the continuum limit, replacing 7(¢) by a contin-
uous field A(r,t), with (7(t)-A;(t)) = 0:,;(A(t)-n(t')). We then
substitute the Kronecker delta J;; by its Dirac counterpart,
using 8;; - a’§(r — t'), where a is the smallest characteristic
length scale of the system, to obtain (A(r,t)-A(r',t')) = a®5(r —
r')(#A(t)-A(t")). From eqn (15), it is then clear that (f,.(q,w)) = 0,
and the second order correlation function Cyp = {fact(q,w}
f.(q',0")) is simply given by
2(2n)*a®vy’D;

L \e B0 P ’ /
CF (w _ 9)2 +Dr20(q+q )6(w+w)

(16)

If we now consider a finite system (a square of side L,

for simplicity), the wave vector becomes discretized. We can

thus replace the Dirac delta by the Kronecker delta,
1 . .

oq+q) — Wéq/_,q, with Ag = 2n/L. This also leads us to
PEEE

define the spatially discrete Fourier transform f,.(q,w) =

f.c(q,w)/a* for discrete spatial wave vectors q but continuous

frequency w. The correlation function for this discrete Fourier

transform, given by Cg = (f,.(q,0)face(q’,")), will be equal to

2.2
Nm“vy Dy

Cr = m5(w + w’).

(17)
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Finally, by decomposing eqn (15) into a its longitudinal and trans-
verse components @ = #;(q,w)q + @(q,w)q ., with respect to the
wave vector ¢, we can use ¥(q,w) = —iwii(q,w) to obtain the follow-
ing expression for the mean-squared velocity in Fourier space

1+ 7(¢L9)
L+ 27(ELg) +(Eg)*

L+ 7(érq)° ]

N V02

(Ma)P) ==

(18)

1+ 21(Erq)*+(érq)’

Here, we have respectively defined the longitudinal and transverse
characteristic length scales as

£ = B+G tr = G
L /—Dr2 +927 T /—Drz +QZ7

and the control parameter as y = D; / /D2 + Q2.

Fig. 2(a) and (b) display how the longitudinal and transverse
characteristic length scales described by eqn (19) change across
the different regimes on the D, — Q plane. In Fig. 1(a), we used
these equations to define the blue line as the D, and Q values
for which the smallest characteristic length scale ¢t is equal

(19)
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Fig. 2(f) presents (|v|*)/v,”> as function of D, for three
different values of Q = 1, 10, 20. The figure inset shows that
(Iv]*)/vy* displays a minimum at intermediate noise strength D,
and high chirality (Q = 10, 20). This implies that, as this minimum
is reached, kinetic energy must be suppressed despite an increase
in noise strength. Fig. 2(h) plots (|v|*)/v,”> as function of Q for
three different values of D, = 1, 10, 20. In Fig. 1(a), we defined the
magenta dashed line as the minimum of the normalized mean-
squared velocity |(v*)|/v,®>, where most of the self-propulsion
forces feed into the potential energy. This curve can be directly
computed through a numerical integration of eqn (20).

Finally, we will now use the continuum formulation to
investigate the collective temporal dynamics of the system
(see ESL, ¥ (ref. 92) Sections SIIIB-C for details). First, we directly
calculate the velocity autocorrelation function as the integral
over Fourier space

00 (1) = e a0 500’0

(21)

Here, (¥(q,t)¥(q',t')) can be written in terms of the Fourier
integral of (¥(q,w)¥(q’,»")) over the frequencies w and «’.
A long yet straightforward calculation then leads to the follow-
ing expression for the velocity autocorrelation function

H(B + G (@2 — DR) + (@ + Dﬁ)z} cos(Qf) — 2QD,(B + G)’¢* sin(Qz)} e Dt

a2y [dmax
(0 v0) = [ dag

Jmin

J’_

[[qu“ (@ = D)+ (@ + Drz)z] cos(Qf) — 2QD,G2¢* sin(Qt)] e Dit

[((B+G)*q* + Q> — D2)? + 4D2Q]

[(G2q* + Q> — D?2)? + 4D

(B+ G)@*D; (D + Q* — (B+ G)2q*)e BYOT G@D, (D2 + Q2 — G¢*)e 97

[(Drz + Q2 - (B + G)2q4)2+4(3 + G)2q4Q2} [(Drz +0Q2 - G2q4)2+4G2q492}

to the typical equilibrium distance between particles I.
Below this line, the system therefore develops mesoscopic scale
correlations.

Next, we proceed to compute the mean-squared velocity
{[v|?) of our system in real space. We can directly write the

mean-squared velocity of all particles, (|v|*) = <Z |v,-\2>/N,

in continuum form as (|v|>) = [a*/N(2n)?] [d?q(|v(q)|*), where
(|v(q)]?) is given by eqn (18). The upper limit of this integral is
set by the inverse particle size, i.e., by the maximum wave
number g« = 27/a, where a is of the order of the particle size
l,. Using [d?g = 2n[qdg, we can thus write

(P) = s [daalivia) (20

This expression can then be integrated numerically to compute
the mean-squared velocity. In Fig. 2(d), we map (|v|*)/v,> on the
D, — Q plane, showing that the mean-squared velocity is small
for low D, and low Q values, in regimes displaying coherent
mesoscopic motion.

This journal is © The Royal Society of Chemistry 2024

We note that the integral above must be computed numerically
and that the integration limits, gmin and gmax, are respectively
determined by the largest and smallest scales of the system.
Fig. S3 in the ESLi (ref. 92) illustrates eqn (22) in the no
chirality limit Q = 0 (panel a), in the noiseless limit D, = 0
(panel b), for fixed Q as a function of D, (panel c), and for a
fixed D, as a function of Q (panel d). Oscillations with frequency
Q appear in all cases where Q > D;.

We finalize this section by exploring the scaling of the mean-
squared velocity in eqn (18) in two limiting cases: the achiral
active limit for y = 1 (setting Q = 0) and the limit with no noise
% = 0 (setting D; = 0). In the achiral active case, (|v(q)|?) scales as
~(¢érg)~* and in the no noise case, it scales as {|v(q)|*) ~
(érq)"*. In both limiting cases, {|v(q)|*) thus diverges for
vanishing g, but with a different scaling.

In these two limiting cases, we can also compute the closed-
form analytic mean-squared velocity. In the achiral active limit
(2 = 0), we get the previously obtained result®

2y [log(1 + &2 gmax?)  10g(1 + Er*max®)
2 a vy g L qma g T qma

- _ + _ )
(V) 8n &2 &P
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This expression shows that the dominant scaling, (|v|?) ~ &2
or (|v|*) ~ &2, will follow the scaling Ansatz used for highly
dense collective cellular motion in a monolayer.’® In the limit
of no noise (D, = 0), we find

<|V|2> = a2V02 tan! (6L2Qmax2) T tan~! (6T2Qmax2)

81 &2 < ’

which also shows the dominant scaling (|v|*) ~ &p > or
([v]*) ~ &.7%. Note that the mean-squared velocity will have
small values in regimes of low chirality and low noise, which
matches the regime where elastic energy is stored in the sheet,
leading to the emergence of the mesoscopic correlated motion
in the velocity fields.

5 Comparison with simulations

To compare the analytical predictions developed in the pre-
vious section with simulations, we computed the spatial velo-
city correlations in Fourier space {|v(q)|*) as well as the velocity
and orientation autocorrelation functions (Cw(t) = (v()-v(0))
and Cy4(¢) = (7(?)-11(0)), respectively) for a broad range of values
of D, and Q. We focus on the two most salient regimes
identified above: the emergence of correlated velocity fields
for small D, and Q values (Section 5.1), and the extrema of the
elastic and kinetic energy at high D, and @ values (Section 5.2).

5.1 Chiral mesoscopic range order

Fig. 3(a) presents simulation snapshots of the velocity angles
showing the emergence of a CMRO state displaying correlated
velocity fields for small values of D, and €, as shown in the
analytically computed state space diagram in Fig. 1(a).

View Article Online
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Fig. 3(b) and (d) present the spatial velocity correlations in
Fourier space, (|v(q)*|) as a function of |q|, for a range of D, =
0.01, 0.1, 0.5, 1.0 values with fixed Q2 = 0.1, and for a range of
Q =0.01, 0.1, 0.5, 1.0 values with fixed D, = 0.01, respectively.
We observe excellent agreement between the analytical normal
mode formulation in eqn (12) and the simulation results
(respectively solid lines and symbols), showing the emergence
of correlated velocity fields for small D; and Q. The continuum
elastic formulation in eqn (18), displayed as dashed lines,
also shows good agreement with the simulations at low ¢, as
expected.

Fig. 3(c) and (e), show the temporal autocorrelation func-
tions for the orientations and normalized velocities, labeled
Cia(t) and Cy(t), respectively. Here, the C;; analytical curves in
eqn (4) are represented by dashed lines and their numerical
values by open symbols, while the C,, analytical curves (22) are
displayed as solid lines and their numerical values as solid
symbols. In order to best match the numerical integration in
eqn (22) to our simulations, we chose gmin and gmax as the
smallest and largest simulated scales, as detailed in Appendix
C. The red curves and symbols in Fig. 3(c) and (e) show that
both autocorrelation functions, Cy; and C,y, display an oscilla-
tory behavior for D, = 0.01 and Q = 0.1. The black curves and
symbols show instead a non-oscillatory behavior for higher
nose D, = 0.1 in Fig. 3(c), and for lower chirality Q = 0.01 in
Fig. 3(e), presenting a faster decay in the C,y case.

5.2 Elastic and kinetic energy extrema

We now compare our analytical and numerical results on the
elastic and kinetic energy extrema found in the high noise D,
high chirality Q regime. First, we note that no such extrema is
observed in active solids composed of achiral active particles,

(b) 10°

s
=
=~
=101
G
Es

1072

0.01
D,

Fig. 3 Emergence of chiral mesoscopic range order at low chirality and low noise. (a) Snapshots in the Q — D, parameter space illustrating the emergent
spatial correlations on the particle velocity angles ¢, = tan’l(vy/vx). (b) and (d) Fourier space representation of the mean-squared velocity (|v(q)?|)/Nvo?® as
a function of |q|, for different values of D, with fixed @ = 0.1, and for different values of Q with fixed D, = 0.01, respectively. Symbols represent simulations,
solid lines result from the normal mode formulation in eqn (12), and dashed lines correspond to the continuum elastic approximation in egn (18). (c) and
(e) Normalized velocity autocorrelation functions Cy(t) = (v(t)-v(0))/(v(0)?) (filled symbols and solid lines) and orientation autocorrelation functions Cpa(t) =
(A(t)-~(0)) (open symbols and dashed lines) as a function of time t, for for different values of D, and fixed Q = 0.1, and for different values of Q and fixed D, = 0.01,
respectively. Symbols represent simulations again, solid lines display the Cy/(t) in egn (22), resulting from the continuum elastic formulation, and dashed lines
correspond to the orientation autocorrelation in egn (4).
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where the mean stored elastic energy always decreases with
noise D;. This also holds true for active solids composed of self-
propelled particles with noisy chiral dynamics in the low
chirality regime, with Q < A, as it was shown in Fig. 1(a).

In the high chirality regime Q > A.,ax, however, there is a
range of D, values for which the mean potential energy stored
in all modes increases with D,, as shown in Fig. 2(e). This leads
to a maximum in the mean stored elastic energy as a function
of D,, shown by the dashed green line in Fig. 1(a). In the same
regime, the mean-squared velocity obtained from the conti-
nuum elastic formulation displays non-monotonic behavior,
leading to the minimum in the kinetic energy shown in
Fig. 2(f), which was displayed as the magenta dashed line in
Fig. 1(a).

The non-monotonic features described above are also cap-
tured by the case of a single particle in a harmonic trap, which
results in the curve with open black circles in Fig. 1(a). This can
be seen in the mean square displacement (r*)(¢) presented in
Fig. 4(a), the Cy(t) in Fig. 4(b), and the {|v(q)|*) in Fig. 4(c),
all in the high chirality regime (2 = 10) and for noise strengths

0.2 014 0?6 [)fS 1?0 112 1?4

Fig. 4 Non-monotonic behavior (for high chirality and high noise) of
chiral active solids as a function of noise D,. (a) Mean-squared displace-
ment (r?)(t). The solid lines display analytical results recently obtained in
ref. 89 for a single particle in a harmonic potential, given by eqn (28), as
detailed in Appendix B. (b) Velocity and heading autocorrelation functions,
Cwit) = (v(t)~v(0))/<v(0)2) (filled symbols and solid lines) and Caa(t) = (A(t)-
£(0)) (open symbols and dashed lines), as a function of time t. The solid
lines result from the continuum elastic formulation in egn (22) and the
dashed lines correspond to plots of eqn (4). (c) Fourier space representa-
tion of (|v(q)?|)/Nvo?® as a function of |ql. The solid lines result from the
normal mode formulation in egn (12) and the dashed lines are obtained
from the continuum elastic formulation in egn (18). In all panels, the
symbols represent simulations and we fixed vo = 0.01 and Q@ = 0.1.
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D, =1, 10, 100. We note that both the long-time (r*) values and
the (|v(q)|?) curves exhibit non-monotonic behavior. However,
the single particle C,, result does not seem to capture this
feature.

All these observations connect to the chiral glassy dynamics
studied in ref. 89. In this work, the authors observe oscillatory
temporal velocity autocorrelations and an emergent spatial
correlation length in the limit of low D, and low Q, which we
identify with the CMRO regime. They also find other states
where the spatial correlations disappear but temporal correla-
tions remain and a state without spatial or temporal correla-
tions, corresponding to the CD and DD regimes, respectively.
In the same study,®® the authors discovered what they refer to
as a ‘hammering state’, where particles oscillate in their
potential cages, with a maximum in the mean-squared displa-
cement (MSD) with respect to the diffusion constant. We can
now identify this state with the maximum of the potential
energy with respect to D,, in the CD regime, as described
analytically by our results.

6 Analysis of melting behavior at high
activity

The solid to liquid transition in systems of active particles has
been extensively studied, starting with the observation that, in
the high density and low motility limit, active Brownian parti-
cles form crystals®® if they are monodisperse and glasses
otherwise."*

In a two-dimensional equilibrium crystal, the melting
transition is a multifaceted process, characterized by the pro-
gressive disintegration of, both, positional and orientational
coherence. In systems characterized by short-range interactions,
melting manifests either as a first-order solid-liquid transition
or via the sequential two-phase KTHNY mechanism involving
solid-hexatic and hexatic-liquid transitions.”>'**"'%* Unlike
passive systems, active crystals can autonomously organize
and transition into an active fluid state facilitated by self-
propulsion and the interaction forces. In particular, however,
the melting transition in active particle models of biological
tissues occurs through a continuous solid-hexatic transi-
tion that is then followed by a continuous hexatic-liquid
transition.'%**>

The glass transition has been intensively studied in the
context of active Brownian particles without chirality,®">8%8106
These efforts have shown that its differences with the usual
thermal glass transition can be subtle, and that it is governed
by an effective temperature Teg = Vo>/2D.. This result only
changes in the limit D, — 0,'®” where the coherent mesoscopic
length scale becomes large®®'%® and starts influencing the
transition properties.®**'°®'% On the other hand, glasses of
chiral active particles have only been studied in detail up to
now in ref. 89, and we discussed how this work connects to our
results in the previous section.

We find in our simulation that, in the high activity limit,
a solid triangular monocrystaline structure of chiral active

Soft Matter, 2024, 20, 7865-7879 | 7873
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Fig. 5 Melting behavior of chiral active solids. The symbols result from
simulations with different self-propulsion speed vq values, for D, = 0.01
and @ = 0.1. (a) Mean-squared displacement (r?)(t) as function of time t.
(b) Velocity autocorrelation Cyy(t) = (v(t)-v(0))/(v(0)?) as a function of time t.
The solid line is obtained from the continuum elastic formulation in
eqgn (22). (c) Fourier space representation of (Iv(q)2|>/N\/02 as a function
of |q|. The solid line results from the normal mode formulation in egn (12)
and the dashed line, from the continuum elastic formulation in egn (18).

particles will eventually melt. Since a detailed description of
this transition would be beyond the scope of this work, we will
focus instead on testing the tolerance of our analytic predic-
tions to an increasing level of activity. Fig. 5 plots the numerical
values of three different predicted quantities for increasing
active speed v, levels. We consider fixed noise and chirality
values that place the system in the CMRO regime, incremen-
tally increasing v, to observe the melting behavior. The MSD
exhibits trapped oscillatory behavior up to v, = 0.12, where
melting begins, as shown in Fig. 5(a). The velocity autocorrela-
tion functions in Fig. 5(b) and spatial velocity correlation
functions in Fig. 5(c) also show that the deviation from the
theory starts at v, = 0.1. We include the corresponding
dynamics of the velocity fields in the CMRO regime, with D, =
0.01 and Q = 0.1, in the ESL (ref. 92) setting v, = 0.1 for Movie
S6 and v, = 0.12 for Movie S7. These results clearly indicate that
our analytic methods remain in excellent agreement with
simulations until just below the melting transition, and that
they start deviating at high activity. Nonetheless, we note that
both the temporal oscillations and the mesoscale correlations
persist, albeit with modified scaling. The latter is in agreement
with what has been observed when fitting non-chiral models to
cell sheet data® and in simulations of active Brownian particles
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(ABPs) at higher activity levels.”>"% This also explains why our
results can remain predictive for the active glassy dynamics
investigated in ref. 89.

7/ Extension to heterogeneous systems

We now extend our results to heterogeneous systems where the
active particles can have different dynamical properties. We will
first study binary mixtures of disks with different chirality and
rotational diffusion coefficients in Section 7.1, and then cases
where the disks have a distribution of chirality and diffusion
values in Section 7.2.

7.1 Binary mixtures

We consider an active solid composed of two particle species,
A and B, differentiated by their D, and Q values, and with
corresponding packing fractions, ¢, and ¢g. Since the active
driving produces time-correlated but spatially independent
noise, as shown by eqn (7) and (16), the total driving noise
from two species can be computed as a simple superposition,
with no particle-particle cross-correlations. Then, quantities
such as (|v(q)|*) and (v(t)-v(0)), which we analytically derived
in Section 4, can be expressed as the mean of their A and B
contributions, weighted by their respective fractions. In the
linear response regime, the general expression for f= |v(q)|* or
for = v(¢)-v(0) is therefore given by
= 2,
Here, (-} and () represent the mean over the A or B popula-
tions, respectively, and ¢ is the total packing fraction. We note
that a mixture of positive and negative chiral active particles
with the same absolute chirality but different signs behaves
collectively just as a system with uniform chirality, due to the
symmetry (f)A(Q) = (f)s(—Q). Although spontaneous demixing
can occur at low densities,*® here the chiral active mixtures will
remain fully mixed because of the high density and low active
speed considered. However, the CMRO states will show
the emergence of patches of uniform positive and negative
chirality, in a proportion controlled by the ¢,/¢p ratio (see
Movie S8 in the ESL, 7 (ref. 92)). We also note that, for a random
mixture of chiral active and passive particles with v > 0 and
v = 0, the dynamics of the CMRO state is controlled by ¢,/¢.
To illustrate the effects of having binary mixtures of parti-
cles, we present simulations and analytical results for three
different species combinations, all displaying chiral meso-
scopic range order, in the CMRO regime. Fig. 6(a) and (b)
respectively show the Cy(t) and (|v(q)|*)/Nv,> curves obtained
for three different binary mixtures with equal fractions (¢a/¢g =
1) and total packing fraction ¢ = 1. First, the (i) curves show the
single species case, as a reference. Second, the (ii) curves
correspond to mixtures of achiral (Q, = 0) and chiral (Qg =
0.1) active particles with equal rotational diffusion coefficients
D? = D? = 0.01. Third, the (iii) curves present mixtures of
particles with two different chirality values, 2, = 0.1 and Qg =
0.2, and the same D? = D = 0.01 (see also Movie S9 in the ESL,{

(f) (23)
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Fig. 6 Effects of heterogeneity in chiral active solids. (a) and (b) Binary mixtures of species A and B with packing fractions ¢a = ¢g = 1/2 for: (i) D =
D? = 0.01and Q4 = Qg = 0.1 (homogeneous case); (i) DI = D? = 0.01, Q4 = 0.0, and Qg = 0.1; (i) Df* = D? = 0.01, @, = 0.1, and Qg = 0.2; and (iv) D = 0.01,
DB = 0.1, and Qx = Qg = 0.1. (c) and (d) Heterogeneous mixtures of particles with uniform distributions of (D,,Q) values spanning (v) £20% and (vi) -40% of
their means, and homogeneous case (i) for comparison. In all panels, symbols represent numerical simulations. In panels (a) and (c), the solid lines plot
the velocity autocorrelation C,,(t) obtained from the continuum elastic formulation. In panels (b) and (d), the dashed and solid lines correspond to the
mean-squared velocity (IV(q)IZ)/Nvo2 resulting respectively from the continuum elastic formulation and the normal mode formulation.

(ref. 92)). Finally, the (iv) curves display mixtures of particles
with equal chirality values 2, = Q = 0.1 and two different
rotational diffusion coefficients, D% = 0.01 and D® = 0.1.

In Fig. 6(a) we can see that the clear oscillations in the
velocity autocorrelation are suppressed when we consider
achiral-chiral mixtures (ii), compared to the single species case
(i). We can also see that, in systems with two different chirality
values (iii), the velocity autocorrelation function displays oscil-
lations with the two corresponding periods, 21/, and 2n/Qg.
Finally, the figure shows that mixtures of chiral active particles
with two different rotational diffusion coefficients (iv) suppress
this oscillatory behavior and follow the lower persistence length
of the population with the highest D,. In Fig. 6(b) we can
see that binary mixtures of achiral and chiral active particles
(ii) enhance the ordering in the CMRO state when compared to
the homogeneous case (i), decaying at lower |q| values. On the
other hand, we see that chiral active binary mixtures with, both,
different chirality values (iii) and different rotational diffusion
coefficients (iv) suppress the ordering in the CMRO state when
compared to the homogeneous case (i), decaying at larger |q|
values. In addition, we note that the analytic superposition
results (solid and dashed lines) show an excellent agreement
with the simulation results (symbols) for all curves in Fig. 6(a)
and (b), thus validating eqn (23).

Finally, Fig. S4 in the ESL 7 (ref. 92) further illustrates how
oscillations appear, disappear, and interfere by presenting the
velocity time correlations obtained from eqn (23) for a range of
binary mixtures.

7.2 Heterogeneous particles

We now further extend our analyses to investigate active solids
composed of heterogeneous particles with a distribution
of dynamical properties. To do this, we consider a complex

This journal is © The Royal Society of Chemistry 2024

random mixture of n different types of active particles, each
with corresponding packing fraction ¢4,¢,,. . .,¢,, adding up to

n
a total packing fraction ¢ = > ¢,. We can then obtain a general

i=1
expression for the combined values of f= |v(q)|* or f=v(¢)-v(0) in
terms of the individual components as

n
)= dill)i/ o, (24)

i1
where (-); represents the mean over population type i. With this
general superposition expression, we can analytically predict
the dynamics of an active solid composed of any combination
of active particles, in the linear response regime.

Fig. 6(c) and (d) present the analytical and simulated spa-
tiotemporal correlation functions of the active solid dynamics
of a set of particles with a uniformly distributed range of D, and
Q values, spanning: (i) £0%, (v) £20%, and (vi) £40% with
respect to their mean ((D,Q)) = (0.01,0.1). We can see in
Fig. 6(c) a clear deviation of the velocity-velocity correlations
C,v in the heterogeneous cases, (v) and (vi), with respect to the
homogeneous case (i). We note that the analytical superposi-
tion of eqn (22) using eqn (24), displayed as solid lines,
perfectly captures the simulation results, represented by sym-
bols. In Fig. 6(d), we see that (|v(q)|*)/Nv,> is practically
invariant under changes in the D, and Q parameters. We also
note that the analytical superposition of eqn (12) and (18),
represented respectively by a solid and a dashed line, can
properly capture our simulation results. The figure shows that
the spatial velocity correlations are insensitive to the hetero-
geneity of the system, but that the temporal velocity autocorre-
lation is affected by it. Indeed, increased heterogeneity in
particle chirality leads to a desynchronization of the oscilla-
tions, while increased heterogeneity in D, does not (as shown in

Soft Matter, 2024, 20, 7865-7879 | 7875
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Fig. S5a and c in the ESL ¥ (ref. 92)). The spatial correlations are
not affected in either case (see Fig. S5b and d in the ESLt
(ref. 92)). We can thus predict that the oscillatory dynamics will
only be apparent in systems of active particles with relatively
homogeneous levels of chirality.

8 Conclusions

In this work, we formulated the analytic linear response theory
for an active solid composed of self-propelled particles with
noisy chiral dynamics. We considered a minimal model with
the potential for describing a broad range of systems, ranging
from artificial active solids made of chiral self-propelled robots
to biological tissues with emergent macroscopic chiral order.
We developed an analytic formulation that allowed us to fully
describe all the observed dynamics in the linear regime,
perfectly matching our numerical results.

We described the emergence of four different types of
dynamics in the phase space described by the chirality Q and
the rotational diffusion coefficient D,. For small enough D, and
Q, we observe chiral (CMRO) and achiral (MRO) self-organized
states displaying mesoscopic range order. For larger D, and Q,
we only find chiral (CD) and achiral (DD) disordered states.
In all cases, the chiral sates appear for D, < @ and the achiral
states, for D, > Q. We then explored the dynamics of the
melting regime by increasing the activity v,, showing that our
analytic results for the spatial velocity correlations and the
temporal velocity autocorrelations agree with simulations up
to an active speed v, & 0.1, just below v, = 0.12, the melting
point obtained using our active solid theory. Finally, we showed
that our analytic approaches can be extended to consider
particles with heterogeneous dynamical features, including
different chirality and rotational diffusion levels. We derived
analytic superposition expressions for binary and more complex
mixtures of heterogeneous active particles, demonstrating their
excellent agreement with simulations.

Our work is consistent with the (relatively sparse) literature
on chiral ABP solids. Notably we recover the oscillatory correla-
tions and ‘hammering’ resonance observed by Debets et al.®’
in the glassy state. In addition, our work also seems to be
consistent with recent results obtained by Caprini et al.’® while
exploring the emergence of self-reverting vortices in the
absence of alignment forces, as a result of the interplay
between attractive interactions and chirality. They found two
kinds of vortices, with either persistent or oscillatory behavior,
which could correspond to our observation that the correlated
velocity fields in the mesoscopic range can either be persistent
(MRO) or oscillatory (CMRO). However, due to subtle differences
in the equations (that include inertia and spatial noise in their
case), we cannot currently compare our results quantitatively.

There are various possible extensions to our framework.
We could, for example, introduce hydrodynamic interactions,
which would modify our findings. It is indeed relatively
straightforward to add a mobility matrix to the spatial equation,
e.g. through a pair dissipation term A(v; — v;), where £ is the
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ratio of pair to single particle friction. This leads to yet another
modified mesoscopic length scale that is basically the hydro-
dynamic length scale /iy = \/Al?. However, wet hydrodynamic
interactions also introduce torque couplings between particles,
which invalidates our linear response approach, as the angular
equation cannot be solved independently anymore. Although
this will likely lead to very interesting collective phenomenol-
ogy, similar to that in ref. 50 and 51, such analysis is still
beyond our reach.

We hope that the general analytical description of dense,
solid chiral dry active systems in this paper can help establish
the foundations for a systematic understanding of the emer-
gent dynamics in this type of systems. Future research could
explore the scalability of our theory, its practical applications in
synthetic biology, and its potential impact on the design and
control of rotating correlated velocity fields in natural or
artificial active solids.
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Appendices
A. Orientation autocorrelation

We adopt the method for the exact moments calculation of stiff
chains described in Hermans et al''® to determine the
moments for the active dynamics case. This approach, pre-
viously applied in,""*™"* is used to obtain the exact dynamics
for a chiral active Brownian particle in a harmonic trap, as
detailed in Debets et al® Utilizing the Laplace transform
P(ii,s) = [, dte™P(f, 1) in eqn (3) while defining the mean of
an observable as (), = [diy(A)P(i,s), multiplying by (#),
and integrating over all possible 7, we find

7(‘//>0 + S<‘//>s = Dr<vﬁzl//>s + Q<ﬁl'vﬁ‘//>s- (25)

Here, the initial condition sets (), = [diy (i) P(i,0). Without
loss of generality, we can define the initial condition as follow-
ing P(7,0) = 6(Ai — 7), where 7, is the initial orientation of the
particle.

This journal is © The Royal Society of Chemistry 2024
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Using eqn (25), we compute the orientational correlation as
a function of time. We set the initial particle headings as
satisfying () = f,. To compute (i), we then use ¥ = 7 in
eqn (25) to obtain

g + Qi)

i 26
fi), =" (26)
Here, we can find (A'),, starting from an initial perpendicular
orientation (™) = iy, by using = A" in eqn (25), which gives
(A, = (e — QUi)y)/(s + D,). Substituting back into eqn (26)

produces

_ fg(s + Dy) + Qﬁé

o= e

(27)

An inverse Laplace transform then leads to (A(£)) = e “[f,

cos(Qt) + 7y sin(Q¢)]. Finally, by computing the dot product
with the initial heading, we find the orientation autocorrelation
expression in eqn (4).

B. Single chiral active Brownian particle in a harmonic trap

Following procedure similar to that used in the orientation
autocorrelation calculation, we can compute the MSD of a
single chiral active Brownian particle in a harmonic trap, as
previously done in ref. 89, finding

(r)(0)
_ vo? (Dr + k) B v (Dy — pk)e= 2wkt
[ (De + k) +02] ke [(Dy — ik +02]

N 2ne~Prtbi[(D2 — p2k* — Q) cos(Qt) — 2D, Qsin(Q1)]
[(Dr - Uk)2+gz] {(Dr + ﬂk)z-‘er]
(28)

We plot this expression in Fig. 4(a) to compare it to the MSD of
dense chiral active systems in the high D,, high Q regime,
showing that it follows a similar behavior. Simplifying eqn (28)
in the D/t « 1, Qt « 1 limit yields
2 20 0 3
F)(1) =w't —?(Dr + 3uk)t
(29)
V02

+12

(D7 + 4D, pk + 712K — @)t + (7).

We can then compute the steady-state MSD as (r*)¢ = (©*)(¢)| ;- o,
to obtain

(1) = — e+ 1) (30)

1k {(Dr + k2|

The (r*), value will thus have a maximum (for constant Q)
along the D} = Q — uk line, shown as the black dotted line on
the D, — Q plane in Fig. 1(a), for ¢ = 1 and & = 1. This suggests
that the reentrant transition with increasing D; (from low (1),
to high (r*),, with maximum at D, and then back to low (1))
occurs only when chirality is high, that is, for Q > uk.

This journal is © The Royal Society of Chemistry 2024
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C. Determining the elastic moduli and continuum theory to
compare with simulations

To determine the elastic moduli, we first equilibrate the steady
state configurations by letting v, = 0 in eqn (1). The disks reach
their equilibrium positions after a long integration time. Using
these positions, we then construct a dynamical Hessian matrix.
We transform this matrix to Fourier space with appropriate grid
space q. The resulting longitudinal and transverse eigenvalues
thus correspond to (B + G)g* and Gq?, respectively. We then
determine the bulk modulus B and shear modulus G by
performing a linear fit of the radially averaged longitudinal
and transverse eigenvalues against ¢°, focusing on the limit
with ¢ < 1. Our calculations for soft disks thus yield the
following values for the moduli: : G=0.61, B=2.03, and (B + G)/
G = 4.33, with relative error lower than 1% (averaging over 10
independent estimations).

When comparing our numerical results to the continuum
theory, simulations are carried out for relatively large but finite
systems of size L, with minimum length scale given by the
particle size a = 2r,, where r, is the particle radius. Our
numerical analysis is therefore performed using discrete Four-
ier transforms, in a finite grid, whereas our analytical calcula-
tions are carried out in the continuum limit, by setting L — oo
and a — 0.

Finally, to achieve consistency between the discrete and
continuum approaches, we use the following continuous Fourier
transform

- d%qid —iar 31
u(r.1) = | Patia. e @)
Then, by considering the finite system and particle sizes, we
discretize the integral into

1 2 1 , 2 2
(21[)2Jd q— qu: and Jd r—a Z:,

where N = 4¢L*/na® and ¢ is the packing fraction of the system
(close to 1 for dense systems). In the sum, q takes discrete
values defined by the geometry of the system. For instance, for
a square lattice of linear size L, q = (¢.,q,) = 2n/L(m,n), with
integers m, n satisfying 0 < m,n < L/a — 1. Thus, the discrete
space Fourier transform u(q,f) is related to the continuous
Fourier transform i(q,t) via @i(q,t) = a*u(q,?).
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