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Bubbles and drops between circular frames:
shape, force and stability analysis†

Friedrich Walzel, * Jonathan Dijoux, Leandro Jacomine, Élodie Harle,
Pierre Muller, Thierry Charitat and Wiebke Drenckhan

Interactions between bubbles and drops play an important role in many physical phenomena. Whether

we consider the interaction between two bubbles (drops) or between many (foams or emulsions), these

interactions are complex and still poorly understood. An interesting case arises when two equal- and

constant-volume bubbles (drops) interact with each other while being held by two axisymmetrically

positioned frames of circular opening – a configuration which is frequently used in characterisation

devices. The minimisation of the surface energy of this ‘‘double bubble’’ (or ‘‘double drop’’) configuration,

constrained by the fixed volume and the frame boundaries, creates a complex landscape of shape

spaces where physically stable shapes are separated by different types of instabilities. Combining experi-

ments, finite element simulations and theory, we provide here for the first time a complete analysis of

these shape spaces, considering the adhesive energy between the bubbles and the drops (expressed by

the contact angle) as an additional control parameter. We provide the full shape diagrams for different

contact angles (01, 601 and 901), including a detailed discussion of four types of instabilities. Two of

these instabilities break the axisymmetry, while the two others break the connectivity of the ensemble.

As far as we are aware, two of these instabilities have never been reported before. We accompany the

shape and stability analysis with detailed mechanical characterisation using force and pressure measure-

ments. Experiments, simulations and theory showing excellent agreement. This work will not only be

useful in guiding the exploitation of double bubble (double drop) experiments on frames, but it also

opens the possibility to exploit these configurations for the characterisation of increasingly complex

bubble or drop interactions. Since the contact angle of 901 corresponds to an ‘‘imaginary’’ film separat-

ing the two bubbles (drops), our analysis naturally includes the shape and stability of a capillary bridge

between two circular frames.

1 Introduction

Bubbles and drops play an important role in many physical
phenomena. Their interactions control the behaviour of assem-
blies of bubbles or drops, ranging all the way from the simple
assembly of two bubbles or two drops to the complex multi-
body interactions in foams and emulsions.1–3 One of the most
commonly used techniques to characterise the properties of
individual bubbles (drops) is rising bubble (pendant drop)
tensiometry,4–6 which uses the shape analysis of an axisym-
metric bubble (drop) held by a capillary with circular cross-
section. Here, we propose to exploit this kind of configuration
after the addition of a second bubble (drop) held by an

axisymmetrically positioned capillary to investigate the interac-
tions between bubbles (drops), as shown in Fig. 1. Similar
configurations have been used in the past in order to quantify
the coalescence of bubbles (drops)7–10 or the adhesive energy
between bubbles, drops or vesicles,11–13 the latter being
expressed by the contact angle yc created between the two
bubbles (drops) (Fig. 1). However, even in the case of bubbles
(drops) of equal and constant volume V, constant interfacial
tension g, fixed on identical, axisymmetrically positioned
frames with a circular cross-section of radius R, and separated
by a distance h (Fig. 1), surface minimisation creates a highly
complex landscape of possible shape configurations. The V–R–
yc–h shape space contains zones with different physically stable
shapes that are separated by at least four types of shape
instabilities. These instabilities may either break the axisym-
metry of the ensemble or its connectivity. They are sketched in
Fig. 2 together with the convention used for the names and
abbreviations throughout the article. One illustrative example
which includes three of these instabilities is shown in Fig. 3 for
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the case of two soap bubbles in air. The two bubbles are initially
separated (‘‘separated bubbles’’, SB). Upon decreasing h, they
‘‘jump’’ into contact (‘‘connected bubbles’’, CB) at h = hSB-CB

during a first shape instability, creating a contact angle of yc =
601 due to the natural attraction between soap bubbles in air.
Further reducing h creates an increasing ‘‘flattening’’ deforma-
tion of the two axisymmetric bubbles, until a second shape
instability is reached at h = hCB-TB

12,14,15 which breaks the
axisymmetry by tilting of the two bubbles (‘‘tilted bubbles’’,
TB). Further decreasing h increases the tilt angle. Increasing h
again, the same shapes are re-accessed in a fully reversible
manner until h = hSB-CB. For h 4 hSB-CB, a range of elongated,
axisymmetric bubble shapes are accessible due to the attraction
between the bubbles. At another critical distance (hCB-SB or
hCB-DB), the two bubbles may either detach from each other
(top row of Fig. 3, ‘‘separated bubbles’’, SB) or detach from the

frame (the bottom row of Fig. 3, ‘‘detached bubbles’’, DB). The
precise sequence of the shape configurations and the shape
instabilities depends on V, R and yc (Fig. 1). For different
parameter ranges, other types of instabilities may arise, which
are described in more detail in Section 3 and summarised
visually in Fig. 4.

In order to capture these complex behaviours for the entire
V–R–yc–h parameter space, we combine experiments, finite
element simulations (Surface Evolver) and theory (Delaunay
surfaces). We provide a complete description of these ‘‘shape
spaces’’, including the mechanical stress created by the bub-
bles (drops) on the frames.

Other research groups conducted similar investigations with
three-dimensional or quasi-two dimensional soap bubbles.14–16

However, in most of the previous investigations, the bubbles
(drops) are confined between two parallel solid walls on which
the bubbles (drops) can move freely, i.e. the boundary condition
is given by a fixed contact angle between the bubble (drop) and
the solid surface. The fact that in our setup the bubbles (drops)
are fixed by a frame of constant radius R changes some degrees
of freedom of the problem and hence the shape behaviour.
While Fortes et al.16 and Bohn15 discuss also briefly this case,
they do not show quantitative results. Since this configuration
is relevant for many physical scenarios, it is important to
establish a more quantitative understanding.

In our analysis, we concentrate on systems with constant
interfacial tension g. By choosing wisely the gas/liquid or
liquid/liquid configuration, we have access to different contact
angles yc between the bubbles (drops), as shown in Fig. 1. This
contact angle can be interpreted as the change in surface
energy between the contact film of effective tension gf and the
‘‘free’’ bounding surface with effective tension gb. The tensions
are related to the contact angle yc via equilibrium considera-
tions at the contact line

2gb cos(yc) = gf. (1)

Three different yc values are therefore easily accessible (Fig. 1),
since the effective film and boundary tensions are set by the

Fig. 1 Configurations considered in this article: (a) ‘‘bubble/drop’’: two
drops or two bubbles in contact surrounded by a liquid (yc = 01); (b) ‘‘soap
bubbles’’: two bubbles in contact in air (yc = 601); (c) ‘‘capillary bridge’’: one
bubble or drop separated by an ‘‘imaginary’’ central film of zero interfacial
tension, leading to yc = 901. All bubbles or drops are held by axisymme-
trically positioned circular frames. The geometrical variables are as follows:
h is the distance between the frames, R is the frame radius, V is the bubble
or drop volume, yc is the contact angle between the upper and lower
bubbles and y is the angle of inclination of the r(z)-profile. Fze

-
z is the

vertical force component in the z-direction exerted on the lower bubble
by the lower frame, pi and po are the inner and outer pressure of the
bubbles (drops), respectively, and gf and gb are the effective film and
effective bubble interfacial tensions, respectively.

Fig. 2 Overview of the convention used for the names and abbreviations
of the physically stable shapes for the three contact angles yc. For
simplicity, only ‘‘bubble’’ is used even though the terminology applies
equally to drops.

Fig. 3 Series of photographs of soap bubble experiments where the
distance h between the frames is first decreased and then increased in a
quasi-static manner showing different shapes and instabilities which can
be obtained. In the bottom row, the volume V of the bubbles is larger,
leading to a different instability upon increasing h.
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number of interfaces of tension g which they contain. The first
case concerns two bubbles or two drops in contact in a liquid,
or of two drops in contact in air (‘‘bubble/drop’’ configuration
in Fig. 1) which gives 2gb = gf = 2g and therefore yc = 01. The
second configuration consists of two bubbles in air (‘‘soap
bubble’’ configuration in Fig. 1), which has a contact angle of
601 since gb = gf = 2g. A special case is the one of an imaginary
film with gf = 0, which gives yc = 901 with gb = g (bubbles or
drops in a liquid or drops in air) or gb = 2g (bubbles in air). This
corresponds in reality to one single bubble or drop, i.e. a
‘‘capillary bridge’’ between the two frames. This opens a door
to a slightly different configuration with different applications
in nature and industry for almost the same theory and
experimental setup.

In all our considerations, we neglect gravity. In the experi-
ments, this is ensured by choosing configurations in which
the interfacial tension dominates gravity (see Section 2.2 in the
main article and Section S1.2 in the ESI†). In this case, the
characteristic height of the bubbles or drops must be smaller
than the capillary length, which is equivalent to a small Bond
number. All surfaces are therefore constant mean curvature
surfaces given by the Young–Laplace law and the constant
interfacial tension g. In the case of axisymmetric shapes, the
external surfaces are part of the family of Delaunay surfaces17

whose theory we describe in more detail in Section 2.3.
In the following, we will analyse in detail the different shape

spaces by combining experiments (Section 2.2), finite element
simulations (Surface Evolver, Section 2.4) and the theory of
Delaunay surfaces (Section 2.3). In the theoretical part, we also

provide the method to obtain the shapes which fit to the
experiments and simulations (Section 2.3). We combine all
three methods to analyse acting forces and/or pressures for
different experimental configurations (Section 3.2). We then
discuss in detail the associated shape diagrams for the three
different contact angles yc (Section 3.3). To facilitate the read-
ing, we keep the main body of the article as synthetic as
possible, while some of the more technical parts are provided
in the ESI.†

Experiments, simulations and theory showing excellent
agreement. We think that this work will be useful for scientists
working on double bubble (double drop) and capillary bridge
problems between frames. It does not only provide a solid basis
to start exploring more complex interactions (such as bubbles
or drops with elastic interfaces), but is also hoped to inspire
more in-depth investigations of some of the instabilities which
still await a theoretical description.

2 Materials and methods
2.1 Materials

For soap bubbles, we used a mixture of 30 wt% glycerol, 3 wt%
Fairy dishwashing liquid and deionised water (Milli-Q). We
mixed them for 20 minutes with a magnetic stirrer and used
this solution for a period of 5 months. The interfacial tension
of this solution with air was g = 26.0 � 0.5 mN m�1 measured
with pendant drop tensiometry (TRACKER device from
TECLIS).

Fig. 4 Overview of different shape configurations for two bubbles (or drops) (left), two soap bubbles (centre) and capillary bridges (right) (see Fig. 1a),
which appear by changing h, R, V and yc. One finds five different shapes which are listed in Fig. 2: connected bubbles (CB), separated bubbles (SB),
detached bubbles (DB), tilted bubbles (TB) with the tilt angle j, and shifted bubbles (ShB).
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Air bubbles were also created in an aqueous solution of
Sodium Dodecyl Sulfate (SDS) at a concentration of 6.5 g L�1,
which corresponds to 2.75 times the critical micelle concen-
tration. The solution was mixed for a couple of hours with a
magnetic stirrer. The interfacial tension between the aqueous
SDS solution and air was g = 33 � 0.5 mN m�1. The same
solution was used to create water drops with SDS in silicone oil
(BLUESIL FLD 47V100, LOT 9255610). At 20 1C, its density was
determined to be r = 0.965 � 0.001 kg L�1 using a D4 METTLER
TOLEDO densimeter. The interfacial tension between the aqu-
eous SDS solution and the silicone oil was measured to be g =
11.2 � 0.2 mN m�1 using pendant drop tensiometry (TRACKER
device from TECLIS), also at 20 1C.

2.2 Experimental methods

We use two different setups (Fig. 5): one for the ‘‘bubble/drop’’
configuration (Fig. 5a) and one for the ‘‘soap bubble’’ configu-
ration (Fig. 5b). Each experiment consists of a cycle where h is
varied, while V, R, and yc remain constant. The pressure
changes across the interface are small compared to the atmo-
spheric pressure. Consequently, the volume changes during an
experiment are negligible even for the bubbles, i.e., all systems
are considered as incompressible.

2.2.1 Bubble/drop setup. We use two devices with almost
the same configuration for the ‘‘bubble/drop setup’’ (Fig. 5a).
One was developed by the society TECLIS in interaction with us.

It consists of a modified pendant drop tensiometer (TRACKER),
to which a second syringe system was added. The second one is
a fully lab-built, LabVIEW-run device (as shown in Fig. 5a). Both
devices contain two syringes C of maximum 500 mL volume,
each connected to a needle I using a tubing system. On a
sidearm of the tubing system, a miniature low pressure sensor
0.5 Psi 24PCEFB6G J is connected to measure the pressure
difference Dp = pi � po (see Fig. 1). To increase the precision of
the pressure sensor, a lab-made electrical circuit was used. The
needles have circular cross-sections of radius R with R =
[1.2 mm, 2.15 mm]. Each needle is fixed on a lab-built tilting
mechanism D allowing to control the orientation of the sym-
metry axis of the needle ends. One of these tilt mechanisms is
fixed on a board while the other one is fixed on a high precision
micro-controller (SmarAct) J11. This micro-controller moves on
command in arbitrary translational directions with a controlled
speed. One of the needles has a U-shape and the other has a
straight shape. This allows the ends of the two needles to be
positioned and moved along the same z-axis. The needle open-
ings are immersed in a 25 mL vessel Q with 25 mm square
cross-section and 40 mm depth. The vessel, the syringes and
the pressure sensor are surrounded by metal blocks through
which water flows continuously to maintain the temperature at
20 1C R. The metal cube for the quartz vessel has an opening in
the top and circular windows in the four horizontal directions
for imaging purposes Q. Backlights E are positioned in front of

Fig. 5 The two experiment setups used in this article: (a) ‘‘bubble/drop setup’’ and (b) ‘‘soap bubble setup’’. The bubble/drop setup refers in reality to two
different setups which follow the same principles. One is a modified device from TECLIS and the other one (shown in (a)) is a lab-made device following
the principles of the TECLIS device. In the images, we can see: A the two syringes to charge the system with a liquid, B the two frames for the soap
bubbles, C the syringes to control the volume of the drops with a linear motor, D the tilting mechanisms to change the angular orientation of the needles,
E the diffusive backlights, F the cameras, Q the vessel with temperature control, R the tubes which contain temperature controlled water, I the two
needles (one is straight and the other is in U-shape), J the pressure sensor and J11 the micro controller for a transverse displacement of the upper needle
with a tilting mechanism. The ‘‘soap bubble setup’’ (b) has the same overall configuration. The differences are the frame size (I vs. B) and the pressure
sensor J in (a) and the force sensor J12 in (b).
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two of these windows. On the opposite sides of the backlights,
IDS U3-3800CP-M-GL R2 cameras F are fixed to obtain images
of the two bubbles/drops from two orthogonal perspectives.

The verticality and coaxiality of the needle ends are adjusted
at the beginning of each experiment. Depending on the type of
experiment to be conducted, the quartz vessel was filled with an
aqueous SDS solution for the investigation of bubble–bubble
interactions, or with a silicone oil for the investigation of drop–
drop interactions. In the first case, the syringes, tubes and
needles were filled with air, while in the second case they were
filled with SDS solution. We decided to make water drops in
silicone oil (rather than the opposite), as it is easier to clean the
vessel than the syringe system. Both systems can be easily
inverted to investigate water drops in air or oil drops in water.

At the beginning of each experiment, the bubbles or drops
were formed separately with a defined volume. With help of the
cameras coupled to a PID control, the volume is accurately
controlled and kept constant for 60 s to allow surfactant
adsorption on the bubble (drop) surface. Then, the bubbles
(drops) are moved against each other along the needle axis with
help of the micro-controller until they touch and deform. We
make sure that the deformation is slow enough to be consid-
ered quasi-static using a slow displacement velocity of the
needle of 20 mm s�1. Even though the PID volume control is
switched off during this part of the experiment, its duration is
short enough to assume that the drop volumes remain con-
stant. We verify this by measuring the bubble (drop) volume
before and after each experiment.

Since it is impossible to measure directly Dp in the bubbles,
the measured pressure has always a constant offset related to
the hydrostatic pressure inside and outside of the bubble. This
offset is obtained by comparing the mean curvature at the apex
of a single bubble with the pressure obtained with the sensor at
the beginning of every experiment. To increase the precision of
the offset measurement, the bubble was inflated and deflated
quasi-statically to obtain more points for calibration. This
procedure is described in Section S1 in the ESI.†

2.2.2 Soap bubble setup. In the soap bubble setup (Fig. 5b),
two soap bubbles (‘‘soap bubble’’ configuration) or one soap
bubble (‘‘capillary bridge’’ configuration) are created in air at
the outlet of air-tight frames with circular outlets of radius R.
We used different frame radii of R = 2.7 mm, 3.6 mm, 11.8 mm,
15 mm, and 30.0 mm. The frames were manufactured by
different methods. The frames with R = 15 mm and 3.6 mm
were 3D printed with a thermoplastic 3D printer Form 2 from
Formlabs. The used printing method was stereolithography
with a layer thickness of 25 mm. The deviation between a circle
and the printed frame geometry was at maximum 0.4%. The
frames with R = 2.7 mm and 11.8 mm are metal disks glued
onto a microfluid connector. The frame with R = 30 mm is a
numerically milled cylinder made from aluminium.

For the experiments, a soap film was first formed on the
outlet of the frames by immersing them in the soap solution.
Afterwards, a given volume of air was injected into the frames
via syringes to create bubbles of volume V. The sizes of the
syringes were chosen for each experiment to optimise the

precision in the volume control for the desired bubble volumes,
which ranged between 1 mL o V o 30 mL. The relative error is
typically of the order of 1%. Afterwards, the bubbles were
positioned on the same symmetry axis with the help of two
cameras (IDS U3-3800CP-M-GL R2) positioned at an angle of
901 to each other. The upper bubble was moved in the vertical
direction using a linear table CKK and a motor MSN03. The
movement was smooth with a speed of 0.02 mm s�1 controlled
using a lab-made LabVIEW program. We verified that this
speed is slow enough to neglect viscoelastic contributions of
the soap films.

The vertical component of the force Fz exerted on the lower
bubble by the lower frame in the z-direction is measured by
monitoring the apparent weight of the bottom frame with a
high-precision scale SECURA224-1S with a precision of 0.1 mN.
The frame weight plus some drained liquid imposes an offset,
which is extracted to obtain the correct force Fz, as discussed
below. The change in the drained liquid during an experiment
is small enough to be neglected. The offset is obtained with a
precision of 1 mN. The shape of the bubbles is obtained by
imaging them in front of a diffusive screen using a digital
camera IDS U3-3800CP-M-GL R2. These images are also used to
obtain the distance h between the frames.

At the beginning of each experiment, the distance h between
the two frames is decreased until the film between the two
bubbles is strongly tilted. Afterwards, the measurement starts
by capturing images and saving the force Fz every two seconds.
The upper frame moves smoothly upwards. The measurement
is stopped 10 s after the two bubbles detach or one bubble
detaches from a frame. The force measured after a detachment
is used to calculate the offset between Fz and the apparent
weight.

The experimental procedure is the same for the capillary
bridge (contact angle yc = 901) only with one large bubble of
volume 2V, which connects the two frames. It is explained in
more detail in Section S1 in the ESI.†

2.3 Theoretical method: shape analysis using Delaunay
surfaces

In the following, we only talk about bubbles to facilitate read-
ing. However, all concepts apply equally to drops. One can
divide the films and interfaces of the two bubbles in contact
into three parts: the upper and the lower bubbles (external
surface) and the film separating the two bubbles. In all our
considerations, we neglect gravity. In the experiments, we
ensure this by choosing configurations in which interfacial
tension dominates gravity, as discussed in Section 2 and in
Section S1 in the ESI.† We therefore assume Dp as constant
along the z direction, meaning that the upper and lower parts
of the bubble shape are constant mean curvature surfaces. If
the two bubbles have the same volume and the boundary
conditions are mirror symmetric, the pressure difference
between both bubbles is zero and the separating film is a
minimal surface. In the case where the bubble configuration
remains axisymmetric, the separating film remains a horizon-
tal, flat plane at mid-height and the upper and lower parts can
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be described by a ‘‘Delaunay surface’’.17,18 Together with the
catenoid shape, Delaunay surfaces are the only axisymmetric
constant mean curvature surfaces.18 Using these known math-
ematical results, we analyse our experiments with the help of
the analytical equations describing Delaunay surfaces, as
described in the following.

The energy of an axisymmetric shape defined by r(z) (Fig. 1)
with constant interfacial tension g can be written as

E½rðzÞ� ¼ 2p
ðh=2
0

dz gr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r;z2

q
� Dp

2
r2

� �
; (2)

where r,z = dr/dz and Dp = pi � po is the pressure difference
across the interface with pi being the pressure inside the bubble
and po being the pressure outside of the bubble (see Fig. 1).
Using the Beltrami identity and the Euler–Lagrange equation,19

one derives from eqn (2) the differential equation of the force
equilibrium in the z-direction

Fz ¼ pr2Dp� g
2prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r;z2

p ; (3)

where Fz is an integration constant. Fz can be interpreted as the
z-component of the total force exerted on the lower bubble by
the lower frame20 (Fig. 1).

For cylinders, unduloids and spheres, the pressure and the
interfacial tension contributions have opposite signs (minus
sign in eqn (3)). For nodoids, the interfacial tension force
changes its orientation at the point where the profile becomes
horizontal (r,z has a singularity). At this point, the last term in
eqn (3) switches sign.20

The absolute value of the inverse mean curvature

jHj�1 ¼ 2g
jDpj; (4)

is the characteristic length scale of this problem. We therefore
use it to adimensionalise the profile r(z), the force Fz, and the
pressure jump Dp, by normalising all lengths with the absolute
inverse mean curvature, and Fz and Dp with the inverse mean
curvature and the surface tension g as follows:

~r ¼ jHjr;

~z ¼ jHjz;

~h ¼ jHjh;

~Fz ¼
HFz

2pg
;

D~p ¼ Dp
2gH

¼ 1:

(5)

Conversely, this allows us to find all possible constant mean
curvature surfaces that fulfil all boundary conditions by scan-
ning through all F̃z. The numerical prefactor 2p, which scales
the force Fz, is used to obtain the standard Delaunay surface
equations. Then, the normalised surface shape depends only

on one parameter, the normalised force20

~Fz ¼ ~r2 � ~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~r;~z2

p : (6)

The relationships given above show that two physical quantities
control the mechanical and geometrical properties of these
surfaces: the interfacial tension g and the mean curvature H.

Four different groups of Delaunay surfaces are commonly
distinguished by the value of F̃z (see Fig. 6):20,21 ‘‘nodoids’’ for
F̃z 4 0, ‘‘spheres’’ for F̃z = 0, ‘‘unduloids’’ for 0 4 F̃z 4 �0.25
and ‘‘cylinders’’ for F̃z = �0.25. The only other Delaunay sur-
face, which exists, is the catenoid.22,23 It is obtained by setting
Dp = 0, i.e. by requiring not only axisymmetry but also zero
mean curvature. It represents a special case in which |H|
becomes infinitely small. The length normalisation with |H|
therefore becomes impossible. For more information, see Sec-
tion S4 in the ESI.†

In our experimental configuration, when axisymmetry is
preserved, the external surfaces of the bubbles or drops are
therefore sections of Delaunay surfaces belonging to one of the
five families defined above. Using the standard parametrisation
of the shape of these surfaces by the rolling angle o of cone

Fig. 6 Examples of the normalised profiles r̃(z̃) of the four Delaunay
surfaces: cylinders, unduloids, spheres and nodoids obtained with
eqn (3) (shifted by r̃ = 2 for a better visualisation). The black dash-dotted
lines are the rotation axis of the shapes. The dashed, grey shaded circles in
the cavalier perspective are the possible start and end points/planes for the
Delaunay profiles/surfaces. The black crosses are the turning points where
the slope dr̃/dz̃ is maximal or minimal for unduloids and spheres. By
crossing the surface, we obtain always a pressure jump of |Dp̃| = 1. Since
there is a self-intersection for the nodoids, there are three zones, one with
p̃ = p̃N, one with p̃ = p̃N + Dp̃ and one with p̃ = p̃N + 2Dp̃, shown in
different pink shadows. o0 and o1 show a possible start and an end point
for surfaces. In the case of a nodoid, the chosen shape has Dp o 0 and
some parts of the interface go beyond the plane of the frame. The volume
enclosed between the plane of the frame and this part of the interface is
counted as negative (the red area in the figure).
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sections along the axis of symmetry21 (see also Section S2 in the
ESI†) leads to the cylindrical coordinate equations

r = r(o,F̃z,H), (7)

z = z(o,F̃z,H), (8)

where o = o0 at the contact film and o = o1 at the frame.
Examples of the parametrisation for the different surfaces are
given in Section S2 in the ESI.†

2.3.1 Boundary conditions. The surface has to fulfill a set
of boundary conditions given by the experimental configu-
ration, both on the contact film (o = o0) and on the frame
(o = o1). The mid-plane is defined by z = 0 and frames are at
z = �h/2 leading to

z̃(o = o0) = 0, (9)

~z o ¼ o1ð Þ ¼ �jHjh
2
: (10)

The radius at o0 has no constraints. The radius at o1 must be
equal to the radius of the frame R

r̃(o = o1) = |H|R. (11)

At the boundary of the contact film, the contact angle yc

defines the slope dr̃/dz̃(o = o0)

d~r

d~z
o ¼ o0ð Þ ¼ cot ycð Þ: (12)

Finally, we need to ensure volume conservationðo1

o0

d~zðoÞp~rðoÞ2 ¼ jHj3V : (13)

dz̃ can be negative at some parts of the shape in the case of a
nodoid (Fig. 6). Consequently, the interface can go beyond the
plane of the frame. The volume enclosed between the plane of
the frame and this part of the interface is then counted as
negative to maintain volume conversation (the red part in Fig. 6
for the nodoid profile).

The different boundary conditions therefore lead to the five
relationships (9)–(13). Eqn (9) is trivial and fixes an integration
constant corresponding to translation along the z-axis. The
other four equations are used to calculate the four unknown
physical quantities: o0, o1, H and F̃z. We therefore obtain a
uniquely defined surface.

It is more natural to think about sets of surfaces which differ
only in one boundary condition, for example in h. This is also
the relevant consideration for our experiments, since in each
experiment we change only the distance h. We can then search
for the corresponding surfaces whose F̃z fulfill all boundary
conditions to obtain the complete set of Delaunay surfaces. The
exact procedure of how the equations are solved is explained in
Section S2 in the ESI.† In general, the Delaunay surfaces are
scaled and cut so that they satisfy the boundary conditions.
However, one needs to keep in mind that the question of the
stability of these shapes is not solved with these considerations.

For different types of Delaunay surfaces, defined by the
value of F̃z, the angle y = cot�1(r̃,z̃) (see Fig. 1) varies between

two extreme values ymin(F̃z) and ymax = 1801 � ymin(F̃z). The
minimum angle ymin is plotted in Fig. 7 as a function of F̃z. The
contact angle yc must be included in this interval for a solution
to exist. Consequently, we found for yc = 01 only surfaces which
are parts of nodoids and spheres, for yc 4 01 also some
unduloids and for yc = 901 all types of Delaunay surfaces,
including cylinders (the cylindrical surface is only accessible
in the case of ‘‘capillary bridges’’).

Spherical solutions always have F̃z = 0. There is only one
solution for yc = 01 (a simple sphere truncated by the frame)
and two solutions for yc 4 01 (a simple sphere truncated by the
frame and a double truncated sphere by the frame and the
other bubble).

The nodoid is the only Delaunay surface which exists under
compression (Fz 4 0) and with a negative pressure difference
Dp o 0. By crossing an interface of a Delaunay surface, the
pressure changes by |Dp|. Depending on the direction in which
the interface is crossed, the pressure jump is positive or
negative. The self-intersection of the nodoids allows to cross
two interfaces. Before crossing an interface, p̃ = p̃N; after
crossing the first interface, p̃ = p̃N + Dp̃, and after crossing
the second interface, p̃ = p̃N + 2Dp̃, as shown by the pink
shaded areas in Fig. 6. If we now define p̃o = p̃N + 2Dp̃ and p̃i =
p̃N + Dp̃, the pressure difference Dp̃io = p̃i � p̃o is in this case
�Dp̃ and changes sign. Since we also changed the direction of
o, the force also changes sign.

2.4 Computational method: Surface Evolver

Surface Evolver is a finite element program to simulate surfaces
under given constraints.24 It models surfaces using a mesh of

Fig. 7 The minimal contact angle ymin is plotted for different Delaunay
surfaces with different F̃z values. The red and green areas illustrate the
inaccessible and accessible F̃z values, respectively, for different contact
angles yc. Only the F̃z values larger than the crossing point between the
horizontal dashed lines (illustrating different contact angles yc) are acces-
sible for the specific yc.
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facets which are defined by edges and vertices. Bodies are
closed surfaces having a given volume and pressure. The mesh
can be refined during the simulation by splitting facets into
smaller facets by adding new vertices.

The vertices move in the direction of the energy gradient
under the consideration of constraints during every conver-
gence step to obtain the smallest energy possible. A stable
configuration is found if the surface is an energy minimum.
The energy gradient vanishes in this case. The resulting surface
properties can then be compared to experiments and theory.

Surface Evolver also provides a tool to investigate shape
instabilities.14 An extremal surface is stable if all second
derivatives of the energy functional with respect to the surface
coordinates are positive. All second derivatives are expressed by
the Hessian matrix. In most cases, an analytical solution for the
Hessian matrix is not available. Surface Evolver provides a
numerically obtained Hessian matrix, which is the second
derivative of the energy functional with respect to the vertex
coordinates. If the energy is a stable minimum, all eigenvalues
li of the Hessian matrix are positive. A shape instability occurs
when the smallest eigenvalue reaches zero. We use this method
to investigate the stability of different configurations. The
detailed procedure of the simulation is explained in Section
S5 in the ESI.†

3 Results and discussion
3.1 General observations

In order to describe different stable shapes and instabilities, we
use the following naming convention, which is summarised
schematically in Fig. 2 with the corresponding images given in
Fig. 4 for the three contact angles yc. A detailed example for one
contact angle is given in Fig. 3. For simplicity, we only use the
word ‘‘bubble’’ here, but most of these configurations can also
be obtained using drops. The initial configuration is given by
two axisymmetric ‘‘separate bubbles’’, which we label as ‘‘SB’’.
When these are put in contact by decreasing h, they ‘‘jump’’
into a new configuration, creating axisymmetric ‘‘connected
bubbles’’ (‘‘CB’’). The instability between these two is labelled
as ‘‘SB - CB’’. By increasing h of a CB configuration with
sufficiently large R (depending on yc), one observes that the
bubbles separate (‘‘CB - SB’’). This instability is also observed
in the work of Bohn15 and Fortes et al.16 in the case where the
bubbles are confined between two parallel walls. By decreasing
h in the CB configuration for any R and yc, the axisymmetry is
lost and one observes ‘‘tilted bubbles’’ (‘‘TB’’) for yc = 01 and
yc = 601, and a mirror symmetric buckling for yc = 901. Even if,
for yc = 901, the shape after the transition has characteristic
differences, we want to group it with the other tilting instabil-
ities since all of them appear only if the bubbles are under
compression, i.e. when Fz 4 0. The onset of this tilting is a well-
defined instability ‘‘CB - TB’’, which is also observed in the
case of bubbles confined between two parallel walls.15 Bradley
et al.14 also conducted Surface Evolver simulations for this
problem. The difference with our configuration is that for

bubbles confined between two walls the point of instability is
always at Fz = 0.15,16 Besides these two known instabilities,
pinning the bubbles on frames creates new instabilities for
certain parameter ranges of h, R, V and yc, which are reported
here for the first time in detail. The article of Frostad et al.12

observed detached bubbles for some experiments. The
detached bubbles (DB) are observed by increasing h coming
from a CB (‘‘CB - DB’’). For this instability to arise, R has to be
smaller than a limit value, which depends on yc. For perfectly
symmetric systems, this detachment should occur simulta-
neously on both frames. However, in reality, it typically arises
only on one frame, as shown in Fig. 3b or Fig. 4. For yc = 01, this
instability does not exist due to the lack of attractive forces
between the bubbles (drops) (forces Fz which are negative). The
second new instability is a bubble shifting (‘‘ShB’’) away from
the CB upon decreasing h, i.e. CB - ShB. There the film
between the two bubbles is shifted away from the frame
symmetry-axis, while maintaining the mirror symmetry in the
xy-mid plane. This instability is observed only for R above a
critical value which depends on yc and diverges to infinity when
yc goes towards 01. To analyse these observations in depth, we
combine in the following experiments (Section 2.2), theory of
Delaunay surfaces (Section 2.3) and Surface Evolver simulations
(Section 2.4).

Since the bubble volume V and the interfacial tension g
remain constant during one experiment, they provide a natural
length and stress scale of the problem. Since they are more
readily accessible than the mean curvature H used in Section
2.3, we use them here to normalise all lengths L (such as r, R or
h) and forces Fz and Dp by defining

L̂ ¼ 1

V1=3
L; (14)

F̂ z ¼
1

gbV1=3
Fz: (15)

Dp̂ ¼ V1=3

gb
Dp: (16)

To obtain the pressure difference Dp̂ predicted by Delaunay
surfaces, Dp and V in eqn (16) have to be replaced by 2Dp̃
and Ṽ, respectively. In the following, we will work only
with the normalised values from eqn (14) and (16), which
allows us to provide a coherent picture combining experiments,
theory and simulations. We discuss first the forces and pres-
sures arising in the system (Section 3.2) before turning to a
more detailed analysis of the shapes and their stability
(Section 3.3).

3.2 Force and pressure characterisation

This subsection compares forces and pressures obtained by
experiments, simulations and theory. In the case of soap
bubbles and capillary bridges created by soap films, we mea-
sured directly the vertical force component Fz, since it is
proportional to the system size and hence large enough to be
measured with sufficient precision (Section 2.2). In the case of
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the bubble/drop configuration, in contrast, we have to work
with much smaller systems to be able to neglect gravity. We
therefore measure the pressure difference between the bubbles
and the surrounding liquid (Section 2.2). It is inversely

proportional to the system size and therefore large enough to
be measured with sufficient precision.

In Fig. 8, the normalised pressure difference Dp̂ is plotted
over the normalised distance ĥ between the frames for the three

Fig. 8 Different dimensionless pressure differences Dp̂ are plotted over the dimensionless height ĥ for water drops in silicone oil. For the two figures (a)
and (b), the contact angle is yc = 01 and for the figures (c) and (d), the contact angle is yc = 901. The figures (a) and (c) illustrate the different shapes and the
path related to the pressure measurements during one measurement and the figures (b) and (d) show how Dp̂ changes with ĥ for different frame radii R̂.
In all figures, experimental data (Exp) are compared to simulations (SE) and to the theory of Delaunay surfaces (DS). In the theoretical curve, spherical (F̂z =
0) and catenoid (Dp̂ = 0) solutions are highlighted with a filled circle and an open triangle, respectively. Pressure jumps are related to bubbles coming into
contact SB - CB, a bubble detachment CB - SB for larger frame radii or a bubble frame detachment CB - DB for smaller frame radii. The ShB appears
only for Dp̂ o 0. The change in pressure is fairly small and in most cases almost the same as for the axisymmetric solution. Consequently, the shape
transition CB 2 ShB is only observable visually.
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methods (experiments, simulations and theory) and for two
contact angles (yc = 01 in Fig. 8a and b and yc = 901 in Fig. 8c
and d). In Fig. 9, the normalised force F̂z is plotted over the
normalised distance ĥ between the frames for the three meth-
ods (experiments, simulations and theory) and for two contact

angles (yc = 601 in Fig. 9(a and b) and yc = 901 in Fig. 9(c and d)).
In both figures, panels (a) and (c) show in detail how the
pressure or the force depend on the distance between the
frames, indicating the different shapes and transitions via
arrows and a colour shading. The sub-panels (b) and (d) plot

Fig. 9 Different normalised force F̂z measurements are plotted over the normalised height ĥ for soap bubbles. In the figures (a) and (b), the contact angle
is yc = 601 and in the figures (c) and (d), the contact angle is yc = 901. The figures (a) and (c) illustrate the different shapes and the path related to the force
measurements during one measurement and the figures (b) and (d) show how F̂z changes with ĥ for different frame radii R̂. In all figures, experimental
data (Exp) are compared to simulations (SE) and to the theory of Delaunay surfaces (DS). In the theoretical curve, spherical (F̂z = 0) and catenoid (Dp̂ = 0)
solutions are highlighted with a filled circle and an open triangle, respectively. Force jumps are related to bubbles coming into contact SB - CB, a bubble
detachment for larger frame radii or, a bubble frame detachment for smaller frame radii. The largest radius R̂ for which a bubble frame detachment
appears depends on yc. The tilt instability appears only if the bubbles are under compression with F̂z 4 0. The instability presents a discontinuity in dF̂z/dĥ.
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the pressure- or force-height relationship for different frame
radii R̂ represented by different colours. The theory (solid lines)
shows the pressures and forces for all possible Delaunay
surfaces which meet the boundary conditions. They are not
necessarily physically stable shapes. The simulation and the
experiments show only pressures and forces of stable shapes.
To give the reader an order of magnitude of the physically
measured values of the pressure and forces, a dimensional
graph is shown in Section S1 in the ESI.† The measured forces
and pressure differences typically are in the range of �0.02 N o
Fz o 0.02 N and �50 Pa o Dp o 50 Pa.

Let us start by considering more closely the pressure–height
cycle shown in Fig. 8a in the case of R̂ = 0.62 and yc = 01. By
starting at a point of two separated bubbles (SB), the pressure
difference Dp̂ remains constant upon decreasing ĥ until the two
drops touch each other. One obtains connected bubbles (CB)
with the transition SB 2 CB. Then, Dp̂ increases smoothly by
decreasing ĥ. This changes at the tilted bubble shape transition
CB 2 TB, where dDp̂/dĥ has a jump. By increasing ĥ, one goes
the same way back, i.e. for yc = 01, the pressure–height cycle has
no hysteresis. In Fig. 8b, one observes the influence of different
frame radii. The general behaviour remains the same. With
increasing R̂, the slope dDp̂/dĥ is increasing in absolute values
for the CB, but Dp̂ for the SB is decreasing. Dp̂ at CB 2 TB is
increasing with increasing R̂.

An example of a force–height cycle is shown in Fig. 9a in the
case of R̂ = 0.88 and yc = 601. This corresponds to a sequence as
the one shown in the top row of Fig. 3. Starting at a point with
two separated bubbles (SB), the distance ĥ is decreased (going
from right to left) until the bubbles touch each other. Since
yc 4 01, the bubbles are attractive and there is a jump to
negative values of F̂z, corresponding to the transition SB - CB.
If the height ĥSB-CB is larger than the height for the minimal
force F̂z (for example the curves in Fig. 9b for R̂ = 0.88 and
R̂ = 1.39), further approaching the frames leads to a decrease in
the force F̂z, reaching the minimum, and then an increase in
forces. In the case where the height ĥSB-CB is smaller than the
height for the minimal force F̂z (for example in Fig. 9b for
R̂ = 0.45 and R̂ = 0.17), the force F̂z, further approaching the
frames, leads only to an increase in F̂z. Whether the SB - CB is
reached before or after the minimum depends on R̂. However,
at this stage, we lack a physical interpretation for this observa-
tion. In both cases, an axisymmetric shape is maintained
reaching positive values of F̂z. When a critical distance is
reached, the axisymmetry is broken leading to the tilted bubble
state (TB) via the tilt instability (CB 2 TB). This corresponds to
a second order shape transition, since F̂z is continuous during
the instability in experiments and simulations (i.e. the first
derivative of the energy with respect to ĥ is continuous) (Fig. 9).
Only the slope of F̂z changes at this point. This tilting instability
cannot be described by the Delaunay theory. In the TB, the
tilting angle j increases with decreasing ĥ (see Fig. 4 and 11)
and dF̂z/dĥ changes. The tilting increases until the contact film
touches the frame boundaries. In this case, the deformation
often becomes irreversible due to the pinning of the soap film
on the frame geometry. That is why before reaching this point,

we increase ĥ again (withdrawing the frames from each other).
The system follows again the TB and CB branch moving back into
negative F̂z which reaches a minimum before increasing again. In
the case of attractive bubbles (yc 4 01), we observe a hysteresis,
i.e. we have access to stable CB shapes at distances ĥ larger than
the first contact height. Upon increasing ĥ further, the bubbles
detach from each other (CB - SB) and the force vanishes,
F̂z = 0. We have therefore returned to the initial configuration
and can start another cycle. Depending on yc and R̂, the final
instability can also evolve towards a bubble detachment from the
frame (CB - DB), as shown in the bottom sequence of Fig. 3. The
overall shape of the F̂z(ĥ) curve depends on R̂. Different examples
are plotted in Fig. 9b. They show that with increasing R̂ the
distance ĥ for a CB - SB decreases and the minimal and
maximal F̂z increase in absolute values. Catenoid shapes appear
for larger frame radii as well.

A very similar cycle is obtained for the capillary bridge with
yc = 901 shown in Fig. 8c and d and 9c and d. Detailed examples
of these cycles are given in Fig. 8c for Dp̂(ĥ) and in Fig. 9c for
F̂z(ĥ). Let us consider first the cycle of Fig. 9c with R̂ = 0.17: we
start with two separated bubbles (SB) and decrease ĥ (approach-
ing frames). When the two bubbles touch each other, we
observe the instability SB - CB. In this case, the film between
the two bubbles may break and one obtains a capillary bridge.
(Since it is difficult to control if the film breaks or remains
intact, we often started directly with the capillary bridge by
starting with ĥ = 0.) Continuing approaching the frames, we
observe again the instability CB - TB, which looks in this case
more like a shifting, see Fig. 4. Then, we increase ĥ again
(withdrawing the frames from each other). The system follows
again the TB and CB branch moving back into negative F̂z.
Depending on R̂, one observes a CB - SB, or, as in the case of
Fig. 9c, a CB - DB instability. A hysteresis would also be
possible between the DB and the CB, but is rarely observed in
experiments since the DB configuration is often unstable due to
gravity.

The pressure–height cycle in Fig. 8c corresponds to a R̂ of
1.17. This is a regime where experiments and simulations can
differ in their shape transitions, since in the experiment the
boundary conditions are never as perfectly axisymmetric as in
the simulations and the energies of the shapes ShB and CB are
in this regime very close to each other. Consequently, we
observe a SB - ShB in the experiment and a SB - CB in the
simulation. This adds for the experiment two times the shape
transition CB 2 ShB for the approaching-withdrawing cycle.
The simulation shows the same behavior for larger R̂. The rest
of the cycle is similar to the cycle shown in Fig. 9a.

With the increasing R̂, the minimum of Dp̂(ĥ) decreases and
also reaches zero and negative values (see Fig. 8d). The Dp̂(ĥ)
range for one approaching-withdrawing cycle decreases with
decreasing R̂ (see Fig. 8d).

3.3 Shape instabilities and shape diagrams

In what follows, we discuss in more detail the different
instabilities that occur during the approaching-withdrawing
cycles. For a given bubble volume, the equilibrium forms are
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characterised by the two scaled parameters ĥ (scaled distance
between frames) and R̂ (scaled frame radius) and by the contact
angle yc. In principle, yc can vary continuously from 01 to 901.
Theoretically and numerically, this is not difficult. Experimen-
tally, we have only studied the cases of yc = 01, 601 and 901, but
it is possible to access other angles by tuning the effective
interfacial tension of the different interfaces. It is therefore

interesting to discuss in a general manner the different states
of the system in the phase space yc–ĥ–R̂. The instabilities are
then given by surfaces (f (yc,ĥ,R̂) = Cte) whose traces we can
observe experimentally in the planes yc = 01, 601 and 901. We
plot the shape diagrams for these three cases in Fig. 10 and
discuss in detail the different shape transitions, given again by
experiments, simulations and (in most cases) theory.

Fig. 10 Three shape diagrams for the ĥ–R̂-plane corresponding to different contact angles yc for (a) two soap bubbles (yc = 601), (b) capillary bridges
(yc = 901) and (c) two bubbles or drops in a liquid (yc = 01). The solid lines are shape transitions predicted by the theory of Delaunay surfaces, and the
dotted dashed lines are shape transitions obtained with help of Surface Evolver. The dotted lines are special Delaunay surfaces: blue, spherical caps which
touch each other in one point (F̂z = 0); red, spherical double truncated surfaces in contact (F̂z = 0); magenta, catenoid surfaces (Dp̂ = 0). The different
colors of the experimental points refer to the different phase transitions and show at which point the respective phase transition was observed in the
experiment. In the yellow area, the surface is a connected bubble (CB). In the blue area, one observes separated bubbles (SB), in the green area detached
bubbles (DB), in the red area tilted bubbles (TB) and in the magenta area shifted bubbles (ShB). The blue yellow and the blue magenta patterned areas
symbolize the history dependence of the shape. If one comes from a completely blue area, the shape will be a SB. If one comes from a completely yellow
or magenta area, the shape will be a CB or a ShB.
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3.3.1 Contact instability SB - CB. If we decrease the
distance ĥ between two initially separated bubbles whose
surfaces correspond to spherical sectors, there is a value
ĥSB-CB for which they come into contact (SB - CB in Fig. 8
and 9, and the blue dotted line in Fig. 10). The theoretical
prediction of this surface instability is trivial and equal to twice
the height of the undeformed bubbles. Even though it is in very
good agreement with the experiment, we do not plot the
experimental data here to keep the focus of the graphs on the
less trivial instabilities. When the bubbles are attractive (yc 4
0), the system jumps to a new equilibrium shape satisfying the
contact angle yc and the boundary conditions. The associated
contact force can also be predicted exactly by Delaunay theory,
as shown in Section 3.2.

3.3.2 Tilt instability CB 2 TB. Upon decreasing the dis-
tance ĥ beyond the contact point, the force F̂z increases and
crosses zero. At this crossing, the corresponding shape is
composed of double truncated spheres (see Fig. 9 and the red
dotted line in Fig. 10). However, this time the bubbles are fully
connected, i.e. this point is always reached at a distance ĥ r
ĥSB-CB. For even smaller ĥ, F̂z becomes positive and the
axisymmetric solutions are parts of nodoids. At a specific
ĥCB2TB, depending on R̂ and yc, the axisymmetry is broken
and the film between the two bubbles begins to tilt in a random
direction (CB 2 TB in Fig. 9 and the red dash dotted line in
Fig. 10). The force measurements do not show a jump this time
(as for the SB - CB, the CB - DB or the CB - SB (see below)
instabilities). Instead, one observes merely a change in slope
(Fig. 8 and 9), as discussed in Section 3.2.

We determined the point of instability numerically, with
help of the eigenvalues of the Hessian matrix in Surface Evolver
and experimentally by direct visualisation. One eigenvalue has
to cross zero for a shape transition, as shown in Sections S5 and
S6 in the ESI.† The shape diagrams in Fig. 10 show the
experimental points for the CB 2 TB with red crosses and the
simulated points as a red dash-dotted line, as already mentioned
above. All simulated and almost all experimental points are on the
left side of F̂z = 0 (the red dotted line in Fig. 10). It follows that F̂z 4
0 when the tilt instability occurs. The difference between the
simulation and the experiments is due to geometric inaccuracies
in the experiments and the difficulty to determine precisely a rather
smooth shape transition.

In contrast to the case of two bubbles confined between
parallel plates,14–16 some nodoids are stable when the bubbles
are pinned on frames. In the case of two bubbles between
plates, the spherical solution can always be rotated and shifted
in a manner that, for smaller distances between the plates h,
the surface (and hence the surface energy) remains the same.16

This is not possible for pinned bubbles, where the pinning
adds an energy barrier for a shift of the contact area between
the bubble and the frame. That is why the CB 2 TB appears
only for F̂z 4 0 and the contact film between two tilted, pinned
bubbles in contact is not flat, as discussed in more detail in
Section 3.4.

3.3.3 Bubble–bubble detachment CB - SB and bubble–
frame detachment CB - DB. Starting with tilted bubbles (TB),

and increasing ĥ (withdrawing frames), we first come back to
the axisymmetric connected bubbles (CB) without any
hysteresis. Further withdrawing can lead to two different
behaviours depending on the value of the frame radius R̂.
When R̂ 4 R̂Tr1

(yc), an instability is observed where the two
bubbles detach from each other (bubble–bubble detachment
CB - SB in Fig. 8 and 9, the blue solid line in Fig. 10). When
R̂ r R̂Tr1

(yc), we observe an instability where the bubbles detach
from the frame (bubble–frame detachment CB - DB in Fig. 8
and 9, and the green solid line in Fig. 10). In theory, the
detachment should occur from both frames simultaneously.
However, in the experiment, it occurs always from the upper
frame because of gravity. The value of R̂Tr1

(yc) has been
obtained both numerically and theoretically (see Section S3 in
the ESI†) and corresponds to a triple point in the phase
diagram ĥ–R̂ for a given yc (crossing point of green and blue
solid lines in Fig. 10). The values for the R̂Tr1

and ĥTr1
of these

triple points are listed in Table 1. The points are part of a triple
line in the yc–ĥ–R̂ space.

The bubble–bubble detachment instability CB - SB is
observed when the theory of Delaunay surfaces predicts the
maximal distance ĥ, corresponding to the point where the
compressibility qĥ/qF̂z of the system changes sign. We obtained
this point numerically by converging the function ĥ(F̃z) to a
maximum. The point of instability for both, the simulation and
the experiment, agrees within the uncertainties (see Fig. 8 and 9
CB - SB, and Fig. 10 (blue solid line)). If one moves the frames
up and down, exceeding the height where the CB - SB occurs
and going below the height of the simple truncated spherical
solution (SB - CB), one obtains a hysteresis already discussed
in Section 3.2 and shown in Fig. 10 by the zone with blue and
yellow stripes. By observation we found out that the bubble–
frame detachment CB - DB always occurs when r̂,ẑ(�0.5ĥ) = 0,
which corresponds to a vertical interface at the frame. For the
case of a cylindrical capillary bridge (the green dotted line in
Fig. 10b), this is always the case. The cylindrical capillary bridge
becomes unstable at ĥ = 2pR̂ with R̂ = 0.4662 (where the green
dotted line and the green solid line meet each other in
Fig. 10b). This cylinder height is also known as the critical
length of the Rayleigh instability for capillary bridges after
which the surface is physically unstable.25 It is also the ĥ
of one period of the Delaunay surface with F̃z = �0.25,

Table 1 Points in the R̂–ĥ–yc shape space, where three shape config-
urations meet. We call them triple points. There are two triple points, Tr1

between CB, SB and DB and Tr2 between CB, SB and ShB. The points are
listed for yc = 01, yc = 601 and yc = 901. For Tr1 with 01 o yc o 901, the
point is not well defined, and this one observes a jump in ĥ. It is predicted
by the theory and validated by the simulation. For yc = 601, the jump is too
small to be measurable in experiments. For more information, see Section
S3 in the ESI

Tr1 Tr2

yc R̂ ĥ R̂ ĥ
01 0.0 2.4814
601 0.1782 � 0.0001 3.48 � 0.01 1.91 � 0.01 0.939 � 0.005
901 0.632 � 0.005 2.69 � 0.02 1.70 � 0.01 1.27 � 0.01
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i.e. o1 � o0 = p. Unduloids are also unstable with respect to
small fluctuations, if they exceed one period.26,27 The solid
green line in Fig. 10b shows the function R̂(ĥ) for one period of
a Delaunay surface for all F̃z o 0, if one starts at an extremum of
the profile r̂(ẑ). Since there is always a maximum and a mini-
mum in the profile r̂(ẑ) (except for the cylinder), one finds two
solutions for one ĥ, one with a smaller R̂ (the lower branch) and
one with a larger R̂ (the upper branch). Theoretically also all
other R̂ in between the upper and lower branches are possible
shapes. But they are not mirror symmetric to the xy-plane. All of
these shapes are already physically unstable. The upper and
lower branches meet each other at the cylindrical shape of one
period (the shortest unstable cylinder).

Since in experiments all frames have a finite rim thickness, the
upper and lower pinning positions are not necessarily the same,
giving rise to Delaunay surfaces without mirror symmetry. They
occur only if this configuration has less surface area for the same ĥ
in comparison to the mirror symmetric solution and if r̂,ẑ(ĥ/2) and
r̂,ẑ(�ĥ/2) do not have the same sign. This is, for instance, the case
for a soap film capillary bridge close to a cylindrical solution (see
Fig. 10b). Experimentally, we occasionally observed some Delaunay
surfaces which lost their mirror symmetry in the xy-plane for yc =
901, as shown in Section S7 in the ESI.†

The solid green line in Fig. 10a represents shapes with F̃z o
0, r̂,ẑ(�ĥ/2) = 0 and |o1 � o0| 4 p for yc = 601. Basically, they are
the same surfaces as for yc = 901 only a little longer due to the
change in contact angles. The upper branch is folded to the
right side (as shown in Section S3 in the ESI†) due to the change
in contact angle yc. The solid green line corresponds to the
theoretical prediction for the CB - DB. Beyond this line (the
line included), all shapes are again physically unstable. The
experimental measurements for both contact angles show good
agreement with this prediction.

For yc = 01, the CB - DB does not exist since there are no
attractive forces between the bubbles. Consequently, there are
no unduloids fulfilling all boundary conditions. Section S3 in
the ESI† discusses also the other contact angles yc in more
detail.

3.3.4 Shift instability CB 2 ShB 2 CB. Depending on R̂,
yc and ĥ, the pressure difference Dp̂ between the inside and the
outside of the bubbles can become zero and negative. On the
magenta dotted line, Dp̂ = 0, and above the magenta dotted line,
Dp̂ o 0, as shown in Fig. 10a and b. If Dp̂ = 0, the surface is part
of a catenoid. The only axisymmetric constant mean curvature
surfaces with Dp̂ o 0 are nodoids, as discussed in Section 2.
Some of them are unstable against non-axisymmetric perturba-
tion, as in the case for the TB. In this case, the film between the
two bubbles is shifted away from the frame axis as shown in the
ShB examples of Fig. 4. The mirror symmetry to the mid-plane
remains, as in the case for the TB with yc = 901. However, here
the contact film for two bubbles remains horizontal and flat.
We can identify a critical frame radius R̂Tr2

such that: if R̂ r
R̂Tr2

, we go from CB 2 ShB and back from ShB 2 CB before we
obtain a CB - SB. If R̂ Z R̂Tr2

, we go from CB 2 ShB and then
directly to ShB - SB. Therefore, R̂Tr2

represents the triple
points where the dash dotted magenta line and the solid blue

line meet each other in the shape diagrams in Fig. 10 and the
triple line for the same shapes in the yc–R̂–ĥ-space. The
numerically obtained values of R̂Tr2

and ĥTr2
are found in

Table 1. The theoretical prediction for the CB - SB starts to
be wrong at the Tr2 line. Simulations are therefore necessary to
obtain the real point of detachment.

The last stable catenoid is the point in Fig. 10 where the
dotted magenta line (for catenoids) and the blue solid line
(CB - SB) are tangential to each other. Starting from this point,
all catenoid solutions in the clockwise direction of the magenta
dotted line are stable, while those in the counter clockwise
direction are unstable. This is fundamentally different from the
stable catenoid solution without a volume constraint.28,29

3.4 Shape of the tilted film

As already mentioned, the contact film between the two bub-
bles is a minimal surface. This remains also the case if the
bubbles have a TB shape. The TB maintains a point symmetry
to the origin with

r̂(c) = r̂(c + p) (17)

ẑ(c,r̂) = �ẑ(c + p,r̂), (18)

where c is the angular coordinate of the cylindrical coordinate
system. The contact film also obeys eqn (17) and (18). Conse-
quently, the film must obey a three-fold symmetry if it is not a
plane. This is indeed the case, as the Surface Evolver example of
Fig. 11 shows for a contact angle of yc = 601. The contact film is
represented in a tilted coordinate system x0y0z0, where z0 is
pointing in the normal direction of the best fitting plane to the
contact film. We found that all tilted films have this undulating
shape with three wavelets whose amplitude increases with the
tilt angle of the film. The change in z0 is significantly smaller
than those in x0 and y0. Deviations from the tilted plane are too
small to be noticeable by direct visual inspection. A known
minimal surface with the same geometrical features is the

Fig. 11 Left: Two bubbles in the tilted bubble configuration (TB) simulated
with Surface Evolver with yc = 601 (with the tilt angle j). The upper part
shows a zoom of the tilted film in the rotated coordinate system x0y0z0 to
illustrate the three-fold symmetry of the film. The change in z0 is small
compared to r̂. Right: Example of a ‘‘Karcher tower’’, a known three-fold
minimal surface.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/7
/2

02
5 

1:
57

:2
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00919c


8434 |  Soft Matter, 2024, 20, 8420–8435 This journal is © The Royal Society of Chemistry 2024

‘‘Karcher tower’’.30 An example is shown on the right of Fig. 11.
This type of surface could help to describe the TB analytically by
rescaling and cutting. More information on these surfaces is
given in Section S6 in the ESI.†

4 Conclusions

In this article, we investigated the shape, stability and mechan-
ical properties of two interacting bubbles or drops pinned on
parallel, circular frames. These include capillary bridges, which
may be considered as two bubbles (drops) separated by a film of
zero surface energy.

In contrast to some previously investigated cases of bubbles
or drops interacting between two parallel plates,15,27 the con-
straints imposed by pinning create complex shape spaces
separated by different types of instabilities. We investigate here
in detail the force/pressure–shape–deformation relation using
control parameters such as the volume V of the bubbles (drops),
the radius R of the circular frames, the distance h between the
frames, and the contact angle yc between the bubbles (drops).
Whenever the surfaces are axisymmetric, we combine experi-
ments and computer simulations (Surface Evolver24) with the
Delaunay theory of constant mean curvature surfaces.17 In all
cases, experiments, simulations and theory show very good
agreement, generally within the experimental/numerical errors.
In the case of non-axisymmetric surfaces (TB and ShB), for
which no analytical theory exists to our knowledge, we have
limited ourselves to a comparison between experiments and
numerical simulations. Once again, the agreement is very good
and within the experimental and numerical errors.

As shown in Fig. 2 and 10, we found five different types of
physically stable shapes characterised by different force/pres-
sure–deformation relation: connected bubbles (CB), separated
bubbles (SB), detached bubbles (DB), tilted bubbles (TB) and
shifted bubbles (ShB). The system moves between these shapes
through approaching and withdrawing the frames from each
other, passing through different types of instabilities which are
discussed in detail in Section 3. The theory of Delaunay
surfaces explains three types of shapes and the instabilities
between them. To the best of our knowledge, it is the first time
that DB and ShB – and the associated instabilities – are
mentioned and investigated. ShB only exist for bubbles (drops)
pinned on frames and not for bubbles (drops) interacting
between parallel plates. The TB, CB and SB are also observed
for bubbles (drops) interacting between parallel plates,15,16 but
the detailed behaviour is different. For example, for the case of
the instability CB 2 TB, which was already known from
previous investigations between parallel plates,14–16 we show
that the bubbles (drops) remain stable at higher compression
(F̂z 4 0) if they are pinned on frames. We show that this
instability can be described as a second order shape transition
(Section S6, ESI†) and that the tilted film becomes undulated
with a three-fold symmetry (Section 3.4). Future work will
establish the theoretical prediction of this instability and the
associated film shapes.

While we concentrated on three different contact angles yc =
01, 601, and 901 between the bubbles (drops) for practical
reasons, our calculations include naturally the intermediate
contact angles, which are of increasing interest for commu-
nities working on adhesive foams or emulsions.31–33

The significance of the provided shape and force/pressure
diagrams extends far beyond mere curiosity. Bubbles or drops
in contact held by frames are increasingly used to quantify the
highly non-local interactions between bubbles (drops). Our
work can therefore be used to cleanly design and analyse
experiments which investigate bubble or drop interactions.

While the presented investigations explore interactions
between ‘‘simple’’ bubbles (drops) of the constant interfacial
tension, future investigations will extend this work to interac-
tions between bubbles (drops) with complex interfacial proper-
ties, including the presence of interfacial elasticity.
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