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Active Brownian disks moving in two dimensions that exchange information about their internal state
stochastically are chosen to model epidemic spread in a self-propelled population of agents under the
susceptible-infected-recovered-susceptible (SIRS) framework. The state of infection of an agent, or disk,
governs its self-propulsion speed; consequently, the activity of the agents in the system varies in time.
Two different protocols (one-to-one and one-to-many) are considered for the transmission of disease
from the infected to susceptible populations. The effectiveness of the two protocols are practically
identical at high values of the infection transmission rate. The one-to-many protocol, however,

Received 15th July 2024, outperforms the one-to-one protocol at lower values of the infection transmission rate. Salient features

Accepted 29th October 2024 of the macroscopic SIRS model are revisited, and compared to predictions from the agent-based model.
Lastly, the motility induced phase separation in a population of such agents with a fluctuating fraction of

active disks is found to be well-described by theories governing phase separation in a mixture of active
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1 Introduction

Epidemiological models have been in use for more than a
century to track the spread of infectious diseases." These
models assume that the population is compartmentalized into
three populations: susceptible (S) individuals, who are prone to
the disease, infected (I) individuals who possess the disease
and are capable of spreading it, and individuals who have
recovered (R) from the disease and may or may not become
prone to further infection.> The rates of interconversion
between the various populations are specified by epidemiolo-
gical constants, and the time-evolution of these populations is
governed by coupled ordinary differential equations (ODEs).”
Several modifications to this susceptible-infected-recovered
(SIR) model have been made, to account for policy interven-
tions such as vaccination drives, social distancing protocols,
and lockdown mandates.® SIR models and its variants have
been used to describe the spread of several diseases,* such as:
the plague,’ COVID-19,>° varicella’ and influenza.® These
macroscopic models assume a uniform, well-mixed population,
such that the epidemiological constants do not depend on the
(heterogeneous) spatial density of the various populations. A
fine-grained, discrete treatment of epidemic spread is agent-
based modeling®** (ABM), which considers each individual in
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and passive particles with a constant fraction of passive disks.

the population as an autonomous entity, with the disease
transmission occurring if a susceptible individual comes within
a contagion radius of the infected individual. Another para-
digm involves the use of network-based modeling to account
for spatial heterogeneities in the population and variabilities in
the epidemiological constants.*™*® More recently, SIR model-
ing has been coupled"”™*° with advances in the understanding
of self-propelled or active matter. Self-propelled entities such
as light-activated Janus particles undergo a transition from
a homogeneous state to a clustered one, at sufficiently high
enough values of packing fraction and self-propulsion
speed.”®>" This experimentally observed phenomenon of moti-
lity induced phase separation (MIPS) can be recapitulated in
numerical simulations in which the active particles translate
with a constant self-propulsion speed, interact sterically, and
whose orientations evolve diffusively in time.>*** It is therefore
possible, using such systems, to examine disease propagation
in both homogeneous and spatially heterogeneous configura-
tions, by attaching to the individual active agents an internal
state (S, I or R). If the internal state of the particle is coupled to
its dynamics, such that the self-propulsion speed of infected
particles is different from that of susceptible or recovered
particles, then one would expect that MIPS in such a system
would be affected. We address this question in the present
work, and also aim to draw a connection between the agent-
based, or microscopic, and macroscopic descriptions of epi-
demic spread.

Norambuena et al'® simulated a collection of active
Brownian particles as self-propelled agents moving in two
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dimensions in which a susceptible particle gets infected as
soon as it comes within a cut-off distance of an infected
particle. They considered a low particle density system, mean-
ing that the number of active agents per unit dimensionless
area was approximately 0.03, and used a mean-free path
approach to determine analytical expressions for the rate of
infection in their model. The internal state of the particle does
not affect its dynamics, and all particles move with the same
self-propulsion speed. Zhao et al."® also endow an internal state
to active agents and examine how the effectiveness of the
disease spread differs from the macroscopic model that
assumes a well-mixed population. Here too, a particle’s self-
propulsion speed is unaltered by its internal state. Useful future
directions of research identified in their paper include the study
of models in which the internal state is coupled to the motility of
the particle, and the simulation of systems at a large enough area
fraction so that MIPS can be observed. Forgécs et al'” study
contagion dynamics using an agent-based modeling approach,
where the state of the particle determines its motility, ie., the
infected particles move 50% slower than susceptible or recov-
ered particles. Their simulation considers a collection of active
Brownian disks moving in two dimensions, the majority of
which belong to a large cluster that has undergone MIPS. The
evolution of the disease for various values of the epidemiological
constants is examined, along with a characterization of the
spatial distribution of the susceptible particles around the
infected particles. The dynamics of active particles that exchange
information about their internal state has been studied in
contexts outside of epidemiological modeling as well.>*** For
example, Paoluzzi et al.>* examine MIPS in a mixture of motile
and non-motile particles that can change their identities upon
collision. Quantifying phase separation arising in agent-based
modeling of epidemiological systems remains an open question,
particularly when the internal state is coupled to the motility of
the agents, causing the system to behave as a transient mixture
of active and passive particles. Also pertinent is establishing the
connection (or lack thereof) between the macroscopic and
microscopic descriptions of disease spread in populations, in
the non-dilute limit. We address these questions in the present
work and find that: (a) the analytical theory defining the phase
boundary in a system of active and passive particles*® can
successfully be adapted to describe phase separation in a collec-
tion where the activity of the particles switches transiently, and
(b) certain qualitative similarities can be observed in the disease
statistics predicted by the macroscopic and microscopic models,
although a direct mapping between the two is not found.

The remainder of this manuscript is organized as follows:
Section 2 recapitulates salient features of the macroscopic SIRS
model, Section 3 describes the numerical implementation of
the microscopic model for two protocols of the spread of
infection: one in which each infected particle can pass the
disease on to exactly one susceptible particle within a contagion
radius, and another in which an infected particle can poten-
tially spread the disease to multiple susceptible particles within
the contagion radius. A comparison of the contagion dynamics
predicted by the one-to-one and one-to-many infection
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protocols are presented in Section 4. Section 5 presents a compar-
ison of the disease dynamics obtained using the macroscopic and
microscopic models. A discussion of phase separation in a
mixture of active and transiently passive disks is presented in
Section 6, accompanied by a description of the protocol used in
the present work for identifying the occurrence of phase separa-
tion in such systems, which could be used to analyze MIPS
in situations beyond the present study. We conclude in Section 7.

2 Macroscopic model revisited

We consider the SIRS model in this work, in which the
immunity gained by the recovered particles can be lost, causing
them to become susceptible to the infection again. The terms
“macroscopic” model and “well-mixed” model are used inter-
changeably, to refer to the set of ODEs given by eqn (1). This
model is typically used to capture the contagion dynamics of
diseases like influenza®”?® and the Omicron variant of SARS-
CoV-2,”° where the immunity gained is temporary. The popula-
tion of each compartment is denoted by Ny, N; and Nz, and
evolve according to the following coupled ODEs:

dNg B*NiNs

—dl = N + o NR,
dN;  B*NiNs
= _P TS ey 1
d[ N I ( )
dNg
—— =9y"N; —a'N,
dz I — % VR

where f* indicates the rate of infection or transmission of the
disease from an infected to a susceptible individual, y* repre-
sents the rate of recovery of an infected individual, and o*
represents the rate of relapse or the loss of immunity of a
recovered individual, resulting in its conversion to a susceptible
agent. We also define the relative transmission rate w* = f*/y*
and relative relapse rate u* = «*/y* for convenience. The
asterisks on the macroscopic (population-level) rate constants
are used to distinguish them from their counterparts in the
microscopic model, which is discussed later in the paper.

Depending on the context, the labels {S,[,R} could refer to
the type of population being discussed, or the normalized value
of that population, e.g.,, S = Ng/N. The governing equations
[eqn (1)] are subject to the initial conditions S, = S(¢ = 0), Iy, Ry,
and the normalization condition

S+I+R=1. )

Two possible steady-state solutions to the system of eqn (1)
emerge: the first corresponds to epidemic extinction, with S, =
1,1, =0, R, =0, and the second is

1
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Fig. 1 Population evolution as a function of time for two parameter sets
with w* = 2, u* = 1.5 and different values of the initial populations
of susceptible and infected individuals, i.e., (a) So = 0.7, Io = 0.3 and (b)
So=09,/p=0.1

Values of w* < 1 correspond to epidemic extinction, while
®* > 1 results in the endemic state given by eqn (3). Interest-
ingly, the steady-state susceptible population depends only on
the rates of infection and recovery, while the populations of the
other-two species (I and R) depend on all the three rate
constants.

Fig. 1 illustrates the effect of the rate constants on the time-
evolution of the infection, for different initial populations of
the various populations. The rate constants and the initial
conditions uniquely determine the dynamics of population
evolution. The steady-state value of the various populations
(S, for instance), however, are solely determined by the ratios
o* and p*, and are independent of the initial conditions. In the
language of dynamical systems theory,*° eqn (3) is an attracting
state for v* > 1.

Fig. 2 illustrates a plot of the steady-state populations as a
function of the rate constants. Fig. 2(a) illustrates the case of
varying the infection rate fixed values of the recovery and
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Fig. 2 Steady-state population as a function of (a) relative transmission
rate at constant values of recovery and relapse rates, (b) relative relapse
rate at constant values of infection and recovery rates, and (c) relative
transmission rate at constant values of infection and relapse rates. Data in
Fig. 1 and 2 have been generated by solving the coupled ODEs given by
eqn (1), using a code shared on Mathworks File Exchange.>

relapse rate. Low values of the relative transmission rate, i.e.,
®* < 1 result in epidemic extinction, in which there are no
infected particles in the long-time limit. As w* > 1, however,
the steady-state population of susceptibles declines with an
increase in the infection rate. The transition of the steady-state
numbers from the low w* branch to the high w* branch
appears to follow a transcritical bifurcation.®® Holding the
infection and recovery rates constant, while varying the relapse
rate, as shown in Fig. 2(b), has no effect on the population of
susceptibles. There are more recovered than infected indivi-
duals for values of y* < 1, while the balance is reversed as the
value of u* crosses unity. Lastly, Fig. 2(c) examines the con-
sequences of varying the recovery rate as the infection and
relapse rates are held constant. At both small and large values
of the recovery rate, the recovered population is nearly zero.
This is because for w* < 1 the population is solely made of
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susceptible individuals, while the infected individuals domi-
nate the population for o* > 1.

3 Numerical simulations of
microscopic model for SIRS dynamics
in active Brownian particles

We simulate a system of N active Brownian particles (ABPs) of
unit radius each (d = 2r = 2) moving in a periodic square box of
side L. The position of the particles evolves in time according to

i'i = V?M + Uye; [4)

where U, is the self-propulsion speed of the disks. The particles
move in the direction e; = [cos 0;,sin 0;], where 0; denotes the
particle’s orientation measured with respect to the positive
x-axis. The particle orientation evolves in time according to a
rotational diffusive process, such that

(040)0,(t")) = 2D:5(t — ¢) (5)

where D, denotes the rotational diffusion constant. The posi-
tions and orientations of the particles are updated using a
forward Euler algorithm with a timestep At. The v;™ term on
the RHS of eqn (4) represents a harmonic interaction that
operates only when the centre-to-centre separation of disk i
and k is smaller than their diameter d. The steric interaction is
proportional to the extent of overlap of the disks, and acts to
alter the position of each disk in an overlapping pair such that
they are just in contact. The functional form of v;"™ is given by

o

1 N
v}._IM :E;K(i‘ﬂ( —d)@(d_rfk)rfk7 (6)

where 7y = ri/ri is the unit vector along the line joining the
particle centres, @ denotes the Heaviside function, the stiffness
K = 0.5, and n, denotes the number of overlapping particles in
the neighborhood of the ith particle.

We next describe the update rules to simulate the spreading
of diseases in this microscopic, agent-based model, which
largely follows the algorithm outlined by Forgacs et al.'” The
simulations are initialized in a homogeneous configuration,
with all the agents arranged in regularly spaced intervals on a
square lattice. Each particle has an associated internal state,
i.e., it could be a susceptible (S), infected (I), or recovered (R)
agent. The contagion dynamics (change in the internal state of
the agent, ie., S, I, R) as well as the physical movement of the
agents happen simultaneously. This approach differs from that
adopted by Forgécs et al,'” in which the contagion dynamics
starts from a phase separated state.

A census of the number of particles in each sub-category is
taken at the beginning of each timestep. The allowed transi-
tions are S — I, I - R and R — S, with the rate constants
associated with the transitions given by f, y and o, respectively.
The protocol governing the spread of the infection is as follows:
a loop is run over all the N; infected particles in the box at a
given time instant, and the number of susceptible and infected
particles within a cut-off radius r. of an infected particle 1™ is
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recorded as N{” and N{”, respectively. Note that the index n
runs over all the infected disks in the system at a given time
instant. By this definition, the smallest allowable value for N
is zero, while that for N{ is unity. The probability of infection is
calculated as pi,¢ = PN{VAt. The probability of recovery is given
by prec = yAt. The values of the three probabilities {pinf,PrecsPrel}
are capped at unity. If any of these probabilities exceed unity
during a timestep, it is reset to unity.

We consider two protocols by which the infection might
spread:

Protocol A: one-to-one

For each value of the index n during the loop over Ny, if the
outcome of a binomial trial with probability pi,¢ is non-zero,
then one susceptible particle from N is picked at random for
conversion to an infected particle. Similarly, if the outcome of a
binomial trial with probability p,e. is non-zero, and there are
multiple infected particles within a cut-off radius r. of an
infected particle I, then the state of one infected particle
changes to recovered. An infected particle in this protocol can
spread the disease to only one other particle in a timestep.
Having multiple infected particles in the vicinity of a suscep-
tible particle only increases the probability of infection.

Protocol B: one-to-many

For each value of the index n during the loop over Nj, the
number of susceptible particles that get infected is decided by
drawing a sample from a binomial distribution of probability
Pinf N(S”) number of times, and calculating S, the total number
of successful outcomes. A total of S* particles from amongst
N¢ are then randomly selected to be infected. Once the loop
over all N; is completed, the number of infected particles that
recover is decided by drawing a sample from a binomial
distribution of probability p;e., N; number of times, and calcu-
lating I", the total number of successful outcomes. A total of I"
particles from amongst N; are then randomly selected to
undergo recovery. In this protocol, therefore, an infected par-
ticle could potentially transmit the disease to multiple suscep-
tible particles in its neighborhood.

For both the protocols discussed above, the relapse of
recovered particles into the susceptible category is governed
by a binomial process of probability p,.; = ¢At, and is invoked
once the loop over all N; is completed. Furthermore, the
infected particles become immobile (U, = 0), while both
the susceptible and recovered particles retain their activity.
The infected particles regain their mobility upon recovery. The
instantaneous fraction of active disks in the system is therefore
given by x, = (Ns + Ng)/N.

The population and system size in all cases are chosen to be
N = 1600 and L = 100, corresponding to a number density of
p = N/L* = 0.16, and an area fraction of ¢, = pnd®/4 ~ 0.5. The
self-propulsion speed is fixed at U, = 0.1. A discrete timestep
width of At = 0.1 is used in all the simulations, such that the
displacement of a disk over a single timestep is smaller than its
diameter. The contagion radius is chosen to be r. = 3 in all the
simulations, unless specified otherwise. The motility of the

This journal is © The Royal Society of Chemistry 2024
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system is quantified using the Péclet number, Pe = 3U,/dD,.
The persistence length / = U,/D, of the active particles must be
smaller than the box dimensions, to minimize finite-size
effects.**** We adjust the rotational diffusion constant at each
Pe so that this condition is met. The effects of thermal noise on
the translational motion are ignored in the present work, but may
be included by adding a white-noise process to the RHS of eqn (4).
In Section 4 that compares the contagion dynamics predicted by
the two protocols (A and B), and in Section 5 that explores the
connection between the microscopic and macroscopic models,
the numerical results are obtained from simulations that are n =
2 x 10" steps long. In Section 6 that charts the phase behavior of a
collection of active and transiently passive disks, simulations of at
least ((10°) steps are used. The total length of the simulation is
simply the product of the number of simulation steps and the
discrete timestep, and is denoted by ¢, = nAt.

4 Comparison between protocols
A and B

In this section, we compare the dynamics of infection spread,
and the steady-state statistics for numerical simulations per-
formed using the two protocols (A and B) discussed above.
Given the broad span of the parameter space, we restrict
ourselves to studying two values of the relative transmission
rate w = f/y, and perform a scan across a range of relative
relapse rates, u = o/y, by holding the recovery rate constant at
y = 0.1, and varying « and f appropriately. We divide the
parameter space into four quadrants as shown in Fig. 3 and
examine the simulation results accordingly.

Fig. 4(a) explores the first and second quadrants of the
parameter space and illustrates that, at a higher value of the
relative relapse rate, 1 = 2, we notice two different behaviors,
based on the value of the relative transmission rate. In quad-
rant I, both the relative transmission and the relapse rates are

This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Time-evolution of the susceptible population predicted by the two
protocols at (a) high and (b) low values of the relative relapse rate u = a/y,
for relative transmission rates of w = 0.5 and w = 2.

high, implying that the disease spread is more probable, as is
the replenishment of the numbers of the susceptible popula-
tion. In this quadrant, we observe that the higher transmission
rate plays a more dominant role, leading to a faster spread of
the disease, and a rapid decrease in the number of susceptibles.
Furthermore, it is immaterial if the infection spreads via the
one-to-one or the one-to-many route, as they both result in a
nearly identical prediction for the steady-state susceptible
population. In quadrant II, the relapse rate is higher than the
infection rate. The steady-state in such a case is decided by the
protocol for disease spread. Stipulating a one-to-one spreading
protocol causes the infection to die out faster, so that the
population is entirely composed of susceptibles in the long
time limit. Allowing for a one-to-many spreading protocol for
the infection compensates for the low value of the transmissi-
bility in this quadrant, resulting in a faster spread of the
disease, and a lower value of the steady-state susceptible
population as compared to the one-to-one protocol. Fig. 4(b)
explores the third and fourth quadrants of the parameter space,
for the smallest value of the relative relapse rate considered in
this section, u = 0.1. Over the time window considered in the
figure, the numbers predicted by the one-to-many protocol are
comparable to or lower than that predicted by the one-to-one
protocol, indicating, unsurprisingly, that the former is more
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Fig. 5 Steady-state susceptible population as a function of the relative
relapse rate u for (a) low and (b) high values of the relative transmission rate
. Error bars represent standard deviation of data obtained from the time-

averaging procedure used to estimate the mean steady-state population.
Where invisible, error bars are smaller than symbol size.

efficient in spreading the disease. This effectiveness of the one-
to-many protocol, however, is manifest only transiently, as the
steady-state values of the susceptible population are indepen-
dent of the relative transmissibility, and the route for disease
spread.

From the above analysis, it is clear that the sharpest contrast
between the steady-state outcomes predicted by the two proto-
cols occurs in quadrant II. Given the fluctuations in the values
of the susceptible population, the average steady-state value,
S, is estimated by computing the mean of the last 20% of the
time series. Fig. 5 illustrates the steady-state susceptible popu-
lation as a function of the relative relapse rate, for two different
values of the relative transmission rate. The effectiveness of the
one-to-many protocol in governing the spread of infection is
most evident from the low transmission regime as identified in
Fig. 5(a). For ¢ > 0.2, the S, resulting from the one-to-many
protocol is significantly lower than that predicted by the one-to-
one protocol, indicating a spread of the disease amongst a
larger fraction of the population. In the high transmission
regime, however, the protocol for disease propagation has a
less pronounced effect on the steady-state statistics, as evinced
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by Fig. 5(b). Having compared the outcomes from the two
protocols, we now present results obtained with protocol A
only for the rest of the paper.

5 Connection between microscopic
and macroscopic models

A major distinction between the microscopic agent-based
model (ABM) and the macroscopic population-based model
for disease spread is the specification of a contagion radius r.
for the former, which makes the spread of the infection depend
not only on the number of infected and susceptible individuals
at a given time, but also on their locations. We illustrate below
a few salient features of the steady-state numbers predicted by
the microscopic model, and how they compare to the macro-
scopic model predictions.

Fig. 6(a) illustrates that the steady-state population for the
microscopic model is independent of the initial fraction of the
infected population I, at a fixed value of the contagion radius
(re = 3), for various values of the relative transmission and
relapse rates. The independence from initial conditions, over
the range examined in this figure, is a trait shared by the
microscopic and macroscopic models.

Fig. 6(b) shows that the steady-state susceptible population
decreases as a function of the ratio of the relative relapse
rate (u), for fixed values of w and the contagion radius (7. = 3).
This marks a crucial departure from the macroscopic model
(see Fig. 2(b)) in which S, is solely a function of the relative
transmission rate.

The variation of the steady-state population as a function of
the relative transmission rate w is shown in Fig. 6(c), for fixed
values of u and contagion radius (r. = 3). The susceptible
population is independent of the relative transmission rate
for small values of the latter. Beyond a threshold value of the
relative transmission rate, however, the susceptible population
decreases with w. The crossover value depends on the ratio o/y,
unlike in the macroscopic model where the transition occurs at
o* = 1 and is independent of the relapse rate. While the
existence of a bifurcation in the macroscopic model predictions
(a system of coupled ODEs) is unsurprising,*’ it is remarkable
that an evidence of bifurcation is also seen in the agent-based
model. This also indicates that the stochastic update rule for
the various compartments is faithful to the contagion dynamics
as predicted by the ordinary differential equations of the
macroscopic model.

Lastly, Fig. 6(d) illustrates the dependence of S., on the
contagion radius, for various values of the epidemiological rate
constants. For all the cases examined in the figure, the steady-
state susceptible population decreases as a function of r..

We briefly revisit the comparison between protocols A and B
before concluding this section. The results reported in Section
4 all come from numerical simulations with a contagion radius
of r. = 3. Fig. 7 illustrates the effect of using a larger value of the
contagion radius, r. = 10, on the steady-state numbers obtained
using protocol A, over a range of relative relapse rates and a

This journal is © The Royal Society of Chemistry 2024
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Fig. 6 Steady-state susceptible population as a function of (a) initial fraction of infected individuals, (b) relative relapse rate at fixed values of infection
rate, (c) relative transmissibility at fixed values of relapse rate, and (d) contagion radius at fixed values of the epidemiological constants. All results obtained

using protocol A (one-to-one) for disease spread.

fixed relative transmission rate of w = 2. Keeping the contagion
radius fixed at r. = 10, using a lower value of w, or a different
protocol results in a nearly identical plot. We note that at a
large value of the contagion radius, there is essentially no
distinction between the steady-state predictions of the two
protocols. The long-time population of susceptibles is
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Fig. 7 Steady state population as a function of the relative relapse rate, as
obtained using protocol A.

This journal is © The Royal Society of Chemistry 2024

practically zero and the particles are split between the infected
and recovered categories. This indicates that when an infected
particle has an abundance of susceptible neighbors to transmit
the disease, it is immaterial if the disease spreads via the one-
to-one or one-to-many route, and there are negligible suscep-
tible individuals remaining in the long time limit.

In the limit of a large contagion radius, each particle can
“see’” all the other particles in the box, and one could therefore
expect that the effect of spatial heterogeneity is reduced, bring-
ing the microscopic model predictions closer to that obtained
from the macroscopic model. Probing this line of thought, we
note a qualitative similarity between Fig. 7 and the macroscopic
model results given by Fig. 2(b), in that the steady state
numbers are independent of the relative relapse rate. A distinc-
tion between the microscopic and macroscopic model predic-
tions is that while the former predicts a vanishing of the
susceptible population across the range of the relative relapse
rates considered, the latter predicts a finite non-zero value for
the steady-state susceptible population.

In Fig. 8, the macroscopic and microscopic model results are
plotted simultaneously, with the caveat that even though the
same numerical values have been used for the epidemiological
constants (e.g. o = o* = 0.05), there is no direct mapping
between the two models. Keeping the relative relapse rate u
fixed, increasing the relative transmission rate w drives the
spread of infection from a state of extinction (S, = 1) to one in

Soft Matter, 2024, 20, 9193-9207 | 9199
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Fig. 8 Steady-state epidemic statistics as a function of the relative infec-
tion rate, at a contagion radius of (a) r. = 3 and (b) r. = 10. The same legend
scheme is followed in both the subfigures, with filled symbols denoting the
microscopic model results, obtained using protocol A, and hollow symbols
representing the well-mixed model results. The numerical values of the
parameters used in both the models are the same, although there is no
direct mapping between the two.

which the fraction of susceptible individuals has reduced
considerably. As noted in the discussion of Fig. 6(c), the relative
transmissibility at which the transition away from the epidemic
extinction state occurs depends on the value of p in the
microscopic model. For the macroscopic model, however, the
location of this transition is fixed at the analytically determin-
able value of w* = 1, and is independent of the relative relapse
rate . Fig. 8 illustrates the effect of the contagion radius on the
location of this bifurcation: higher values of r. push the
transition to lower values of w. This makes intuitive sense: a
smaller infection rate is required when the infected particles
can see a larger number of the susceptible population, resulting
in a more effective spread of the disease.

We have examined additional factors which could determine
the bifurcation point in the microscopic model. The contagion
dynamics for agents moving with a reduced self-propulsion
speed U, = 0.05, for two cases is analyzed. In the first case, the
rotational diffusivity is set to D, = 10™® so that the Péclet
number remains at Pe = 75, at which MIPS is observed for an
area fraction of ¢, = 0.5.>* In the second case, the rotational
diffusivity is left unchanged at D, =2 x 107>, so that the Péclet
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number falls below the threshold required for observing MIPS
at ¢ = 0.5. From Fig. 12, we see that the crossover point in all
the cases is not only a function of the relapse rate and the
contagion radius, but also depends on the mobility of the agent
(U and D,) which indirectly determines the local packing
fraction in the box.

The connection between the well-mixed model and the
agent-based model has been examined in detail by Paoluzzi
et al.>® They consider mobile agents on a two-dimensional lattice
(in a periodic box of size L) that undergo SIR dynamics. The
length of the steps is governed by the Lévy exponent (called f in
their work, but we will use the symbol 4, to avoid confusion with
the rate of infection), and the step direction is chosen from a
uniform random distribution. In the limit of large mobility
coefficient 4 — 2, the motion of the agents is akin to Brownian
motion, while the A — 1 corresponds to a Lévy flight where the
agents can take steps whose lengths are picked at random from
the interval [0,L/4] using Mantegna’s algorithm.>® The lower
values of A are seen to agree with the analytical results for the
well-mixed SIR model. Paoluzzi et al.?® also studied the effect of a
mixture (high and low 1) of the mobility coefficients on the
contagion dynamics. They find that even a small number of sites
with a small value of / (meaning higher mobility) can trigger
epidemic waves. Note that the agents have no finite-size and
hence no steric repulsion exists between them. The step sizes are
entirely user-defined, and drawn from a known distribution.
In our work, although the step size is uniform by design [with a
value of UyAt per unit time, as seen from eqn (4), where U, is the
self-propulsion speed of the ABP], the actual sizes of the steps
vary due to steric repulsions between the agents. In any case, the
maximum size of the step taken in any timestep is smaller than
the particle diameter (d = 2), and our simulation box dimensions
(L = 100) are such that d « L. These step sizes are far smaller
than the ones encountered by Paoluzzi et al.>* The absence of
such long steps is perhaps the reason why the microscopic
model in our case does not completely converge to the well-
mixed model results, although qualitative similarities are
observed when the contagion radius is increased.

A common paradigm to study the spread of epidemic is to
use a network-based approach,®™¢ in which the members of
the population are represented by nodes, and their connectivity
denoted by the edges that join them. The infectiousness of the
disease-causing vector is allowed to be different for each node
in the network. This approach allows the decoupling of the
connectivity of the agents from the probability of disease
transmission. In the active particle-based model considered
in our paper, although the input parameters for the agent
mobility and the epidemiological constants are picked inde-
pendently, the coupling of their effects is an emergent phe-
nomenon, due to the protocol of disease spread which depends
on the spatial positioning of the various disks. Grofimann
et al.™* consider SIR-dynamics on a static network where the
infectiousness of the nodes can take on a distribution of values.
They find that a large variation in the infectiousness leads to a
smaller final size of the epidemic, stemming from an increased
probability of epidemic extinction, and therefore a lowering of

This journal is © The Royal Society of Chemistry 2024
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the herd immunity threshold.®” In our paper, increasing the
contagion radius appears to result in a similar outcome, as
evinced in Fig. 8, as larger r. results in smaller values of the
transmission rate for making the infection endemic, ie., S, < 1.

We conclude this section by noting that the precise mapping
(if indeed one exists) between the rate constants used in the
ABM and those appearing in the ordinary differential equations
at the population-level remains unknown, we predict that the
contagion radius r. and the transmission protocol would cru-
cially affect this relationship.

6 Phase separation in
motility-modified SIRS model

A collection of self-propelled (or active) particles interacting
sterically undergo a motility induced phase separation (MIPS)
at large enough values of the Péclet number and the area
fraction ¢, of the particles. In this transition, the particles go
from being in a gas-like, single-phase to a phase-separated state
consisting of a dense large cluster that dynamically exchanges
particles with the surrounding dilute phase [see ref. 22 and 23
for an extensive review of the topic]. The boundary separating
the homogeneous state from the phase-separated one in the
Pe-¢, plane has been determined through direct numerical
simulations®>***?° and analytical theory.?**°™*?

The effect of the presence of passive particles - ones that
move translationally under the effect of Brownian noise or not at
all - on the phase separation behavior of an active-passive
mixture has also received interest.’®***” Stenhammar et al.*®
studied such a mixture with a total area fraction of ¢,, of which a
number fraction x, is active. They derive the following analytical
expression for the phase boundary in the Pe-x, plane:

3n?k
"~ 4¢p,Pe )

XA

using the kinetic model introduced by Redner et al.*® Here « is
an empirical fitting parameter®® that represents the average total
number of particles that are lost from a phase-separated cluster
in an escape event. The boundary obtained using x = 4.05 is seen
to accurately demarcate the homogeneous and demixed states in
the phase diagram generated from numerical simulations at ¢ =
0.6. A value of x = 4.5 accurately predicts the phase boundary
in the Pe-¢, plane for a system composed solely of active disks
(x4 = 1). Takatori and Brady** derive an expression for the phase
boundary in an active-passive mixture using an alternative
approach that relies on the concept of active swim pressure in
a collection of self-propelled swimmers. They obtain an agree-
ment with the predictions of Stenhammar et al*® without any
fitting parameters.

We summarize the common metrics used in the literature to
quantify motility-induced phase separation, before describing
the algorithm introduced in the present work to identify systems
that have undergone phase separation. The fraction of particles
in the largest cluster Ny¢/N is a popular metric®****° to track the
approach to MIPS. When the majority of the particles in the

This journal is © The Royal Society of Chemistry 2024
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Fig. 9 Normalized size of the largest cluster as a function of time, for the
case of N = 1600 active disks in which all the epidemiological constants
have been set to zero and there is no contagion dynamics. Snapshots of
the system at the three indicated time-instances are given in Fig. 10.

system belong to a single cluster, it is taken to be an indication
of MIPS. Large fluctuations in the number of particles within a
subregion are taken to be a sign of inhomogeneity and the onset
of MIPS.>>*" Another signature for the occurrence of MIPS is the
appearance of a bimodality in the probability distribution of the
local area fraction.>** As a system evolves from a homogeneous
state to a phase separated one, the size of the domains (calcu-
lated from either the static structure factor or the density
correlation function) grows with time as a power law**3%°°6
#(¢) ~ . These metrics have also been used to analyze
systems containing a mixture of active and passive particles,>®
in which the relative populations of the two species remain
constant in time.

In the present work, however, the fraction of active and
passive disks fluctuate in time due to the disease spreading,
and we seek to identify an appropriate metric for the identifi-
cation of MIPS in such systems. To that end, Fig. 9 illustrates
the time evolution of Nyc/N in a system consisting entirely of
susceptible particles, with the epidemiological constants set to
zero. There is no spread of infection in such a system, and the
fraction of active disks is therefore unity at all times. For the
values of Pe and the area fraction considered in Fig. 9, the
system undergoes MIPS, as evinced by the snapshots recorded
at the various time instances [Fig. 10]. Our goal is to define
metrics for the identification of MIPS based on this reference
time series, for application to other systems in our work in
which the fraction of active disks fluctuate in time. Firstly, we
note that the normalized size of the largest cluster reaches a
steady state value of Nyc/N ~ 0.83 following an initial transient.
Secondly, after ¢ ~ 5520, there are no significant dips in the
value of Ni¢/N, and the fluctuations in this quantity are mini-
mal. We use these two observations to devise a methodology
(Fig. 11 and 13) for ascertaining if a system has undergone MIPS
or not, given the time-series of the largest cluster. In case a
system has phase separated, this algorithm also estimates the
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Fig. 10 Snapshots of the system in Fig. 9, recorded at (a) t = 1000, (b) t = 5527, and (c) t = 8000, respectively.

time needed for MIPS. The various parameters needed by the
algorithm are {Meu,Mmin,7,0}, and a brief explanation is as
follows. If the fractional size of the largest cluster yu = Ny /N does
not exceed M., at any point in its time series, then we consider
that MIPS has not occurred. The algorithm searches for a chunk
of data in the time series in the interval [£t + 7], such that each
data point in the interval exceeds Mpy;,. If such a chunk is not
found in the input data series, the algorithm concludes that MIPS
has not occurred. Provided such a data chunk is found, we then
test if the standard deviation of the data series (normalized by the
total number of particles), is smaller than . If this requirement is
met, the algorithm concludes that MIPS has occurred and returns

Pe=75,3 = 0.2, o = 0.2

1 - -
tMIPS > MIPS
sk 4o W"‘f’
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Fig. 11 Cluster size evolution as a function of time for two representative
systems. Parameters needed for the algorithm that detects motility
induced phase separation are identified here, and their numerical values
provided in Table 1.

Table 1 Parameters used in the algorithm (Fig. 13) to determine if phase
separation has occurred or not

Parameter Value used in present work
Moyt 0.8

Mimin 0.6

T 0~1tsim

o 0.1

9202 | Soft Matter, 2024, 20, 9193-9207

ts, the starting point of the data chunk, as the time at which MIPS
has occurred. If the standard deviation of the data series (normal-
ized by the total number of particles) exceeds o, then we conclude
that MIPS has not occurred. The parameter values used in this
algorithm are listed in Table 1. The time to MIPS as estimated by
the algorithm for the timeseries indicated in Fig. 9 and 11 are
3730 and 5527, respectively.
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Fig. 12 Steady-state value of susceptibles as a function of the relative
recovery rate, for agents moving at a slower self-propulsion speed Ug =
0.05, with (a) Pe = 75, at which MIPS is observed, and (b) Pe = 37.5, at which
no MIPS is observed for ¢ = 0.5.3* The contagion radius used in both (a)
and (b) is reye = 3. Each data point in the figure was obtained from
simulations of n = 5 x 10% steps.
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Fig. 14 Phase separation in a mixture of active and passive disks. Open
circles indicate a homogeneous phase, while closed diamonds represent a
phase-separated system. Dash-dotted redline represents eqgn (7) with k =
1.875. Snapshots of the system at the locations A, B, C, D are given in
Fig. 15.

Fig. 14 explores the phase behavior of the system in the Pe-
x5 plane, obtained from simulations using a wide range of the
epidemiological constants (see Table 2 for values). At the
steady-state value of the fraction of active disks for any given
value of the Péclet number, we denote if MIPS has occurred or
not using the algorithm described above. The boundary

This journal is © The Royal Society of Chemistry 2024

Table 2 Data points in the Pe—xa phase plane (Fig. 14) and the epide-
miological constants used in the simulations for obtaining them

Pe Xa p y o
50 1.0 0 0 0
0.84 0.1 0.1 0.05
0.62 0.05 0.1 0.2
0.53 0.2 0.15 0.2
0.38 0.2 0.1 0.2
0.22 0.2 0.05 0.2
0.004 0.2 0.001 0.2
60 1.0 0.05 0.1 0.05
0.82 0.1 0.1 0.05
0.63 0.2 0.2 0.2
0.55 0.2 0.15 0.2
0.42 0.2 0.1 0.2
0.23 0.2 0.05 0.2
0.03 0.2 0.005 0.2
75 1.0 0 0 0
0.78 0.1 0.1 0.05
0.59 0.2 0.2 0.2
0.51 0.05 0.1 0.2
0.37 0.2 0.1 0.2
0.22 0.2 0.05 0.2
0.006 0.2 0.001 0.2
90 1.0 0.05 0.1 0.05
0.76 0.1 0.1 0.05
0.56 0.2 0.15 0.2
0.41 0.2 0.1 0.2
0.21 0.2 0.05 0.2
0.03 0.2 0.005 0.2
100 1.0 0 0 0
0.78 0.1 0.1 0.05
0.59 0.2 0.2 0.2
0.53 0.05 0.1 0.2
0.39 0.2 0.1 0.2
0.23 0.2 0.05 0.2
0.008 0.2 0.001 0.2
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Fig. 15 Representative snapshots of the system for Pe = 75 at the active-
disk fraction (A-D) indicated in Fig. 14 and recorded at the halfway point of
the total simulation. The black disks denote susceptible agents, while blue
and orange disks represent infected and recovered individuals, respectively.

between the homogeneous states and the MIPS states is well
described by eqn (7) when a value of x = 1.875 is used. Snap-
shots of the system at a fixed value of Pe and varying fractions
of the active disks are given in Fig. 15A-D. We notice that there
is no preference for disks with identical internal states to
cluster together. A more quantitative analysis would involve
the calculation of the pair correlation function for the various
populations.

In Fig. 16, the time taken for motility induced phase
separation, as identified using the algorithm described in
Fig. 13, is plotted as a function of the fraction of active disks
in the system, for a range of Péclet numbers. We observed no
definitive trend, implying that we cannot conclude if the
presence of transiently immobile disks helps to aid or suppress
phase separation in an active-passive mixture. Forgacs et al."”
observe that the presence of quenched disorder, or immobile
obstacles, in an active matter system causes the formation of

104

—-Pe=50
-o-Pe=60
—=-Pe=75

~#Pe=90

102 H-Pe=100 E

0.4 06 0.8 1
Fraction of active disks, xa

Fig. 16 Time taken for motility induced phase separation, as a function of
the active disk fraction.
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Fig. 17 (a) Probability and (b) cumulative distribution functions of the local
area fraction, for the motility induced phase separation process repre-
sented in Fig. 9.

numerous small clusters in addition to the large cluster that is
characteristic of MIPS. Additionally, MIPS is a re-entrant
phenomenon,*** meaning that increasing the Péclet number

10

P(¢IOC)

Fig. 18 (a) Probability and (b) cumulative distribution functions of the
local area fraction, for the snapshots given in Fig. 15.
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Fig. 19 Average nearest neighbors 5 as a function of time for Pe = 75 at
various values of the steady-state active fractions. The alphabets in par-
entheses in the legend entry correspond to the points indicated in Fig. 14.

in an already phase separated system can cause the system to
go back to being in a homogeneous phase.

Another common metric to track motility induced phase
separation is the local area fraction ¢,.. This is evaluated by
dividing the periodic box into multiple smaller boxes and
measuring the area fraction occupied by disks in each sub-
box, to get a distribution of ¢, values.>® In Fig. 17 and 18, the
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probability and cumulative distribution functions of the local
packing fraction (respectively), for the data series represented
in Fig. 9 of the manuscript, are plotted at various timepoints.
The onset of MIPS is indicated by the appearance of bimodality
in the probability distribution function. The CDF peaks sharply
around the average packing fraction (¢, = 0.5) in the absence of
MIPS, and is seen to broaden as MIPS progresses (Fig. 18).

We have also calculated the average number of mobile
(susceptible and recovered) agents that are nearest neighbors
to a an immobile (infected) agent at a given time (¢), similar to
the methodology adopted by Forgécs et al'” This metric is
calculated as follows:

1 1(r) S(1)+R(1)
10 =g 2 W] =) ®)

where the indicator function [(- - -) returns 1 (0) if its argument
is true (false). The numerical implementation of eqn (8) allows
for a 0.5% tolerance, and uses a value of 1.005d in place of d.
In Fig. 19, the average number of neighbors is evaluated for the
Pe = 75 case, for steady-state active fractions (x,) on either side
of the phase boundary. We note that point A in the phase
diagram is obtained for a system in which all the particles are
of the susceptible type, with the epidemiological constants set
to zero. There are no infected particles in this case, and (t) is

Pe=60

—Tp = 0.55 —_—Tp = 0.23
—x4 =042 —x4 =0.03

0 ) i
0 5000 10000
Time, ¢
(b)
Pe=100
2 .
[—z4 =028 —z,4=0.008
1.5¢ 1
s 7 1
0.5 N
0 .
0 5000 10000
Time, ¢
(d

Fig. 20 Average nearest neighbors 5 as a function of time for (a) Pe = 50, (b) Pe = 60, (c) Pe = 90, and (d) Pe = 100, at various number fractions of the

active disks (xa).
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therefore not defined. It is clear from the figure that the average
number of neighbors drops with the decrease in the fraction of
active disks in the system. We performed a similar analysis for
all the other Péclet numbers we have examined in the current
study, and focused on those points at which MIPS has not
occurred. It is clear that the infected particles precipitate the
formation of microclusters, even in the absence of a global
motility induced phase separation (Fig. 20).

7 Conclusions

We performed an agent-based modeling of disease spread accord-
ing to the SIRS model using a collection of active Brownian
particles moving in two dimensions whose internal state encodes
their state of infection. Two protocols for infection were considered,
and their efficacies for the spread of the disease were analyzed for
various combinations of the epidemiological constants. The cou-
pling of the particle’s internal state to its motility causes the
population to behave as a collection of particles in which the
fraction of active disks is time-dependent. We developed an algo-
rithm to determine the occurrence of motility induced phase
separation in such systems with transient activity, and find that it
is well-described by the theories for phase separation in active-
passive mixtures where the fraction of active disks remains con-
stant in time. Although a direct mapping between the agent-based
(microscopic) and macroscopic model is not found, several com-
mon features between the contagion dynamics predicted by the two
models are noted. We see evidence for a transcritical bifurcation in
the microscopic model where the agents are modeled as active
Brownian particles. The use of active Brownian disks permits a
tractable method to tune the density distribution of the system by
changing the Péclet number. Humans in general, however, do not
move at a constant self-propulsion speed with randomly varying
orientations. Simulating the dynamics of individuals in a crowd has
typically relied on the use of social forces that describe the
interaction between the individual members.””*® The use of such
pedestrian models to describe the motion of individual agents
could permit the extension of the present work to model epidemic
spread in human populations. Another interesting exercise for
future work could be the effect of the type of motility on the nature
and location of the bifurcation point, z.e., would a system of agents
modeled using social forces exhibit a different kind of bifurcation
when the steady-state numbers are plotted as a function of the
relative rate of transmission. The concept of over-dispersion has
been observed in the case of the COVID-19 pandemic,'* in which a
few members of the population transmit the infection to many,
while most individuals infect only a few or none at all. This aspect
could be included in our framework by prescribing that certain
infected agents in the system to follow protocol A (one-to-one),
while a few others follow protocol B (one-to-many).
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