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The fluctuation—dissipation relation (FDR) links thermal fluctua-
tions and dissipation at thermal equilibrium through temperature.
Extending it beyond equilibrium conditions in pursuit of broadening
thermodynamics is often feasible, albeit with system-dependent
specific conditions. We demonstrate experimentally that a general-
ized FDR holds for a harmonically trapped tracer colliding with
self-propelled walkers. The generalized FDR remains valid across a
large spectrum of active fluctuation frequencies, extending from
underdamped to critically damped dynamics, which we attribute to
a single primary channel for energy input and dissipation in our
system.

The fluctuation-dissipation relation (FDR) is a fundamental
result in nonequilibrium statistical mechanics. Its significance
lies in providing a means to compute how a system statistically
responds to small external perturbations, in terms of the
correlations in the unperturbed dynamics. A classic example
of the FDR is the Einstein relation," D = ukgT, linking the
diffusivity (fluctuations) D with the mobility (response) u for a
Brownian particle in equilibrium with a bath at temperature T
(kg denotes the Boltzmann constant). This relation, known as a
static FDR, is established under constant force conditions. On
the other hand, the dynamic FDR broadens this concept by
encompassing time or frequency-dependent forces via linear
response theory.>?

Specifically, for a system slightly perturbed from its stable
equilibrium condition, the mean response of an observable x,
denoted as R,(t > 0), to an abrupt arrest of a force F, at time
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The fluctuation—dissipation relation holds for a
macroscopic tracer in an active bathy
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t = 0, is connected to the autocorrelation function C,(¢) in the
unperturbed condition. The dynamic FDR then states,*®
Rl) = £ 20, (1)

A static FDR is recovered at ¢ = 0. Namely, C,(f) — (Ax*), and
R(t) — 8(x(0)) and we obtain a relation in terms of energies,
Fo(Ax*)o/8(x(0)) = ksT. The dynamic FDR (eqn (1) and its
equivalent forms) has been utilized as a model-free method
to assess equilibrium in various experimental systems.®® If the
relationship in eqn (1) is violated, it indicates that the system is
operating outside of thermal equilibrium.

Extensions of the FDR to perturbations of nonequilibrium
steady states were derived previously, both for weak perturba-
tions (e.g.,”**) and for strong perturbations leading to a non-
linear form of FDR.>'®'® However, most of these relations
usually require a variable transformation or are derived for
special non-equilibrium models (such as spiking neurons as in
ref. 13). Alternatively, in nonequilibrium scenarios, a key theo-
retical use of the FDR is the introduction of an effective tempera-
ture Tog," ' satisfying a generalized FDR by substituting T = Teg
in eqn (1). When T.¢ remains constant, irrespective of time and
perturbation magnitude, the analogy to an equilibrium descrip-
tion becomes rather transparent: the response to an external
perturbation is directly proportional to the unperturbed correla-
tions, with Fo/kgTe serving as the constant of proportionality.

An archetypal model for studying the validity range of the
FDR out of equilibrium, and the emergence of an effective
temperature, is a tracer particle trapped in a harmonic potential
and subject to both thermal and active collisions,**® e.g., an
optically trapped colloidal particle in a suspension of self-
propelled organisms.**** Within this model, which is typically
overdamped, there are two timescales of interest: the typical
relaxation time 7, to the steady state, and the characteristic time
of the active stochastic forces 7.. In previous demonstrations
involving such a system, it was established that the generalized
FDR holds for large times only under the condition that 7. is
smaller than the longest relaxation time in the steady state.”
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Specifically, the FDR holds when the external driving domi-
nantly determines both fluctuations and dissipation.

On a different scale, far from thermal equilibrium, numer-
ical investigations of a tracer particle within an athermal
uniformly driven granular gas*>™’ validate a generalized FDR
solely for nearly elastic collisions.*®*° In this scenario, the
effective temperature was determined through the tracer’s
mean kinetic energy, Ty ~ (v)."® We note that the effective
temperature defined through the FDR was shown to be equiva-
lent to other independent definitions of effective temperatures
in driven granular media.>*!

These findings suggest that the generalized FDR remains
applicable when the same physical process governs the dissipation
of external perturbations while simultaneously driving the tracer’s
fluctuations around its steady state. To test this hypothesis for a
completely athermal system, we study a harmonically trapped
macroscopic tracer particle in an active bath of self-propelled
walkers. In our previous work,'® we demonstrated that the tracer
particle’s dynamics are consistent with Markovian dynamics, as
evidenced by the fulfillment of a non-linear FDR. Notably, this non-
linear FDR applies only to a unique conjugated variable and does
not yield a straightforward definition of an effective temperature.
Here, we find that a generalized FDR holds in a wide range of
experimental conditions with a naturally defined effective tempera-
ture that coincides with the unperturbed mean potential energy of

the tracer, %k]; T = %k<Ax2>0. Here, (Ax*)o = {(x — (x))?) is the

variance of the tracer’s position in the unperturbed steady state.

Our experiments are conducted as depicted in Fig. 1A: a
Styrofoam ball is placed in a parabolic plastic arena and is
driven into a nonequilibrium steady state by random collisions
with an assembly of vibration-driven bristle robots (bbots,
Hexbugs™ nano,'®**%). The motion of the ball is recorded by
a top-view camera (Brio 4K, Logitech) at 30 fps. An image
analysis algorithm is used to extract the ball’s trajectory projec-
tion on the XY plane from top-view images. We assume inde-
pendent motion along all three axes and focus on analyzing the
tracer’'s movement along the X-axis, where the perturbation
occurs. The collisions are non-elastic, i.e., the tracer’s restitution
coefficient depends on impact velocities (r ~ 0.8 for low
velocities, see ESIt). We note that in contrast to shaken granular
matter, the embedding media is active on the single particle level
and exhibits emergent collective motion typical for active matter
systems.”>>® The characteristics of the bbot bath are added in
the ESI.f Namely, a single bbot generally performs circular
motion in a parabolic arena when it has sufficient inertia.*®
Placing additional bbots and a tracer ball in the harmonic well
randomizes the bbot motion due to collisions, resulting in an
active gas-like state (see ESI,} Movie S1). Notably, the speed
distribution of the bbots remains independent of Ny, while their
spatial distribution increasingly deviates from the initial circular
motion as N, increases. As a result, the tracer is randomly kicked
by the bbots and exhibits Brownian-like motion (Fig. 1B).

To measure the system’s mean response, we introduce a
mechanical perturbation by activating an external fan (Yate
Loon electronics 12 V 0.30 A cooling fan) to create an airflow.
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Fig. 1 Experimental setup. (A) A Styrofoam ball (diameter ~ 4 cm) is
trapped in a gravitational harmonic potential, a plastic bowl (diameter 38
cm, depth 5 cm), and subjected to collisions with N, = 15 self-propelled
bbots (inset: standard bbot, 4 x 1 cm). The ball is repeatedly perturbed with
a uniform air stream created by an external fan along the x-axis (white
arrow) to test a fluctuation-response relation. To enforce an abrupt onset
and release of the perturbation, a mechanical shutter is used (denoted by 'S).
(B) Part (30 s) of a typical trajectory of the Styrofoam ball in the bbot arena.
(C) Normalized measured position autocorrelation as a function of time
(circles), and fit to egn (2), with 7, = 0.336 ~ 1 = 0.340 s (solid line). The
inset shows the autocorrelation of an equivalent experiment with N, = 4
(tp = 0.54 s, 1o = 0.23 s). The results present an average over M = 375
sequences. (D) The cross-section probability density distributions across the
x axis (blue), and the y axis (green), for Ny, = 15.

After the tracer settles into a perturbed steady state, we abruptly
deactivate the disturbance, with a physical shutter, allowing the
ball to return to its original steady state. We use the number of
bbots N}, as a control parameter, keeping the trapping stiffness
constant, i.e., the arena shape and tracer size are held constant.
Naturally, the mean free time between collisions 7. decreases
with Ny, and the collision frequency increasesi (see below).
Since thermal forces are negligible, the ensemble of bbots
N, acts as a dry active bath, meaning that the tracer is subjected
to a single active noise source (bbot impacts). Therefore, the
noise characteristic time 7. and the stationary relaxation time 7,
are intrinsic system timescales. Particularly, we expect that
sufficiently frequent collisions will dominate the tracer’s dis-
sipation rate of small external perturbations. In this scenario,
the main channel for dissipation is the same process that
induces active fluctuations, and we expect a generalized FDR
to hold as was suggested by Kubo for equilibrium conditions.>

Stationary dynamics and statistics

We start our experiments by characterizing the nonequilibrium
steady state, which we will later perturb. To this end, we focus
on a system with a relatively large number of bbots, N, = 15, in
which the tracer particle is subjected to frequent collisions with
7. = 0.28 s, extracted by image analysis identification of colli-
sions. We record 375 experiments of duration 30 s from which
the tracer particle trajectory is extracted. From the extracted

This journal is © The Royal Society of Chemistry 2024
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trajectories, we calculate the tracer’s (ensemble) average nor-
malized position autocorrelation, C,(¢) (Fig. 1C). It turns out
that this correlation is well fit by the generic autocorrelation

function of a damped noisy harmonic oscillator,>**°

Ci(1) i/t sinw?
= r 2
B, e coswt + o ) (2)

Ci(t) =

where (Ax®), = C,(0) is the variance and »” = 1o > — 7, 2 This
fit provides effective values of the system’s time scale, the
damping rate, 2t,” ", and the (effective) natural frequency of
the harmonic trap§, 7o~ ', for which we obtain 7, = 0.336 ~ 1 =
0.340 s. These values suggest that the tracer dynamics exhibit
critically damped behavior. We note that underdamped relaxa-
tion (t; > 1q) is observed for much lower N, = 4 (inset of
Fig. 1C).

Next, we consider the position probability distribution
P(x,y), of the tracer particle (Fig. 1D). We find that P(x,y) fits
well to a Boltzmann-like Gaussian distribution in both x and y
projections, with a small expected deviation near the arena
boundaries (|x] > 10 cm). We estimate the gravitational

1
potential acting on the tracer particle by U,(x) = Ekxz, with

k=mga=282+3gs % m=1+0.1g - the tracer mass, g - the
gravitational acceleration (not to be confused with the unit of
mass, g, used before), and a - the curvature of the arena.
Plotting the estimated U,(x) and fitting it to our Boltzmann-
like position distribution (see ESIt), we obtain an effective
temperature of Tee ~ 3.1 x 10*® K, 16 orders of magnitude
higher than room temperature. Interestingly, the tracers
potential energy set by the effective temperature is comparable
to the mean kinetic energy of the bristle bots, E, &~ 7 uJ: we
observe that kgTess X 7Ep.

Fluctuation—dissipation relation

With a full characterization of the nonequilibrium steady state
dynamics and statistics of the system, we continue by measur-
ing the system’s response to a small mechanical perturbation
(10 V fan operating voltage, force F, ~ 62 uN). We use the
following protocol to measure the ensemble average response
of the system (see also ref. 16 for a similar procedure): during
an experiment, every two minutes, the fan is turned on for a
minute and abruptly turned off at ¢, = 60 s for the following
minute (see Fig. 2A). Fig. 2B shows the time-dependent mean
value (x(t)) for M = 375 perturbation sequences, constituting
both the mean motion of the tracer at the perturbed and
unperturbed steady states (parts II and IV) and the transition
between them (parts I and III).

The response of the system to the perturbation arrest, at
t, =t — o, given by R(t;) = 8(x(¢1)) = (x(t1)) — (x)o, and the
unperturbed autocorrelation function, C,(¢;) = (x(¢1)x(0))o, are
therefore measured from parts III, and IV respectively (Fig. 2C).
According to the generalized FDR, eqn (1) should hold exactly
for our measured response and autocorrelation if we define
T = Tesr and Fy = kAx, where Ax = (x)r, — (x)o- This is verified in
Fig. 2D with good accuracy, where we have used the value of T
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Fig. 2 An experimental FDR test. (A) Typical perturbation sequence x(t): the
fan is turned on for a minute and then abruptly turned off for the following
minute. (B) The time-dependent mean value (x(t)) is obtained within a time-
window of 2 minutes. The displacement Ax is the mean distance between
states Il and IV. (C) The individual time-dependent quantities of transient
response (x(t)) — (x)o (bottom), and unperturbed autocorrelation function
Ci(t) (top), are displayed. The dashed lines are standard errors. (D) The
generalized FDR of egn (1) with an effective temperature T = Ter ~ (AX%)o.
The results present an average over M = 375 sequences with Ny, = 15 and fan
operating voltage 10 V. The vertical dashed line is T. = 1 s and the horizontal
dot-dashed lines are the standard deviations of part IV.

obtained from the stationary position distribution. We note
that at ¢, > T. = 1 s the stationary noise becomes significant
and the agreement or disagreement of C, and R, is hard to
assess. Therefore, we cannot rule out an FDR violation beyond
T.. Since T fulfills the generalized FDR for any ¢; < T, it also
fulfills it at ¢; = 0. Therefore, kgTeg = k(Ax>), which is trivial for
a system exhibiting Boltzmann-like statistics. However, this
relation should generally hold for any P(x,y) (with different Ny,).
Our experimental findings establish a consistent effective
temperature, T.s, derived from the generalized FDR. This Te is
consistent with the temperature determined by the average
potential energy and remains independent of the force (see
ESIt). With this defined Tes, we can further explore the condi-
tions under which the generalized FDR remains applicable.

Range of validity of the FDR.

First, we obtain the nonequilibrium steady state dynamics and
statistics of the system (Fig. 1) with different numbers of bbots
Ny, the results are displayed in Fig. 3. We find that P(x, Np)
transitions into a non-Gaussian distribution as Ny, decreases
(Fig. 3A). This is expected as the typical time between collisions
7. increases beyond the typical relaxation of the tracer to the
bottom of the well.**> By using a consistent definition of
effective temperature for all configurations, kgTes = k(AX?),,
we observe a monotonic increase in Teg with Ny, (Fig. 3B, upper
panel). We quantify the departure from Boltzmann statistics by
calculating the non-Gaussian parameter (excess kurtosis) of the
(%)

osition distribution, I' = —=
p 3(x2)?

— 1 (Fig. 3B, lower panel).
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Fig. 3 Stationary dynamics and statistics. We consider configurations of
N, = {2, 3, 4, 6, 10, 12, 15, 17} bbot baths. (A) Position probability density
(symbols) and the normal (Gaussian) distribution for Ny, = 15 (dashed line).
(B) Effective temperature T vs. Ny (upper panel), and corresponding non-
Gaussian parameter (lower panel). Error bars are standard deviations. (C)
The (ensemble) averaged normalized position autocorrelation Cy(t) for
different N,. (D) Different characteristic timescales as a function of N:
mean free time between collisions 1. (line), steady-state dynamical time-
scales (obtained by a fit to eqn 2) z, (squares) and tq (crosses), the tracer's
damping timescale in the absence of bbots t° = 0.9 s and ) = \/m/k =
0.18s (horizontal lines). The results were obtained for an ensemble average
of M = 375 sequences, with the same tracer ma1 g, and gravitational
stiffness k ~ 28.2 g s 2.

In Fig. 3C and D we plot the normalized autocorrelation
C.(r) and its characteristic times, 7, and 1q, from a fit to
eqn (2). A transition from under- to critically damped dynamics
as Ny, increases is manifested in the reduction of the oscilla-
tions in C,(7) and in the relaxation time to the steady state ..
The diminished influence of the tracer’s inertia for larger Ny, is
clearly due to an increase of dissipation caused by more
frequent collisions of tracer particle and bbots. The evaluated
mean free time between collisions 7. results in values similar to
1,, except for the limiting case of Ny, = 2. In the latter, the bbots
rarely collide and mainly drive the ball around the trap. The
dissipative timescale associated with the arena was probed by
applying the FDR step-perturbation protocol with the bbots
removed (see ESIT). The passive damping time 77 = 0.9 s was
obtained by fitting the non-fluctuating response to eqn (2), with
1o’ = /m/k = 0.18 s directly calculated (Fig. 3D, horizontal
lines). Note that 1o shows a non-trivial dependence on Ny, due
to the physical presence of the bbots in the harmonic trap.

Fig. 4A shows a parametric plot of the generalized FDRs for
different Ny,. The normalized mean response 3(x)/Ax is plotted
versus the autocorrelation C,, within the response time regime
t; < T.. Rescaling the autocorrelation by Ty, we obtain a
master curve (Fig. 44, inset) in which all the systems obeying
the FDR collapse to a single line. A clear deviation is seen for
Ny, = 2 and 3, which violates the FDR. In our experiments, it is
clear that the main source of the tracer’s fluctuations is the
collisions with the bbots. To determine the dominant dissipa-
tion source we compare the (normalized) mean response 3(x) of
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View Article Online

Soft Matter

A Ny=2,3, 4, 6, 10, 12, 15,17
1+ 1
; T
p A/ ‘
[ < 1
-~ ]
s |4 /
=05}
o
0

§z)/Az &=

M A . i

§z)/Ax

1 1aaal
10° 10!
t1 [sec]

Fig. 4 Validity range of the FDR. The results are for experimental config-
urations with different Ny, as in Fig. 3. (A) The generalized FDRs are
displayed in a parametric plot with the normalized response 8(x)/Ax versus
the autocorrelation C,, for times t; < T.. Error bars are standard errors. The
straight linear lines correspond to a perfect FDR with slope = (kgTes) "~ The
inset shows a unitary parametric plot, where a deviation (FDR violation) is
observed for lowest bbot numbers Ny, = 3 and 2 (triangles). (B) Normalized
plot of generalized FDRs for N, = 17 (upper panel) and N, = 3 (lower panel).
Here, 8x(t;)/Ax is plotted against Cy(t), and is compared to the hormalized
non-fluctuating response 8x, under the same perturbation (10 V fan
voltage), in the absence of bbots. See ESIt for all dynamic FDR results.

the two extreme cases, N, = 17 and N, = 3, to the deterministic
response of the tracer in the absence of bbots dx, (Fig. 4B,
upper and lower panel, respectively). For Ny, = 17 collisions are
sufficiently frequent (t. < t¢) such that the mean response
deviates significantly from 6x,. In this regime, the dissipation is
predominantly governed by the collisions between the tracer and
the bbots. In contrast, for Ny, = 3 collisions are rare (z. ~ t7), and
the mean response of the tracer closely resembles 6x,. While
collisions play a role in the dissipation, the primary source of
dissipation in this case is the friction between the tracer and
the bowl. Consequently, this scenario leads to a violation of
the FDR.

Discussion

In summary, we have experimentally confirmed the validity of a
generalized FDR, far from equilibrium. We find that for N, > 3
the FDR holds with an effective temperature that is given by the
tracer’s mean potential energy, T ~ (Ax*)o, even when the
steady state dynamics are underdamped and the probability
distribution is non-Gaussian. We note that at Nj, > 17, bbots

This journal is © The Royal Society of Chemistry 2024
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frequently tumble and form long-lived static clusters at the center
trap region. This is reflected in a small flat region in the center of
the tracer’s position distribution for N, = 17 (see ESI}). The
presence of the bbot cluster changes the trap’s properties and
the tracer’s dynamics, hindering accurate FDR tests for N, > 17.

Moreover, our light tracer can move out of the plane, evading
entrapment within large clusters of bbots. Therefore, in contrast to
previous reports in which caging and memory effects have been
shown to result in FDR violations at high bath densities,>® we did
not observe such a violation in our experiments. However, we
expect to see FDR violations once collisions are not sufficiently
frequent to act as the main source for dissipation to external
perturbations. This is the case for the lowest numbers of bbots
Ny = 2 and 3, where the generalized FDR fails.

Our findings for a single tracer system suggest that the FDR
should hold for many tracer systems if tracer-tracer interac-
tions are non-dissipative. However, previous evidence of FDR
violations in dense active assemblies®” and reported non-trivial
effects of bath density on tracer-bath interactions®® point to a
more complex situation.

The confirmation of a generalized FDR, across an extensive
range of effective temperatures, raises the following three
broader issues. Is there an overarching equipartition relation
that connects these effective temperatures to T defined via
momentum variables rather than positional ones? Preliminary
results indicate that a linear relation between Ty and the

o 1 :
tracer’s mean kinetic energy, 3 m(v*), holds up to Nj, = 10 in

our experiments (see ESIt), in accord with a previous study.>
Secondly, do these temperatures hold significance within the
thermodynamic framework governing these systems? For
instance, could they dictate energy flow in scenarios where
two such systems are in contact? Lastly, one feature of our
experimental system that was observed in a previous study is
that its dynamics are consistent with Markovian dynamics.'®
While Markovianity is not essential for the FDR to prevail in
thermal equilibrium, an intriguing avenue of exploration
involves assessing its validity in weakly perturbed systems
immersed in an active, non-Markovian environment, where
dissipation and fluctuation derive from the same underlying
physical process.
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