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Random field reconstruction of three-phase
polymer structures with anisotropy from
2D-small-angle scattering data†

Stephen Kronenberger, a Nitant Gupta, a Benjamin Gould,b Colin Petersonb

and Arthi Jayaraman *acd

In this paper we present a computational method to analyze 2-dimensional (2D) small-angle scattering

data obtained from phase-separated soft materials and output three-dimensional (3D) real-space

structures of the three types of domains/phases. Specifically, we use 2D small-angle X-ray scattering

(SAXS) data obtained from hydrated NafionTM membranes and develop a workflow using random fields

to build the 3D real-space structure comprised of amorphous hydrophilic domains, amorphous polymer

domains, and crystalline polymer domains. We demonstrate the method works well by showing that the

reconstructed 3D NafionTM structures have a computed scattering profile that matches the input

experimental scattering profile. Though not demonstrated in this work, such reconstructions can be

used for further analysis of domain shapes and sizes, as well as prediction of transport properties

through the structure. Our method in this work extends capabilities beyond the previously published

random field small angle scattering reconstruction method introduced by Berk [Phys. Rev. Lett. 1987, 58

(25), 2718–2721] that had been used to reconstruct structures from 1D small angle scattering data of

two-phase systems. The method in this work can be used to generate isotropic, two-phase

reconstructions, but can also handle 2D SAXS profiles from three-phase systems that have structural

anisotropy resulting from material processing effects.

Introduction

Small-angle scattering (SAS) measurements are widely used to
investigate the structure of polymeric/oligomeric soft materials.
In a SAS experiment, a beam of X-rays (SAXS) or neutrons (SANS)
is passed through the sample, and a detector measures the
intensity of the scattered beam at different azimuthal angles (y),
and the magnitudes of scattered wavevectors (q). This results in
a 2-dimensional (2D) scattering pattern, with the intensity of
scattered neutrons or X-rays being measured as a function of q
and azimuthal angle y, or equivalently as a function qx and qy,
which are the scattered wavevector magnitudes measured along
the instrument axis frames. When there is no global structural
anisotropy within the material, the 2D scattering pattern is

symmetric about its center, and the data is typically azimuthally
averaged over y to a 1-dimensional (1D) scattering profile, I(q).
When there is structural anisotropy within the material, then
the 2D scattering profile is not radially symmetric and azi-
muthal averaging can lead to loss of the information regarding
the structural anisotropy.

SAXS and SANS measurements benefit from requiring less
sample preparation than direct-imaging techniques such as
scanning and transmission electron microscopy (SEM/TEM) or
atomic force microscopy (AFM) where sample preparation can
alter the structure of the material of interest. Moreover, while
such direct-imaging techniques provide a real-space view of a
section of the material structure, SAS provides structural infor-
mation across multiple length scales ranging from 1–100 nan-
ometers, typically covering a larger portion of the material. SAS
achieves this by recording structural information in the recipro-
cal (or Fourier) space, which is effective in compressing informa-
tion to the most relevant structural correlations. However, the
interpretation of such reciprocal-space measurements, especially
while considering the complete 2D scattering profiles, is not
always straightforward and requires additional processing.

For azimuthally averaged 1D scattering profiles, I(q) vs. q, of
polymeric and soft materials, transformations in the form of
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Guinier, Porod, or Kratky plots can be constructed. These
transformations reveal the slope or asymptotic behavior of
the scattering profiles to extract information such as the radius
of gyration of particles or polymeric chains and mass or surface
fractal dimensions.1,2 If the forms (or particle shapes) within
the material structure are well understood, relevant analytical
models can be fit to the scattering data to provide estimates of
the average particle dimensions. Fitting to such analytical
models for particle forms that are relevant in polymeric and
soft materials (including spheres,3 cylinders,4 flexible
cylinders,5 lamellae,6 rectangular prisms,7 and others) is often
facilitated by user-friendly software such as SASView (https://
www.sasview.org/).

On the other hand, to interpret scattering profiles obtained
from structures that do not have relevant analytical models,
computational methods such as Computational Reverse-
Engineering Analysis for Scattering Experiments (CREASE) enable
optimization of structural features (e.g., distributions of domain
shapes, sizes, orientation, etc.) whose computed scattering profile
matches with the experimental scattering profile.8–12 CREASE
also outputs the three-dimensional (3D) structures corresponding
to those structural features; 3D structures are valuable for visua-
lization purposes as well as for use in other computational
techniques to predict macroscale properties.

Some other methods of SAS analysis focus on perturbing a 3D
structure to drive its computed scattering profile towards an
experimental scattering profile. Broadly, these techniques involve
iteratively computing the scattering profile (or analogously the two-
point correlation function) of a structure and then accordingly
modifying the 3D structure through optimization to obtain a better
match between the computed and experimental scattering profiles.
Some prominent examples of these methods include Yeong and
Torquato’s method based on ‘‘stochastic optimization,’’ Franke and
Svergun’s DAMMIF method and Seibert et al.’s MCRpy method.13–15

Apart from methods that rely on optimization-based
approaches to reconstruct 3D structures from scattering profiles,
a more direct approach is to transform the measured scattering
profile into the corresponding 3D structure. This is possible by
utilizing random fields (RFs) and has been demonstrated earlier
for 1D SAS profiles. RFs are spatially varying, statistically random
fields, whose values may follow a distribution. One common class
of random fields are Gaussian random fields (GRFs), where the
field values follow a Gaussian distribution. This work only
concerns GRFs, so we use the terms ‘‘random field’’ or ‘‘RF’’
interchangeably with GRF. Additionally, the field values have a
well-defined spatial correlation (or covariance) relationship. Typi-
cally, while using RFs to reconstruct material structure from
scattering data, the continuously varying RF values are first
thresholded at a specified cutoff value called the ‘‘level cut’’
(which we shall denote as a). The regions of the field that are
greater than a represent phase 1, while the regions less than a
represent phase 2. Consequentially, the volume fraction of the
two phases is controlled by the level cut value a. Because of their
flexibility, random fields have been used in a wide range of
spatial modeling applications, including geological estimation,
astronomy, and brain mapping.16–21

In soft materials, RFs were first proposed to model struc-
tures by Cahn,22 and the method was later formalized for a
method of analyzing scattering data by Berk.23,24 Since then,
RFs have been used to model microemulsions of water, oil, and
surfactant from scattering data23,25 and are consistently being
developed to model a wide range of materials including gels,
aerogels, nanoparticles, and porous materials.26–29 Such devel-
opments include constructing structures as a combination of
multiple random fields to allow greater diversity in the patterns
of structures that can be generated.29 Additionally, random
field structures have been generated by thresholding a field
twice (with two ‘‘level cuts’’) to enable three phase structures
with the third additional phase acting as a boundary layer
between the other two phases.23 Adjacently, ‘‘plurigaussian’’
random fields have been used to model 3-phase materials with
different types of interfaces between the three phases.27

In Fig. 1, we show a variety of GRFs and their level-cut
versions. As depicted, the visually perceived ‘‘pattern’’ of the GRF
is specified by its covariance function C(r), which relates the
relative position r of two points within the field to the covariance
between the points’ values. The Fourier transform of C(r) gives
the spectral density f (q) of the random field and is also used to
specify the ‘‘pattern’’ of the GRF. Here, the spectral density,
which describes the strength of the contribution of a given
wavenumber q to the field value of the resulting GRF, is numeri-
cally analogous to the scattering intensity I(q) as measured in SAS
experiments. It can be appreciated from the examples shown in
Fig. 1, that the statistical properties of a level-cut GRF are
completely specified by their level-cut value and the choice of
the covariance function (or analogously by the spectral density).

In the application of RFs to reconstruct 3D structures from
scattering profiles, one challenge that has not yet been
addressed involves utilizing the full 2D scattering profile to
model structures with anisotropy. 2D scattering profiles are
particularly useful to interpret global anisotropy in material

Fig. 1 (Top row) Examples of GRFs constructed using different covar-
iance functions denoted on the top each column. We provide the
covariance models for completeness, but do not go into further detail
and only use this figure as a demonstration of the range of patterns that
can be instilled in a GRF by varying the covariance function. The colorbar
corresponds to the values of these GRFs. (Bottom row) Level-cut versions
of the GRFs from the top row with different cut values. Red regions
indicate GRF values greater than the cutoff, and blue regions indicate
GRF values less than the cutoff.
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structures that can result from processing techniques. To the
best of our knowledge, all RF reconstructions in the literature
have assumed (or approximated) isotropic structural arrange-
ment. Furthermore, RF-based approaches have so far not
tackled the problem of reconstructing structures from a scatter-
ing profile that has multiple phases that can be separated across
different length scales. Analyzing 2D scattering profiles and
interpreting multiple phases separated across multiple length
scales are highly relevant to a detailed interpretation of the
structure of perfluorinated sulfonic acid (PFSA) ionomer mem-
branes, such as NafionTM, which is one of the goals of this work.

PFSA ionomers are composed of a hydrophobic perfluori-
nated backbone, with side chains that are terminated with
hydrophilic sulfonic acid groups. The PFSA chemistry results in
the material being hygroscopic, while also undergoing a nano-
phase separation between the hydrophobic polymer backbone
and the hydrophilic domain composed of sulfonic acid groups
and absorbed water. Additionally, the PFSA backbone can crystal-
lize, resulting in a semi-crystalline matrix which, along with
amorphous hydrophilic domains, are dispersed throughout the
region composed of amorphous backbone chains. The semi-
crystallinity gives the material desirable mechanical properties,
while the interconnected hydrophilic domains allow for ion
transport which makes PFSA ionomers an ideal material for ion
transport membranes in various electrochemical applications.30

Despite a wide range of experimental and computational studies
aimed at elucidating the molecular structure of PFSA ionomers,
the structure of these membranes is still debated.31–35 Due to the
difficulties with direct imaging of the structure of PFSA mem-
branes, researchers have often turned to SAS to understand the
membrane structure.36–39

Generally, the SAS profile of PFSA membranes shows two
major peaks. The peak at lower q, whose center typically falls
outside the q range of interest and is therefore observed as a
‘‘knee’’ or ‘‘shoulder,’’ is called the matrix knee and is attrib-
uted to the spacing between crystalline domains. The peak at
higher q is called the ionomer peak and is attributed to the
structure of the hydrophilic domains. Fig. 2 shows examples of
the 1D and 2D scattering profiles for PFSA membranes. 2D
scattering profiles can display anisotropy from processing-
induced structural anisotropy (Fig. 2b).

Typically, SAS measurements can have some degeneracy,
and materials with different morphologies can, in theory, give
rise to the same scattering profile. This ambiguity is readily
apparent in previous SAS studies of PFSA ionomers, as several
different types of structural models have been used to explain
the scattering from PFSA ionomers. Among these models are
the cluster-network model, the cylindrical model, and the
locally flat network model.37,39,40 In the cluster-network model,
it is assumed that at low hydration, water molecules cluster
around the sulfonic acid groups; then, as the hydration
increases, these clusters of water molecules grow and connect
to form thin channels. In the cylindrical model, the hydrophilic
domains’ structure is described as a series of locally parallel,
cylindrical channels that grow as hydration increases. Finally,
in the locally flat network model, the structure is described as a

network of ribbon-like flat channels that become thicker as
hydration increases. For brevity, we do not go into further detail
about the broad range of work characterizing PFSA membranes
and refer the reader to a detailed review by Kusoglu and Weber.30

In this work, we describe the development of our GRF-based
3D reconstruction of three-phase structures with or without
anisotropy from 2D scattering profiles, while applying it to the
experimental SAXS data of PFSA ionomers. Our focus in this
paper is on the method for 3D real space structure reconstruc-
tion from scattering data. We first describe an extension of the
random field reconstruction method to analyze anisotropic 2D
scattering data, as well as, to account for the three phases—hy-
drophilic domains, amorphous polymer, crystalline poly-
mer—by deconvoluting the contributions of the major peaks.
We then demonstrate this method using experimental 2D SAXS
data of hydrated NafionTM PFSA membranes provided by the
Chemours Company. The motivation to use random fields,
rather than cluster network or cylindrical morphologies,
stemmed from our recent parallel efforts of computational
exploration of the PFSA ionomers’ structure,41 where we con-
ducted coarse-grained molecular dynamics simulations of self-
assembly of PFSA ionomers for varying polymer designs (i.e.,
side chain length and spacing) and at increasing extents of
hydration. Additionally, recent detailed experiments that
directly imaged the hydrophilic domains within PFSA ionomer
membranes showed connected networks with similar morphol-
ogies to random fields.42,43 The structures found in that study
showed similarity to level-cut random fields across various
quantitative structural measures (additional details provided
in Section S1, ESI†), validating our choice to use random fields.
We note that previous work by Aieta et al.44 has attempted to
use a similar approach to reconstruct the structure of NafionTM

membranes. However, their work was restricted to isotropic
scattering profiles and only considered two phases, the hydro-
philic domains and amorphous domains. As we demonstrate
later, our developed method provides a 3D structural recon-
struction with anisotropic information for all the three phases.

Fig. 2 (a) 2-Dimensional (2D) scattering profiles of NafionTM with an
isotropic structure and anisotropic structure for two processed samples
of 920 equivalent weight (EW). (c) 1D azimuthally averaged scattering
profiles of the hydrated NafionTM membranes with different processing
conditions shown in (a) and (b), respectively. Highlighted regions indicate
the matrix knee and ionomer peak. The 1D scattering profiles are vertically
shifted for visual clarity.
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Method

The workflow we have developed is described in Fig. 3. We
describe each step of the workflow in detail in the following
sub-sections. The details regarding the numerical implementa-
tion of each step are included in Section S2 (ESI†). Briefly, given
an input 2D SAS scattering profile with two primary peaks
and estimated values of the volume fractions for the three
phases—hydrophilic domains, amorphous polymer and crystal-
line polymer—we first obtain a series of 1D scattering profiles
that were averaged over equally spaced bins of azimuthal angles
(y) in the 2D scattering profile. We then deconvolute the two
peaks (the matrix knee and the ionomer peak) from the 1D
scattering profile at each angle y. These deconvoluted peaks are
then used to obtain their corresponding spectral densities, and
subsequently two corresponding random fields. Finally, each of
the random fields are level cut and combined into the final 3D
structure. Due to the nature of this reconstruction, where we
combine two separate random fields, it is important that the
phases of interest can be considered independent of one
another, as they will be independent in the final reconstruction.

Obtaining spectral densities

To obtain the spectral densities required to generate the ran-
dom fields, we use the bin-averaged scattering profiles (Iy(q)),
one for each azimuthal direction (y). In this work, we use
angular slices (or intervals) of size Dy centered at ny angles
evenly spaced from y = [0,p], as illustrated in Fig. 4.

We then fit each Iy(q) to the functional form in eqn (1) which
is the sum of two terms: Iy,1(q) and Iy,2(q). We adopted the first
term Iy,1(q) from the Debye–Beuche (DB) model to describe the
matrix knee and the second term Iy,2(q) from the Tuebner–Strey
(TS) model to describe the ionomer peak.45,46 The fit para-
meters are ADB and ATS (scale parameters for the DB and TS
terms, respectively), X (correlation length of the DB term), and
d and x (characteristic TS domain size and correlation length,
respectively).

Iy qð Þ ¼ Iy;1 qð Þ þ Iy;2 qð Þ;

Iy;1 qð Þ ¼ ADB

1þ Xqð Þ2
h i2

Iy;2 qð Þ ¼ ATS

aþ bq2 þ cq4ð Þ

a ¼ 1þ 2px
d

� �2
" #2

b ¼ � 2x2
2px
d

� �2

þ2x2

c ¼ x4

(1)

The functional form of eqn (1) was inspired by previous SANS
experiments of NafionTM, where the DB and TS terms described
the shape of the crystallite–crystallite scattering and water–
water scattering, respectively, that were obtained from contrast
matching measurements.47 Accordingly, the two terms have
been applied to individually account for the contributions from
the matrix knee and the ionomer peak, respectively. In a more

Fig. 3 Overview of method presented in this work to reconstruct 3D
structures from anisotropic 2D scattering profiles. The 2D scattering
profile, crystallite volume fraction, and hydrophilic domain volume frac-
tions are input to the method. These are used to compute the spectral
densities along different angles (1). These angular spectral densities are
further processed to generate a 3D spectral density (2), which is used to
generate a random field (3). Finally, the random fields are thresholded and
combined to create the final reconstruction (4). Blue boxes indicate inputs,
and orange boxes indicate steps in the method described further in the
Methods section. Steps 1 to 3 are done for each of the ionomer peak and
matrix knee scattering features, with the images corresponding to the
ionomer peak on the left, and those of the matrix knee on the right.

Fig. 4 Example 1D Iy(q) obtained from averaging the 2D scattering profile
over azimuthal angular slices. Insets show visualizations of the slices of size
Dy = p/5 at angles y = 0 (purple), y = 4p/9 (teal) and y = p (red).
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general application of this method, the fit function may need to
be further adjusted or completely modified to address different
shaped scattering profiles arising from different materials, but
we find that this particular functional form fits our SAXS
data well.

In the context of this deconvolution procedure, we empha-
size again that the phases are considered to be independent of
one another. As scattering occurs between all phases of the
system, there will inherently be a cross-term in the actual
scattering contribution of three phases that is not accounted
for by a summation of two terms as we have used in eqn (1).
However, if the length scales of the two different phases are
sufficiently different, this cross-term becomes negligible, and
eqn (1) will give a satisfactory fit to the experimental SAXS data.

When reconstructing level-cut RF structures from small-
angle scattering data, the level-cut value (a) is determined using
the cumulative distribution function for the Gaussian distribu-
tion with the volume fraction of one of the phases, say phase 1
(f1), obtained from prior experimental knowledge about the
system of interest (eqn (2)). When thresholding the RF, all field
values above a become phase 1, while all field values below a
become phase 2.

f1 ¼
1

2
1� erf

affiffiffi
2
p
� �� �

(2)

The RF spectral density is then computed in a series of steps.
While directly using an inverse Fourier transform of the deconvo-
luted peaks to generate a RF would yield a continuous field whose
scattering matches the input peaks, the subsequent thresholding
of the field would alter the scattering (see Fig. S6 as an example,
ESI†). The following eqn (3)–(7) account for this thresholding to
give a spectral density of a field whose scattering will match the
input after thresholding. Briefly, this involves calculating the
covariance function within the actual material that gives rise to
the scattering profile. This is then used to compute the covariance
function of a random field, that when thresholded at a given value
of a (specified by the volume fraction), will match that of the actual
material computed from the scattering. The covariance function of
the random field is then inverse Fourier transformed to obtain the
field spectral density, which can be directly used to generate
realizations of the random field.

First the Debye correlation function G(r) is computed from
the input scattering profile I(q) (eqn (3).

G rð Þ ¼ 1

2p2Q

ð1
0

q2I qð Þsin qrð Þ
qr

� �
dq (3)

In a two-phase material with sharp phase boundaries, every
point in the material can only belong to one of the two phases.
Consequentially, at r = 0, there will be perfect correlation with
G(r = 0) = 1. Here, Q is the Porod invariant,2 as defined in
eqn (4).

Q ¼
ð1
0

q2I qð Þdq (4)

The covariance function C11(r) associated with the two-phase
contrast that gives rise to the scattering profile is related, by

definition, to G(r) and the volume fractions of the two phases,
f1 and f2 = 1 � f1 via eqn (5).

C11(r) = G(r)f1(1 � f1) (5)

We next need to compute the covariance function of the field
CRF(r) that, when level-cut at a, results in two-phase structure
whose covariance function matches the covariance function com-
puted from the scattering profile C11(r). The relationship between
CRF(r), C11(r) and a is provided in eqn (6) which is derived from the
statistical properties of random fields. For a detailed derivation of
eqn (6), we refer the reader to the work of Berk.23

C11 rð Þ ¼ 1

2p

ðCRF rð Þ

0

exp
�a2
1þ u

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du (6)

In eqn (6), it is worth highlighting that we aim to calculate CRF(r),
one of the integral limits, from C11(r) and a. This calculation is not
analytically tractable and must be performed numerically. We
describe our numerical implementation in Section S2 (ESI†).

Finally, the spectral density f (q) of the random field can be
computed from the Fourier transform of CRF(r) (eqn (7)).

f qð Þ ¼
ð1
0

4pr2CRF rð Þsin qrð Þ
qr

� �
dr (7)

We apply eqn (3)–(7) to both Iy,1(q) and Iy,2(q) for all y to obtain
the corresponding angular spectral densities fy,1(q) and fy,2(q),
representing the matrix knee and ionomer peak, respectively.

Processing spectral densities

In an isotropic material structure, as the azimuthal angle y is
varied, every fy,1(q) would be equivalent; the same would be true
of each fy,2(q). We could then directly proceed to generate the
random fields used to reconstruct the material structure. How-
ever, in a material that exhibits structural anisotropy, the
anisotropy is preserved in the discrete sets of fy(q) across the
azimuthal angles y. We can interpolate these sets to get fy(q) for
any intermediate values of y or q. This interpolation results in
one 2D spectral density, f2D(qx, qy), for each peak. The 2D
spectral densities can be used directly to create real-space
reconstructions in two dimensions only. However, since we
ultimately aim to generate 3D real-space structural reconstruc-
tions, which requires a 3D spectral density, we assume a
spectral density in the third dimension f (qz) and interpolate
between f (qz) and f2D(qx, qy) along the azimuthal angle to obtain
our 3-dimensional spectral density, f3D(qx, qy, qz). This is illu-
strated schematically in Fig. 5, and additional details are
provided in Section S2 (ESI†).

In an experimentally obtained 2D scattering profile, the
information about the structure or its anisotropy in the direc-
tion of the incident X-ray or neutron beam is not available. In
such cases, complete information about the structural aniso-
tropy can be obtained from additional scattering experiments
along different axes of the material.48 However, for the case of
NafionTM membranes, we can only perform scattering measure-
ments where scattering beam is orthogonal to the surface of the
membrane because the membranes are too thin to perform
scattering experiments on the membrane’s cross-section. For
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this reason, we assume that the spectral density in the third
dimension is the overall azimuthal average of f2D(qx, qy). While
this is likely not entirely accurate, this assumption could be
further refined if additional information is known about the
processing that gave rise to the anisotropy. For example, if the
processing involves flow along the y-dimension, then it is
reasonable to assume isotropy in the xz-plane, and setting
f (qz) = f (qx) would be more reasonable. In the main body of
this paper, we show the results assuming f (qz) is the azimuthal
average of the f2D(qx, qy), and in Section S5 (ESI†), we include an
example reconstruction with the assumption f (qz) = f (qx) for
comparison.

Generating random fields

From the 3D spectral density, we generate random fields using
eqn (8).

O ¼ F�1 A �F Wð Þð Þ (8)

Here, O is the 3D array representing the random field, F

denotes the 3D fast Fourier transform and F�1 its inverse. W
is an N � N � N array of noise sampled from the standard
normal distribution. A is the 3D spectral density corresponding
to the specific q values that are needed to generate a recon-
struction of a given size and resolution. A is interpolated from
the 3D spectral density obtained in Step 2 (Processing spectral
densities). The array of q values used to interpolate A are
determined by the frequencies corresponding to the discrete
Fourier transform of the array. The size of the structural
reconstruction (i.e., number of voxels making up one edge of
the structural reconstruction, N) and resolution of the struc-
tural reconstruction (i.e., size of a voxel, a) are defined in this
step, as they directly impact the q values used to construct A.

Because of the wide applicability of using random fields to
model various phenomena, there have been many develop-
ments to simulating random fields in different ways.49 For
completeness here, we include reference to the method that
has been most frequently used previously to generate random

field reconstructions from small-angle scattering data. In this
method, RFs were generated by a summation of plane waves
sampled from its defining spectral density f (q) (eqn (9)).23,25

O rð Þ ¼ 1ffiffiffiffi
N
p

XN
i¼1

cos qi � rþ fið Þ (9)

O(r) is the RF value at position r, N is the number of waves
included in the summation, each qi is randomly sampled from
the spectral density f (q), and each ji is uniformly sampled on
the interval [0,2p).

We use eqn (8) instead of eqn (9) for a few reasons. First, the
RFs generated using eqn (8) are periodic, which is not the case of
RFs generated using eqn (9). This better enables RFs generated
using our method to be used for additional computational
analysis, for example transport simulations or density-guided
molecular dynamics simulations to obtain finer-resolution struc-
tures of chain conformations. Additionally, using eqn (9) has the
drawback that one must sample from the spectral density. This is
straightforward when sampling from a 1D spectral density but
can become significantly more complex for the 3D spectral
densities that we use to preserve the structural anisotropy. By
contrast, eqn (8) only requires interpolation of the 3D spectral
density, which is much more straightforward.

Eqn (8) is used to generate two random fields from the two
3D spectral densities that have been computed. These fields are
in the form of 3D arrays, where each voxel (array entry) has a
continuous value corresponding to the value of the field at
that point.

Combining random fields to create final 3D structure

To combine the random fields into the final 3D structure
reconstruction, we first threshold each random field by their
corresponding level-cut values. We then superimpose the larger
length-scale level-cut field (corresponding to the lower q range)
onto the smaller length-scale level-cut field (from the higher q
range). This superposition can be described using eqn (10):

X ¼

phase 1; O1 � a1 \ O2 o a2

phase 2; O1 o a1 \ O2 � a2

phase 2; O1 � a1 \ O2 � a2

phase 3; O1 o a1 \ O2 o a2

8>>>>>><
>>>>>>:

(10)

Here, X denotes the final reconstruction, O1 is the smaller
length-scale RF with level-cut value a1, and O2 is the larger
length-scale RF with level-cut value a2. The bold line in eqn (10)
describes the phase assignment resulting from our chosen
order of superposition; if the smaller length-scale field is
instead superimposed over the larger length-scale field, this
line would instead be assigned to phase 1.

We choose this order of superposition rather than the
opposite order to minimize the finite-size effects of the recon-
struction. There will be fewer of the larger length-scale domains
in the reconstruction, so changing their shape by superimpos-
ing the smaller length-scale field over the larger domains would
result in more noise in the scattering from the poorer sampling

Fig. 5 Schematic showing the assumption of a spectral density in the z-
direction, and 3D interpolation to obtain a 3D spectral density from the 2D
spectral density for an ionomer peak f (q). The inset shows different
assumed values for f (qz): f (qz) = the azimuthal average of f (qx, qy) (black),
f (qz) = f (qx) (red), and f (qz) = f (qy) (blue).
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of larger domains. In contrast, the smaller length-scale field is
better sampled because there are more domains, so super-
imposing the larger length-scale field over them has a smaller
effect on their contribution to the scattering. We illustrate this
concept in Fig. S11 (ESI†).

Accounting for the superposition of the larger length-scale
field over the smaller-length scale field, the volume fractions
passed to the earlier steps of the method need to be updated so
that the reconstruction volume fractions match the input
volume fractions. Specifically, we need to overestimate the
volume fraction passed to the smaller length-scale field
(eqn (11)) to obtain the target volume fraction in the final
reconstruction, since some of the domains will be covered by
domains of the larger length-scale field.

f1;field ¼
f1;target

1� f2;target

(11)

Here, f1,target indicates the desired volume fraction of phase 1
in the final level-cut random field structure, and f1,field

indicates the volume fraction that needs to be input to eqn (1)
and (5) to generate the smaller length-scale level-cut random
fields prior to their superposition. f2,target is the volume fraction
of the phase of interest in the larger length-scale level-cut field.

At the end of this process, we have one 3D array, with each
voxel containing one of three discrete values, corresponding to
the three phases in the material. As such, this is a relatively
coarse representation of the material structure which gives the
relative position of the different phases to one another. We note
that the real space structural reconstruction does not contain
molecular-scale information such as polymer chain conforma-
tion or locations of individual molecules. However, one could
refill the molecular details in a manner similar to approaches
used in the literature for regaining finer resolution in struc-
tures generated from field simulations.50

Application of method to NafionTM

SAXS data

The procedure for collecting and preprocessing the experi-
mental 2D SAXS data of NafionTM ionomer membranes used
in this study is described in Section S3 (ESI†).

Next we describe the various steps of the method described
in Methods as they are applied to the input 2D SAXS data to
generate the 3D reconstructed structure. We conclude this
section with a validation of the method by comparing the input
SAXS profiles to the computed scattering profiles calculated
from the 3D reconstructed structure.

For reconstructing the 3D structure of NafionTM mem-
branes, we wish to capture three phases: crystallite domains,
amorphous domains, and hydrophilic domains (consisting of
water, sulfonate ions, and aqueous cations).40,51 With regard to
the crystallite domains, it is important to note that the infor-
mation included in the SAXS matrix knee corresponds to the
length scale of the crystallite domains rather than crystalline
peaks that would indicate the atomic crystal structure within

the crystallite domains. As such, in our reconstructions, we aim
to resolve only the former. The peak deconvolution enables us to
obtain two level-cut fields, one of each corresponding to the
matrix knee and the ionomer peak. These level-cut fields
individually provide information about the corresponding two-
phase structures of the hydrophilic-amorphous domains (which
we will call the ionomer peak field) and crystallite-amorphous
domains (which we will call the matrix knee field), respectively.

We specify one volume fraction for each random field. For
the ionomer peak field, we specify the fraction of hydrophilic
domains (fhydrophilic), and for the matrix knee field, we specify
the fraction of crystallite domains (fcryst). The remainder (1 �
fhydrophilic � fcryst) corresponds to the volume fraction of the
amorphous phase (famorphous).

Applying our method above to the NafionTM SAXS data with
these phase designations, we first take the bin-averaged inten-
sity over ny subsets of azimuthal angles of the 2D SAXS data. We
find that choosing the value of ny = 10 (angles) works well to
balance the interpolation quality and computation time for this

data. Additionally, Dy ¼ p
5

gives angular slices large enough to

reduce the noise in Iy(q) that is seen when using smaller angles.
For other types of SAXS data, the above choices would likely
need to be varied to obtain optimal results. Here one would first
select Dy by starting with small values and increasing Dy until
the noise in the angular scattering profiles is minimal, as
indicated by a smooth scattering profile. The choice of Dy is
also dictated by the variability of the scattering data as a
function of y. For data with sharper peaks at different y, this
variability could be washed out if a large Dy is used, and a
smaller Dy should be used. For data similar to ours, where the
change in scattering as a function of y is relatively minimal and
smooth, larger Dy can be used. Next ny is selected as the
smallest value for which we do not see any effects of further
increasing ny on the interpolated spectral density. When select-
ing Dy and ny, the angular slices do not need to perfectly cover
the 2D scattering profile; the slices can overlap (as they do with
our selected values).

When deconvoluting each Iy(q), its first peak corresponding
to the matrix knee will be denoted with the subscript ‘‘matrix’’,
and the second peak corresponding to the ionomer peak and
will be denoted with the subscript ‘‘ionomer’’. Using our
method of combining the random fields, the ‘‘matrix’’ peak
corresponds to the difference in phase between the crystalline
domains and the hydrophilic and amorphous domains of the
membrane. The ‘‘ionomer’’ peak corresponds to the difference
in phase between the hydrophilic domains and the amorphous
polymer domains. We show the fit function compared with the
experimental Iy=0(q) in Fig. 6 to demonstrate the fit quality. The
range of q values considered for the fitting is 0.02 to 0.2 Å�1.

The spectral densities are then computed and interpolated
as described in eqn (3)–(7) in Methods. We assume that the
spectral density in the z-direction is equal to the azimuthal
average of the 2D spectral density (Processing spectral densities
sub-section of Methods). 2D slices along each axis of the
resulting 3D spectral densities are shown in Fig. 7.
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Finally, the random fields are generated and combined into
the final voxelated structure. For each reconstructed structure, we
compute the 1D and 2D scattering profiles using the fast Fourier
transform.52,53 As the reconstruction includes three components,
the X-ray scattering length densities (SLDs) and volume fractions
of all three species will strongly impact the shape of the scattering
profile. In this work, we utilize SLD values that were used in
previous work performing computational reconstruction of
NafionTM.51 These SLD values originate from previous SAXS
experimental work,36 and have been used in several other studies
that have modeled the structure of NafionTM membranes using
computational methods.40,52 The fast Fourier transform scatter-
ing calculation and the specific values of SLDs used in this work
are described in detail in Section S4 (ESI†).

In Fig. 8, we show two 3D real-space structural reconstruc-
tions and their computed 1D and 2D scattering profiles. While
the computation of the spectral densities preserves the general

shape of the matrix knee and ionomer peak, different ratios of
crystallite and hydrophilic volume fractions directly impact the
relative intensities of these peaks in the computed scattering
profile. The volume fractions need to be optimized to obtain
the correct relative peak intensities.

This can be accomplished in a few different ways. First, if
experimental determination of all volume fractions is straightfor-
ward, they can directly be used in the reconstruction. Assuming
the chosen functional form for deconvolution and SLDs are valid,
the reconstruction scattering will match that of the input scatter-
ing with the experimental volume fractions. If the volume frac-
tion of one phase is obtainable, but not the others, information
about the relative intensities of the scattering features can be
used to obtain the volume fraction of the other phases such that
the reconstruction scattering will match the input scattering. We
demonstrate this case in the following paragraphs. In a final case
where all volume fractions are difficult to accurately discern, then
several sets of volume fractions can be valid to recreate the input
scattering profile (as we demonstrate in Fig. 9), and the resulting
reconstructions will span multiple volume fractions.

To determine the volume fractions for our SAXS data, we
compute the ionomer peak height relative to the matrix knee
intensity using eqn (12):

Irel ¼
�I ionomer

�Imatrix

(12)

Here, Irel is the relative ionomer peak intensity compared to the
intensity of the matrix knee. Imatrix is the intensity of the matrix
knee, quantified as the average intensity of the first ten q-points
that are greater than the minimum q-value, and Īmatrix is the
average of Imatrix across all angles considered. Similarly, Iionomer

is the intensity of the ionomer peak, quantified as the max-
imum intensity for all q-points greater than 0.08 Å�1, and
Īionomer is the average of Iionomer across all angles considered.

Fig. 6 Example of analytical fit to a single Iy(q) at y = 0. The black curve
corresponds to the experimental scattering, light gray corresponds to the
fit, and the red and blue curves correspond to the separate fit terms:
the Debye–Beuche fit of the matrix knee and the Teubner Strey fit of the
ionomer peak, respectively.

Fig. 7 Resulting slices of the 3D spectral density computed from the experimental scattering. The top row corresponds to the matrix knee and the
bottom row corresponds to the ionomer peak, and the columns correspond to the xy, yz, and xz slices of the spectral density, respectively.
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By generating reconstructions with varying volume fractions
of hydrophilic domains and crystalline domains, fhydrophilic

and fcryst, we can compute the scattering from reconstructions
with varying sets of fhydrophilic and fcryst to determine which
combinations give the same Irel as the experimental scattering
data. Reconstructions with Irel greater than the experimental Irel

will result in an ionomer peak that is relatively more intense
than the experimental ionomer peak, while values of Irel less
than the experimental Irel indicate a less intense ionomer peak.
In Fig. 8, we show a heatmap of Irel values for varying fcrystallite

and fhydrophilic, along with one instance each of a reconstruc-
tion and its scattering profile with Irel greater than and less
than the experimental Irel. In the case on the left, the crystalline
volume fraction is relatively high compared to the hydrophilic
domain volume fraction, resulting in a relatively smaller iono-
mer peak. On the right, the hydrophilic domain volume frac-
tion is too high, resulting in a more intense ionomer peak.

The contour corresponding to the computed experimental
Irel of 0.9163 is interpolated from the data in Fig. 7 and is shown
in Fig. 9. Any point along this computed contour should give a
scattering profile which matches the input experimental scatter-
ing profile. However, for smaller hydrophilic and crystallite
volume fractions, the match in scattering profile becomes worse
(Fig. 9, inset a). Despite the relative peak heights being con-
served, both the ionomer peak and matrix knee become nar-
rower than in the experimental profile. At low volume fractions,
there is not sufficient volume of each phase within the finite size
of our structural reconstruction to fully sample the broad spatial
distributions that give rise to the broad ionomer peak and
matrix knee. The reconstruction scattering profiles match the
experimental profiles at higher hydrophilic and crystallite
volume fractions as expected (Fig. 9, insets b and c).

For our final reconstructed structures, we select a volume
fraction along the contour corresponding to the Irel in the
experimental scattering profile, and with water volume fraction
identified from correlations in the previous literature between
PFSA polymer design (namely equivalent weight or EW) and
water uptake, compiled for a variety of PFSA ionomer materials
and conditions in Kusoglu and Weber’s review.30 We choose the
contour point based on water volume fraction rather than
crystalline volume fraction because previous correlations relat-
ing EW and crystallinity use wide-angle X-ray scattering (WAXS),
which gives only a relative degree of crystallinity, rather than the
precise volume fraction.30 If one had access to both relative
crystallinity from WAXS measurements as well as water volume
fraction from uptake measurements, they could validate that
these experimental volume fractions lie on or near the com-
puted contour. These assumptions could be further refined by
using scattering data collected at a series of controlled humid-
ities using an environmental chamber. If there is disagreement
between the experimentally determined volume fractions and
the volume fractions determined using our method, it is likely
that the fit function used for deconvolution of the two phases
(i.e. eqn (7)) would need to be modified to obtain a better match
to the experimentally determined volume fractions.

The above process to identify the optimal crystallite and
hydrophilic volume fractions by performing a grid search and
defining contours could be replaced by other more sophisticated
optimization techniques (genetic algorithms, Bayesian optimiza-
tion, etc.) that may also improve computational speed. We choose
to use the grid search because it demonstrates the degeneracy of our
structural reconstruction process i.e., multiple structures may have
the same scattering profile with different crystallite and hydrophilic
volume fractions. Simultaneously, having a generalized curve

Fig. 8 Heatmap showing the values of relative ionomer peak intensity to matrix knee intensity Irel at varying volume fractions fhydrophilic and fcryst.
Reconstructed structures and their scattering are shown on either side of the heatmap for two points on the heat map. The purple plots show the
computed scattering of the reconstruction (dashed lines) compared to the input experimental scattering profile (solid lines) for Iy=0(q). The reconstruction
scattering profiles are the average of scattering from 30 reconstructions, and the experimental and reconstruction scattering have both been normalized
by the average intensity at low-q.
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enables an informed selection of the volume fractions for the
final structural reconstruction based on additional experi-
mental evidence outside of the scattering profile.

Once the spectral density array has been constructed, gen-
erating and combining the random fields to create a final
reconstruction are relatively quick (relative times for the differ-
ent steps are included in Fig. S7, ESI†). We show different
reconstructions for the scattering profile, shown in Fig. 2b, in
Fig. 10 to demonstrate the variance between different recon-
structions using this method. The reconstructions are visually
similar with differences in the random shapes and positions of
the hydrophilic domains and crystalline domains. Looking at
the xy-slices of the structure in Fig. 10b, the crystalline domains
show anisotropy, generally being slightly longer in the y-
direction; any anisotropy in the hydrophilic domains is not
immediately apparent.

By the way in which we have formulated this method, the
scattering of the reconstruction should closely match the input
scattering, but there are a couple reasons why this might not
always be the case. First, low volume fractions for the phases of
interest could be insufficient to accurately recreate the scatter-
ing. This can be seen, for example in Fig. 9a. Second, because
we are combining two separate random fields, it is possible that
one interferes with the pattern of the other, which would affect
the resulting scattering. We perform a final check to confirm
that neither of these reasons is a cause for concern, and that
the computed scattering from the reconstruction matches the
input experimental scattering. The comparison between the 2D
computed scattering profile (Fig. 11a) and the input 2D

experimental scattering profile (Fig. 11b) shows good visual
agreement. In Fig. 11c, we confirm this match more quantita-
tively, with a comparison of the 1D scattering profiles along
different azimuthal angles of the 2D scattering profiles shown
in Fig. 10a and b.

Conclusion

In this work, we have extended the random field small angle
scattering analysis method to reconstruct phase-separated
structures consisting of three phases with anisotropy from 2D
small angle scattering (SAS) data. The method takes, as input, a
2D scattering profile, and involves deconvolution of SAS peaks
by fitting to a functional form and interpolating along different
azimuthal angles of the scattering profile to preserve the
anisotropy. The spectral density along each azimuthal angle
is then computed using Fourier transforms and statistical
relations to random fields. These spectral densities are inter-
polated to form a 3D array, which is used to generate two
random fields. One level-cut field corresponds to one phase, a

Fig. 9 The interpolated contour to get a value of Irel from the recon-
structed scattering profile that is equivalent to the experimental Irel

(0.9163). Insets show the computed scattering of the reconstruction
(dashed lines) compared to the input experimental scattering profile (solid
lines) for Iy=0(q) for different values of fhydrophilic. The reconstruction
scattering profiles are the average of scattering from 30 reconstructions,
and the experimental and reconstruction scattering have both been
normalized by the average intensity at low-q.

Fig. 10 3-Dimensional reconstructions demonstrating the variation
between different reconstructions, hydrophilic domains are blue, amor-
phous domains are red, and crystallite domains are yellow. Corresponding
xy-slices of the structures are show to the right.
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second level-cut field corresponds to a second phase, and the
remaining space is attributed to the third phase. These fields
are then combined to form a final reconstruction in the form of
a 3D array where each array entry has one of three discrete
values corresponding to the phase of the material at that spatial
position. Reconstructions made using this method can be used
for structure visualization, to calculate metrics describing the
structure, or to perform simulations to calculate material
properties such as diffusion.

Within this method, several decisions need to be made
depending on SAS data quality and availability. The number
and size of the angular slices that are averaged over needs to
be determined depending on the level of noise in the SAS data.
The volume fraction of one phase needs to be experimentally
determined via another experimental technique. Lastly, some
additional information about the material structure in the direc-
tion parallel to the incident SAS beam is required for an accurate
reconstruction. If it is possible to take additional SAS measure-
ments of the material in different orientations, measurements of
I(qx, qz) or I(qy, qz) could provide that needed information. If these
measurements are not possible, then assumptions can be made
based on knowledge about the processing or synthesis technique
that gave rise to the structural anisotropy.

We have demonstrated successful use of this method for the
reconstruction of NafionTM membranes structures from 2D
SAXS data, where the three phases are hydrophilic domains
consisting of water, sulfonic acid groups, and counterions,
crystalline polymer domains, and amorphous polymer
domains. We validate the method by showing that computed
scattering profiles of these 3D real space structural reconstruc-
tions agrees well with the input experimental data.

One should note some of the limitations and assumptions of
our presented method before using this method for analysis of
other 2D small angle scattering data. First and foremost, the

flexibility of the GRF approach will generally allow for a real-
space structural reconstruction of any scattering profile, but
this does not mean that the reconstruction is the true repre-
sentation of the material’s structure. This uncertainty is due to
the degeneracy of structures that can give rise to the same SAS
profile. It is important to validate that the GRF model gives
structures similar to expected structures from domain expertise
as we have done with comparisons to simulated structures from
molecular dynamics in Section S1 (ESI†). Such validation is
principally important when using reconstructions to compute
transport properties, as SAS measurements include only a
material’s frequency information and not the phase informa-
tion that is critical to deciphering connectivity. As a result, any
transport properties that are calculated from reconstructions
are a direct consequence of the assumption that level-cut GRFs
can be used to accurately describe the material structure, and
the computed properties are meaningless if this is not the case.
Additionally, the method, as presented, assumes two of the
phases are independent of one another (in our use case of
NafionTM, the hydrophilic domains and the crystalline polymer
domains are the two phases assumed to be independent).
Possible future work could involve extending this workflow to
incorporate phase dependencies through ‘‘plurigaussian’’ ran-
dom fields,27 which would necessitate additional information
to glean the spatial relationships at interfaces between the
different phases.
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