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Optimality and cooperativity in superselective
surface binding by multivalent DNA nanostars†

Christine Linne,ab Eva Heemskerk, a Jos W. Zwanikken,a Daniela J. Kraft *b and
Liedewij Laan *a

Weak multivalent interactions govern a large variety of biological processes like cell–cell adhesion and

virus–host interactions. These systems distinguish sharply between surfaces based on receptor density,

known as superselectivity. Present experimental studies typically involve tens or hundreds of interactions,

resulting in a high entropic contribution leading to high selectivities. However, if, and if so how, systems

with few ligands, such as multi-domain proteins and bacteriophages binding to their host, show

superselective behavior is an open question. Here, we address this question with a multivalent

experimental model system based on star shaped branched DNA nanostructures (DNA nanostars) with

each branch featuring a single stranded overhang that binds to complementary receptors on a target

surface. Each DNA nanostar possesses a fluorophore, to directly visualize DNA nanostar surface

adsorption by total internal reflection fluorescence microscopy (TIRFM). We observe that DNA nanostars

can bind superselectively to surfaces and bind optimally at a valency of three, for a given binding

strength and concentration. We explain this optimum by extending the current theory with interactions

between DNA nanostar binding sites (ligands). Our results add to the understanding of multivalent

interactions, by identifying cooperative mechanisms that lead to optimal selectivity, and providing

quantitative values for the relevant parameters. These findings inspire additional design rules which

improve future work on selective targeting in directed drug delivery.

Multivalent interactions, where multiple ligands and receptors
together form a single bond, are ubiquitous in nature. For
example during bond formation by intrinsically disordered
protein–protein interactions,1–4 ubiquitylation,5 antibody–anti-
gen binding6 and virus–host binding,7,8 for example when a
bacteriophage binds to specific receptors on the bacterial sur-
face (Fig. 1a). In these examples individual ligand–receptor
interactions are weak and highly reversible but together they
establish a strong and often highly specific bond.

To understand how biological systems achieve high selectivity
upon binding, Martinez-Veracoechea and Frenkel introduced
the concept of superselectivity as a non-linear increase in the
binding probability.9 In their model a multivalent particle dis-
tinguishes surfaces based on receptor density. A change in the
interaction strength, valency and/or particle concentration
manipulates the sharpness of this transition, where high
valency, weak interactions and low particle concentrations yield

the highest selectivity. In addition, recent studies illustrated that
parameters like crowding,10 the addition of an external force on
the particle11 and competition12 also regulate selectivity.

Present experimental systems that successfully demonstrated
multivalent surface binding include polymers,13,14 viruses7 and
nano-15,16 and microparticles.17,18 These systems either feature
hundreds of interaction sites, as is the case for polymers and
nano- and colloidal particles, or have limited experimental
control over interaction strength and valency, as is the case for
virus particles that interact with less than 10 receptors.19

In this paper we focus on multivalent surface binding by
systems with few interaction sites, which occur, for example,
during virus host binding,7 during binding of microtubules
to chromosomes in mitosis2 or when multi-domain proteins
bind to the cell membrane during polarity establishment in
development.20 In addition, systems with few ligands can provide
insights in the transition from monovalent to multivalent binding.
Specifically we ask how selectivity of binding to receptor-covered
surfaces by multivalent systems with few ligands depends on
valency, interaction strength and physical properties of the system.

To experimentally address this question precise control is
needed of valency, ligand and receptor interaction strength and
the particle’s concentration. In addition, control over other
physical properties of this multivalent system, such as the
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flexibility of the ligands, self-interactions, and pair-interactions
between the ligands is desirable for optimising the conditions
for superselectivity. Here we exploit an experimental model
system of DNA-origami nanostars to experimentally assess
superselectivity in systems with low valencies and with tunable
binding strength. A DNA nanostar consists of branched junc-
tions of DNA strands also called arms with single stranded
sticky overhangs that act as binding sites (ligands).21–23 The
sticky ends on each DNA nanostar bind to surface mobile
complementary DNA strands (receptors), see Fig. 1b. DNA
nanostars have a number of attractive features: the length

and sequence of the sticky end regulates the interaction
strength, the number of arms precisely dictates the valency
and a fluorophore attached to one arm allows for the visualiza-
tion of DNA nanostar-surface adsorption with total internal
reflection fluorescence microscopy (TIRFM).

We observe that multivalent DNA nanostars can bind super-
selectively to a surface coated with laterally mobile receptors,
and we find that both valency and binding strength have an
optimum for superselective surface binding. We extend the
current theory by including interactions between DNA nano-
stars arms to be able to quantitatively match the observations,
and find that the ligand pair-interaction strength has an
optimum value for achieving maximal selectivity. From the
extended model, we derive additional design rules for super-
selective surface binding and discuss what our findings could
imply for biological systems.

Results
DNA nanostars as an experimental model system

Our experimental system to systematically study superselective
surface targeting with 1–10 ligands consists of DNA nanostars.
To quantitatively elucidate the transition of DNA nanostar
adsorption, we employed DNA nanostars with different number
of arms k, and imaged their adsorption to supported lipid
bilayers (SLBs) functionalized with different receptor concen-
trations sR. We employ DNA nanostars with a ssDNA sequence
at the end of each arm (sticky end) that binds to receptors on a
target surface with the complementary sticky end, see Fig. 1b.
The receptors consist of two hybridized DNA strands that form
a 77 bp double stranded stem and each feature a cholesterol
moiety that together integrate the receptor into the SLB on the
target surface while ensuring full mobility.24–26 On the 30 end the
receptors have a sticky end with the complementary sequence to
the DNA nanostar sticky end. The length of the sticky end
determines the hybridization free energy of each arm, see
Materials and methods for details. Each DNA nanostar possesses
an Atto488dye on the 30 end of one arm, which does not inhibit
binding.27 The excitation of the fluorophore and acquisition of
the emission with total internal reflection microscopy (TIRFM)
allows for the direct visualization of DNA nanostar-surface
adsorption. The advantage of TIRFM is the direct excitation of
the DNA nanostars on the surface and limited excitation of DNA
nanostars in solution. We imaged the DNA nanostar signal for
different receptor densities ranging from low to high, see
(Fig. 1c). We measured the mean intensity of a certain area size,
and normalised it with respect to the maximum intensity of the
same area size. Finally, we plot the normalised signal, which is
equal to the bound fraction Y as a function of sR, see (Fig. 1c).
For details see the Materials and methods section.

Optimal valency for superselective surface binding

We started by investigating the DNA nanostar-surface adsorption for
different number of arms k = 1,3,4,10 but with fixed hybridization
energy DG0 = �8.4kBT at a constant DNA nanostar concentration in

Fig. 1 Motivation and model system (a) bacteriophage-host adhesion as an
example where objects with o10 interaction sites participate in superselec-
tive surface binding. (b) DNA nanostars as a multivalent experimental model
system for valencies below 10, that can bind to a supported lipid bilayer (SLB).
Each arm of the DNA nanostar features a single stranded overhang (sticky
end) that binds to the complementary sticky end on the receptors in the SLB.
Each DNA nanostar possesses a fluorophore, such as Cy3 or Atto488,
attached to one arm. (c) TIRFM images that show how the change in the
number of adsorbed DNA nanostars on the target surface is quantified for
variable number of receptors on the surface (see Methods section). The
scalebar indicates 10 mm after background subtraction and normalisation with
the saturated value, we translate the signal into a bound fraction Y and plot it
against the receptor density sR to determine the selectivity a. (d) Cartoon of
the theory used to describe multivalent surface binding by DNA nanostars.
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solution rn = 10�8 M (Fig. 2a). We choose this interaction strength
based on our findings in a previous study with colloidal particles.17

We measured Y over receptor densities ranging between sR = 1.000–
600.000 mm�2, see Fig. 2b, and found that Y smoothly increases
with increasing sR. With increasing valency k the curve shifts to
lower sR. This can be understood because DNA nanostars with a
valency of k have a k times higher ligand concentration at the same
concentration as a monovalent DNA nanostar. This would imply
that the binding probability of the DNA nanostar scales linearly with
k, if multivalent effects could be ignored.

To test this explanation for our experimental system, we
multiply sR with k, see Fig. 2c, and we find that indeed the
multivalent binding curves shift towards the monovalent curve
and fall on top of each other in the low sR range. In this range,
DNA nanostars most likely bind one arm only and thus effec-
tively bind monovalently. However, at increasing sR the curves
start to deviate from each other suggesting that the multivalent
nature of the interaction causes a non-linear increase with k.

Next we determine how valency affects the selectivity of
surface binding of DNA nanostars. The selectivity a of a multi-
valent system quantifies how sharp Y increases with receptor
density sR:9

a ¼ d lnY
d lnsR

: (1)

More precisely, a describes the slope of Y as a function of sR on
a log–log scale and a 4 1 defines a superselective system. One
can also interpret a as the (density-dependent) ‘Hill-coefficient’,
with Y p saR with a least-square fit of eqn (3) to the experi-
mental data in Fig. 2b. Fig. 2d presents a as the derivative of the
thus fitted curves for Y in Fig. 2b. As expected for a monovalent
DNA nanostar the selectivity never exceeds 1, because it follows
the Langmuir isotherm, which has a maximum slope of 1. An
increase in k is expected to lead to an increase in a. In Fig. 2d we
indeed observe superselective behavior (a 4 1) for our multi-
valent DNA nanostars and interestingly, we observe the largest
selectivity for k = 3. Previous computational work on systems
with many binding sites also showed an optimum in valency.9

To investigate the origin of this optimum, we determine the
chemical equilibrium constants K(0)

A and K(0)
intra using the theory

previously developed by Frenkel et al.9 (see also Fig. 1d). The
superscript (0) indicates that the equilibrium constants are
obtained via this model, treating the ligands as independent
of each other. Their simplest model describes the adsorption of
monovalent DNA nanostars as a Langmuir isotherm9,28 which
is written in the specific form

Y ¼ rnAsRKA

1þ rnAsRKA
; (2)

where Y is the bound fraction, rn is the DNA nanostar
concentration in solution, sR is the receptor density on the
target surface, A is a unit surface area and KA is the equilibrium
association constant to form a single bond, see Fig. 1e. The
equilibrium constant KA determines the specific concentration
of receptors where half of the DNA nanostars are bound. In the
expression we exchanged the activity z of the DNA nanostars by
the concentration rn, given that the low concentrations in the
experiments are in the nM-range.

The interaction strength between ligands and receptors shifts
Y relative to sR, and larger interaction strengths (effectively
described by KA) shift the transition point to lower concentra-
tions. The number of arms k 4 1 introduces a combinatorial
term to the system that accounts for the number of possible
bond formations, see Fig. 1d. The extra degrees of freedom of
multivalent DNA nanostars add to specific entropy and energy
differences between the bound states. Assuming that the arms
act independently, and thus ignoring any (effective) attractions
or repulsions between them, the adsorption can be written as

Y ¼ rnK
av
A KA;Kintra; kð Þ

1þ rnK
av
A KA;Kintra; kð Þ; (3)

with Kav
A , the equilibrium avidity association constant, and Kintra is

related to the equilibrium constant for the second bond, after the
first bond is established (this constant would be (k � 1)Kintra/2).

Fig. 2 Optimality in valency of DNA nanostar surface binding (a) cartoons
of DNA nanostars with a valency k of 1, 3, 6 or 10. The red parts indicate
the single stranded binding sites. The fluorophore is depicted as green
stars. (b) The bound fraction Y measured as a function of receptor density
sR for sticky end ACTTCT and four valencies k = 1,3,6,10. The lines are
least-squared fits with eqn (3) adapted from Frenkel and coworkers9 with
fitting parameters K(0)

A and K(0)
intra. For k = 3 we excluded the last four

datapoints for the fit to get the most accurate mathematical description of
the non-linear transition of Y. (c) The bound fraction Y measured as a
function of the receptor density sR rescaled with k. (d) The selectivity
parameter a = d lnY/d ln sR as a function of receptor density sR, shows an
optimal a for k = 3. (e) Table with the bindings constants obtained from a fit
with eqn (3) to Y in (b) yields the fitting parameters K(0)

A /K(0)
intra and K(0)

intra. The
numbers in brackets indicate the fitting error. A division of the two fitting
parameters yields K(0)

A .
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The equilibrium constant Kav
A is related to the formation of the

first bond and, additionally, includes a combinatorial term that
describes the formation of subsequent bonds:

Kav
A ¼

KA

Kintra
1þ sRAKintrað Þk�1

h i
: (4)

This equation approximately holds under appropriate condi-
tions, far from the regime where saturation and surface receptor
depletion occur.9 With stochastic simulations we explicitly tested
whether these effects occurred and found that the number of
available receptors is consistently close to the total number of
receptors, thanks to the weak binding affinity of the DNA
nanostars. Close to saturation where Y E 1 we did observe
discrepancies between the data and eqn (3) as expected and
incorporated that in the following fitting procedure by giving a
larger weight to the low-coverage regime. The area A = 22 mm2

represents the total surface area of the flowcell, and defines the
dimensionless unit of Kintra.

As described above, if the bonds are formed independently
of each other, and if the DNA nanostars effectively behave like
monovalent particles, the binding probability of the multi-
valent particles scales with the valency k:

Ymulti = k � Ymono. (5)

This would only be true if (1 + sRAKintra)k E 1 + ksRAKintra, and if
rnKav

A { 1 (i.e. far from the interesting superselective regime
where multivalent interactions would be observable).

We used eqn (2) and (5) to fit the data. The comparison of KA

for k = 1,3,6,10 in Fig. 2e reveals no significant differences,
consistent with the assumption we used in our model. Subse-
quent bond formations are captured by the second fitting
parameter 1/Kintra. Here in constrast, we observe a decrease in
Kintra with increasing k. This suggests that DNA nanostars with
more arms are less likely to bind with multiple arms to the SLB,
which we will follow-up on later in this paper.

Optimal binding strength for superselective surface binding

As a next step we studied the impact of interaction strength on
superselectivity and the equilibrium binding constants. The
model predicts that weakening the interaction strength will
shift the curve of Y towards larger sR. The region where Y { 1
needs to be sufficiently large to facilitate a non-linear transi-
tion, which is determined by Kintra.

We test these theoretical predictions by measuring Y for
DNA nanostars with valency k = 6 and for three interaction
strength of the individual arms, DG0 = �8.4kBT (sticky end
sequence TTCTAC), �3.9kBT (CTAC) and �1.9kBT (TAC). The data
of Y as a function of sR for these DNA nanostars with three
different sticky ends is presented in Fig. 3. Comparing the results,
we immediately notice that YTAC and YCTAC shift to higher sR

compared to YTTCTAC, in line with the theoretical predictions and
with experiments performed on colloidal systems.17

To investigate if and how the selectivity and binding con-
stants vary between these three nanostars, we fit eqn (3) on the
data shown in Fig. 3b with KA and Kintra as fitting parameters.
We note that only the first four data points of the 4 bp sticky

end were used in the fit to capture the non-linear transition as
accurately as possible, because it determines the maximum
selectivity of the system. We find that weakening the inter-
action strength from DG0 = �8.4kBT to �3.9kBT indeed makes
the DNA nanostars more superselective. When we weaken the
interaction strength even further to �1.9kBT the selectivity
decreases again indicating that there is an optimal interaction
strength to achieve highest superselectivity. Comparing the
equilibrium constants K(0)

A and K(0)
intra of k = 6 for the 4 bp and

6 bp sticky ends (fits shown in Fig. 3b, and fit values reported in
Table 1), we notice that whereas the equilibrium constant for
binding the first arm, K(0)

A , shows a difference of one order of
magnitude, the values for the equilibrium constant associated
to binding subsequent arms, K(0)

intra, are similar for the two
different sticky end lengths. The equilibrium constant K(0)

intra

of the 3 bp sticky ends is much lower than that of the 4 bp
sticky ends, while KA is slightly larger. These are puzzling
conclusions from the model fits, because one would expect
KA and Kintra to scale similarly with the binding strength, K p

exp(�bf), with f the binding free energy and b as 1/kBT.
Presuming this ratio to be fixed did not yield meaningful fits
and, together with the trends, indicates that the simplest
version of the model is either incomplete, misses relevant

Fig. 3 Optimality in binding strength of DNA nanostar surface binding (a)
cartoons of DNA nanostars with varying binding strength. (b) The bound
fraction Y measured as a function of receptor density sR for nanostars with
k = 6 and the three binding strength shown in (a). The lines are least-
squared fits of the model eqn (3) adapted from Frenkel and coworkers9

with fitting parameters KA and Kintra. (c) The selectivity parameter a ¼ d lnQ

d ln sR
as a function of receptor density sR, shows an optimal a for a binding
strength of �3.9kBT.

Table 1 Bindings constants obtained from a fit to Y in Fig. 3b with eqn (3)
for the coverage of DNA nanostars with non-interacting ligands yields the
fitting parameters K(0)

A /K(0)
intra and K(0)

intra. The numbers in brackets indicate the
fitting error. A division of the two fitting parameters yields K(0)

A , and the
error is obtained through error propagation

Sticky end (bp) k K(0)
A /K(0)

intra (M�1 107) K(0)
intra (10�13) K(0)

A (M�1 10�5)

TTCTAC 6 11.0(1.3) 12.3(21.3) 14.0(24)
CTAC 6 0.3(0.1) 6.0(1.0) 0.2(0.1)
TAC 6 13.0(7.0) 0.3(0.6) 0.4(0.8)
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interactions, or is inconsistent. One effect that is missing in the
analytical model is the depletion of receptors,29 which were found
to be relevant for our parameters via the simulation method
(Fig. S3 in the ESI†). However, by fitting with the simulation data,
we found that including this effect was not sufficient to mitigate
the surprising observations described above.

Theory about optimum in valency and binding strength

The data in Fig. 2 demonstrate that a maximal selectivity is
achieved for k = 3 arms, and suggest that Kintra is dependent on
valency, given that the binding strength of the three different
types of DNA nanostars was the same. To understand these
puzzling observations it is helpful to consider the average number
of bound arms of a bound DNA nanostar,

hni ¼ 1þ k� 1

1þ sRAKintrað Þ�1
: (6)

The number of bound arms, n, is effectively 1 if few receptors are
available, and reaches the asymptote of k in the high sR-limit. The
derivation of this expression follows the same assumption as was
used in eqn (3) (i.e. that the arms act independently), except that
one only has to consider the microstates of a single DNA nanostar
(more details are given in the ESI†). The receptor concentration
where half of the arms are bound on average depends only on
Kintra and not on the concentration of DNA nanostars. As long as
hni E 1, the DNA nanostars behave effectively as monovalent
particles, and the selectivity a E 1. To a good approximation a E
hni, up to a point where a starts to drop to zero, because of
saturation effects (of the surface, or depletion of the bulk), or to 1,
if all available receptors become occupied. Whether a system
behaves superselective or not, depends sensitively on this cross-
over density s�R, with s�RA ¼ Kintra

�1 (where the second term in
eqn (6) starts to become significant). From this simple model, one
can conclude that there are four distinct regimes, namely (1) for
small sR � s�R: particles bind with 1 arm on average and behave
effectively monovalent, so a = 1, regime (2) around sR � s�R: the
system becomes superselective, with a E hni, regime (3) for
higher sR 4 s�R: a drops to 1 when all the available receptors
become occupied, and regime (4) for high sR � s�R: a drops to
zero due to saturation effects, which happens either when the
bulk becomes depleted, or the surface becomes too crowded.
Regime 1 and 4 should in principle always be achievable for any
type of particle, but the interesting regime (2) is only visible if
saturation effects are not important for sR os�R. This explains
why a large number of arms k can be disadvantageous, because
the larger k is, the sooner particles bind, and the sooner saturation
effects appear. The density where the coverage is 50% will in
general not coincide with the crossover density s�R ¼ Kintra

�1

where particles bind on average with 50% of their ligands, and
occurs earlier with increasing k. Only if one can successfully
prevent early binding via other principles such as steric repulsions
and entropic barriers, could one achieve the maximum selectivity
of a = k.

The analytical expressions contain in principle four tunable
parameters: the two equilibrium constants KA and Kintra, the

number of ligands k, and a maximum number of DNA nanostars
per area Nmax that determines the normalisation of Y. The value
of Nmax determines when saturation effects become important,
and is dependent on the size of the DNA nanostars, which set the
maximum packing fraction. In scenarios with very low bulk
concentrations, Nmax is the available number of DNA nanostars
in solution. The equilibrium constants Kintra and KA are depen-
dent on the binding strength of the ligands and their configura-
tional degrees of freedom. Comparing now the binding
probability of three different types of nanostars, with 3, 6 and
10 identical ligands, we would expect all parameters to be
identical, except for the number of arms k. However, we observe
(as described above) that the experimental data cannot be fitted
with a single set of parameters, and only show reasonable
agreement if we fit a different Kintra-value to each set. This
observation challenges the interpretation of Kintra, and seems
to be a clear indication that there are effects not captured by the
model we used so far. Therefore we make a minimal extension of
the model to estimate the potential influence of self-interactions
and pair-interactions between the ligands.

Soft pair interactions between the ligands and self-
interactions could alter the binding kinetics, for example via steric
interactions,30 ion-bridging, electrostatic interactions,31–33 or stiff-
ness of the arms and joints34,35 (see Fig. 4a). The strength of these
effects would depend on the total number of ligands k, being
more important for particles with many ligands. Keeping the
microscopic origin of these effects unspecified, we include a
mesoscopic parameter DGc to represent these effects in the form
of a Gibbs free energy. We call the effect cooperative if DGc o 0
and competitive if DGc 4 0. The situation where DGc = 0
represents the original analytical model where the ligands act
independently. This additional parameter enables connections
between the mesoscopic phenomenon of cooperativity and the
emergent selectivity. Although it will not clarify the microscopic
origins of the cooperativity, which may be challenging to decon-
volute, it represents a larger class of microscopic phenomena,
leading to the same mesoscopic cooperativity. This parameter
alters the transition rates between the states in the following way:

c12

c21
¼ k� 1

2
Kintrae

�DGc

c23

c32
¼ k� 2

3
Kintrae

�2DGc

..

.

cn;nþ1
cnþ1;n

¼ k� n

nþ 1
Kintrae

�nDGc

with cnm the rate constant that a DNA nanostar makes a transition
from a state with n arms bound to a state with m arms bound,
with m = n� 1. The combinatorial factor is the number of ligands
available to bind, divided by the number of arms that are bound
in state n + 1 and able to detach. The correction of the rate
constant increases with n, representative of an attractive pair
interaction, where n bound arms each interact with n � 1 other
bound arms. In the simulations, we limited the maximal value of
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n to 4, representing a maximum number of neighbours that a
ligand can interact with. However, this cutoff value was found not
to influence the simulation results and fit values, because the
fraction of particles binding with more than four arms was found
to be completely negligible. This finding gives an indication for
the low selectivity of the nanostars in our experiments.

Now we can fit this model to our experimental data to extract
single values for KA and Kintra from the experimental data, with
a small difference in DGc, given in Table 2. The relative
differences in DGc indicate that the ligands of 3-armed DNA
nanostars experience less competition than 10-armed DNA
nanostars, with a difference of about 1.5kBT in the effective
pair-interaction between the ligands.

6-Armed DNA nanostars with 3 and 4 basepair sticky ends
have a lower binding probability than those with 6 basepair
sticky ends, as shown in Fig. 3. The length of the sticky end is
expected to affect the unbinding rates9 koff p exp(bf), with f the

binding free energy of one ligand. Therefore the length of the
sticky end is expected to influence Kintra and KA by the same
factor, as they both depend on 1/koff. Assuming that the pair
interactions are not or only negligibly influenced by the sticky
end, DGc should be the same for these particles. Curve fits are
found for the parameters given in the table of Fig. 4b. The
difference in binding free energy between the different ligands
is estimated by kBT ln(KA/K[6bp]

A ), relative to the binding free
energy of the ligands with 6bp sticky ends.

The parameter values in the table of Fig. 4b suggest that a
lower DGc, meaning more cooperation between the ligands, is
favorable. However, a numerical exploration of parameter space
seems to suggest that there is an optimal value of DGc, and that
there are situations where competition between the ligands
results in a higher selectivity than cooperation. To test this, we
fit the experimental data using our expanded model. Fig. 4c–e
show the maximal selectivity of a DNA nanostar as a function of
DGc for different values of the binding rates, being highest in
the left figure and lowest in the right figure. Intuitively one
expects cooperation to be favorable to achieve a higher selec-
tivity, because it could make the average number of bound
arms hni depend more sensitively on the receptor density sR

(eqn (6)), potentially even leading to a first order phase transi-
tion, where hni makes a sudden jump at a critical value of sR.

Fig. 4 Model expansion with cooperative effects (a) to explain the experimentally observed effects, we include soft interactions between the ligands,
for example due to steric or torsional effects between the arms or stiffness of the arms and joints, in our expanded model. These interactions may have
an entropic or energetic origin. (b) Experimental fit values with the model which includes an interaction term for the equilibrium constants KA and Kintra.
The ratio KA/Kintra was taken to be constant, because KA and Kintra are expected to be equally affected by the binding strength. The difference in binding
free energy relative to the 6 bp sticky end is given in the third row. (c)–(e) Simulation results show the maximal achievable selectivity as a function of pair-
interaction strength DGc, which is ‘cooperative’ as DGc o 0 and ‘competitive’ as DGc 4 0, for (c) KA = 3.0 � 10�10 and Kintra = 4.6 � 10�14, (d) KA = 3.0 �
10�7 and Kintra = 4.6 � 10�13 and (e) KA = 3.0 � 10�7 and Kintra = 4.6 � 10�12 corresponding to the best fits with the experimental data. The equilibrium
constants are highest in panel (e) (which corresponds best to the experimental data), and lowest in (c). There is an optimal DGc corresponding to a weak
cooperative interaction for small equilibrium constants, and a weak competitive interaction for higher values. The numerical error in a is negligible
(o0.1%), but the estimation of the maximum a is based on a finite grid and introduces an uncertainty shown in the figures.

Table 2 Parameter values that best fit the model to the experimental
profiles. All three types of nanostars were fitted with Kintra = 14 � 10�12 and
KA = 1 � 10�5 M�1

# ligands (k) 3 6 10
DGc (kBT) �0.5 0 1.0

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 2
:5

6:
48

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00704b


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 8515–8523 |  8521

Although this transition would drastically change the binding
dynamics from solution, the availability of receptors would also
drastically decrease, as the particles already bound would
rapidly reduce the number of available receptors, and prevent
particles from solution to bind. The effect of cooperation on the
binding probability Y is not as obvious as the effect on hni, and
the simple relation between a and hni that we found earlier
does no longer hold in this scenario. For the parameter values
that match the experimental data best, the results show that a
small competition is actually favorable over a cooperative
interaction, and that the maximal selectivity depends more
sensitively on DGc for DNA nanostars with more arms. The
trivalent DNA nanostars have the highest selectivity and are
least affected by the value of DGc. This observation suggests two
important biological reasons why e.g. certain viruses, such as
bacteriophages, would use a small number of ligands to select
their host:36–38 (1) in a crowded environment, a smaller number
of arms may result in a higher selectivity, and (2) the selectivity
is stable under changing environmental conditions that influ-
ence the interactions between the arms.

Discussion

Specific data would be required to interrogate the microscopic
origin of the pair-interactions, and fix the zero-point of the
Gibbs free energy DGc. As long as the DNA nanostars do not
bind with more arms than 2, such that the selectivity ar 2, the
Gibbs free energy DGc would simply rescale Kintra, as is the case
for our experimental results. In this case, there is effectively
only one equilibrium constant between the first two bound
states, which allows freedom where to set DGc = 0 because there
is only one transition with two variables, Kintra and DGc. Only in
the parameter regime where a 4 2 could one potentially
validate the specific adaptation of the transition rates, and
gain more information about the type of mechanism respon-
sible for DGc. It is to be expected that the transition rates will
depend on the number of bound arms, not only because of
combinatorial reasons, but also because of the specific energy
of the configuration, depending on the type of interaction. Data
on the binding probability of particles with a selectivity a 4 2
could shed light on the microscopic origin and strength of the
pair-interactions. In the future it would be interesting to
investigate DNA nanostar designs that are predicted to bind
with a higher selectivity, for example by creating more flexibility
within the DNA nanostar structure, or by introducing repulsive
or attractive interactions between the DNA nanostar arms.

In summary, we have interrogated the effect of valency and
binding strength on the selectivity of multivalent objects, with a
limited valency k = 3, 6, 10, and found that both the valency and
binding strength have an optimal value to achieve maximal
selectivity. We observed that DNA nanostars with 3 ligands can
be more selective than those with 6 and 10 ligands, and can
explain this from the fact that particles with more ligands have
a larger binding rate from solution, such that the surface saturates
sooner, hindering binding in the superselective regime. After

comparing the observations to the theoretical model, we also
concluded that there may be relevant pair-interactions between
the ligands. Including this effect at a mesoscopic level, we found
agreement with our observations. By exploring parameter space
with simulations, we found that the selectivity has a maximal
value for an optimal strength of the cooperative interactions, and
that there are even conditions where weak competitive interac-
tions are optimal. These conditions include the parameters that
were found from fits with the experimental data.

Based on our results we can formulate several design rules
for maximizing selectivity under different experimental condi-
tions: aligned with earlier conclusions,9 a maximal selectivity
can be found at infinite dilution of the bulk solution, where
a - k. In this limit, a larger valency always leads to a larger
selectivity. However, this limit may not be experimentally acces-
sible, as the equilibration time also drastically increases, and
may not be relevant in a biological context, where concentrations
are finite and selectivity needs to be established within a certain
time interval. At finite concentrations, there is an optimal value
of the valency and binding strength, which can be estimated
with existing theoretical models, once the binding rates are
measured. Weak interactions between the ligands complicate
the picture, and have a larger influence the larger the valency is.
Surprisingly, we find cooperative effects to be unfavorable for the
experimental conditions, and only favorable if the on-rate from
solution is sufficiently low, requiring a larger entropy barrier
(by diluting the bulk solution) or stronger energy barrier (by e.g.
steric hindrance) between the free and bound state. In conclu-
sion, increasing the valency of a particle may actually lower the
selectivity, and make the particles more sensitive to unwanted
pair-interactions between the ligands. A limited valency may be
favorable for maximizing the selectivity and robustness to envir-
onmental changes that affect the ligand–ligand interactions.

Methods
DNA nanostar hybridisation

All DNA strands were purchased from Integrated DNA Technol-
ogies Inc (IDT), resuspended in Tris buffer (pH8) and stored at
�20 1C. To achieve for example tetravalent DNA nanostars with
four sticky ends and one fluorophore, we mixed the four DNA
strands X1, X2, X4 and X5 in equal molar ratios and annealed
the mixture to 95 1C for 10 min and then cool it down at a rate
of 0.2 1C min�1 to 4 1C, see Table S1 (ESI†). The annealing took
place in a Thermocycler and a final concentration of 0.5 mM.
The final product was stored at 4 1C. For the experiments, we
diluted the desired concentration of DNA nanostars and recep-
tors in Tris acetate–EDTA–NaCl (TAE, 100 mM NaCl, pH = 8)
and 10 mM magnesium chloride (MgCl).

To verify the hybridization of the DNA nanostars, we per-
formed DNA electrophoresis. The sample consisted of 10 mL of
0.5 mM DNA nanostars and we loaded the sample on a 1%
agarose gel. After 30 min at 100 V we took an image of the gel,
see Fig. S1 (ESI†). The fluorescent bands correspond to DNA
nanostars: the higher the band, the larger the DNA nanostar
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nanostructure. Lower bands result from incomplete hybridiza-
tions. The intensity of the upper bands is significantly higher,
confirming the successful formations of the DNA nanostars.

DNA functionalised supported lipid bilayer

We studied the DNA nanostar adsorption in solution in a flow
channel. The supported lipid bilayer (SLB) consisted of 18 : 1
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, [Avanti Polar
lipids], stored in chloroform). To obtain the SLB, we first made
small unilamellar vesicles (SUVs) from DOPC lipids. To do so,
we added the desired volume of lipid to a glass vial and let it
dry overnight in a vacuum desiccator. Subsequently, we resus-
pended the lipids in TAE–NaCl buffer and extruded the solution
with an Avanti mini extruder through a membrane with pore size
of 30 nm (Avanti Polar lipids). The microscopy slides and cover-
slips were sonicated at 30 min each in 2% Hellmanex solution,
acetone (499.9%) and potassium hydroxide solution (KOH, 1 M,
[Merck]). Between each change of chemical we rinsed the glass
ware [VWR] with milliQ water. Before use, the slides and cover-
glasses were blown dry with nitrogen. Parafilm stripes confined
the flow channel and glued the microscopy slide and a coverslip
together. Subsequent annealing at 125 1C let the Parafilm melt
and bound the microscopy slide and coverslip together yielding
(1 � 22) mm rectangular flow channels. To obtain SLBs in the
flow channel, we injected SUVs and after 30 min at room
temperature, we washed out the excess SUVs with buffer and
added DNA of the desired concentration.

Data acquisition and analysis

To image the DNA nanostar adsorption on the target surface we
used total internal reflection microscopy (TIRF) on an inverted
fluorescence microscope (Nikon Ti2-E) upgraded with an azi-
muthal TIRF/FRAP illumination module (Gata systems,iLAS 2)
equipped with a 100� oil immersion objective (Nikon Apo
TIRF, 1.49NA). Each DNA nanostar possesses an Atto488 dye
and each receptor features a Cy3 dye. Therefore, we used laser
excitations with wavelength 488 nm and 561 nm and detect the
emitted fluorescent signal (EM-CCD Andor iXON Ultra 897). For
each binding probability we measure for 7 different sR the
intensity of the DNA nanostars I to obtain the full range of
adsorption from unbound to bound. A negative control with
sR = 0 mm�2 defines the background signal Iback. The maximum
intensity Imax provides a reference for normalization. The
monovalent DNA nanostars were not measured until saturation
due to practical constraints. Therefore, we normalized the
monovalent signal with the maximum signal of k = 6 of the
same sticky end. After the acquisition of the DNA nanostar
adsorption in equilibrium, the acquired signal is corrected and
normalized yielding the binding probability:

Y ¼ I � Iback

Imax � Iback
: (7)

For the image processing we used a combination of ImageJ and
python.

Simulation method

The system is described as a reaction network, consisting of
transitions between different bound states, and the free state in
solution, with corresponding rate constants. This network is sto-
chastically evolved using a kinetic Monte Carlo algorithm, according
to Gillespie.39 After equilibration, the coverage is obtained as the
average over a large number of iterations (n Z 105). The binding
probability was calculated by stochastically evolving a number of 106

nanostars over the different binding states and free state according
to the rate constants, and an explicit number of NR receptors (per
mm2). The maximal number of bound nanostars is estimated to be
104 (per mm2), also informed by the observations, and fixed for all
comparisons with experimental data. The other input parameters
are the rate constants koff, representing the rate that a single specific
ligand unbinds from a given receptor, kon,sol, representing the rate
that a given ligand of a nanoparticle in solution binds to a given
receptor, and kon,sur, representing the rate that a given ligand of a
nanoparticle already bound to the surface binds to a given receptor.
The value of koff was fixed to be 1, basically defining the unit of time
in the simulations. These three rate constants are converted to the
experimental values according to

Kintra 	
1

A

kon;sur

koff
(8)

with A in mm2, and

KA 	
1

r0

kon;sol

koff
(9)

with r0 the concentration of nanoparticles in solution in M. To
observe super selectivity, the rate constants needed to follow the
hierarchy koff c kon,sur c kon,sol.
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1999, 82, 5289.

31 E. Raspaud, M. O. De La Cruz, J.-L. Sikorav and F. Livolant,
Biophys. J., 1998, 74, 381–393.

32 C. E. Sing, J. W. Zwanikken and M. Olvera de la Cruz,
Macromolecules, 2013, 46, 5053–5065.

33 P. S. Randeria, M. R. Jones, K. L. Kohlstedt, R. J. Banga,
M. Olvera de la Cruz, G. C. Schatz and C. A. Mirkin, J. Am.
Chem. Soc., 2015, 137, 3486–3489.

34 Z. Xing, A. Caciagli, T. Cao, I. Stoev, M. Zupkauskas,
T. ONeill, T. Wenzel, R. Lamboll, D. Liu and E. Eiser, Proc.
Natl. Acad. Sci. U. S. A., 2018, 115, 8137–8142.

35 I. D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu,
R. Ghosh, T. ONeill, D. Liu and E. Eiser, Soft Matter, 2020,
16, 990–1001.

36 N. J. Overeem, P. Hamming, M. Tieke, E. Van Der Vries and
J. Huskens, ACS Nano, 2021, 15, 8525–8536.

37 W. Hussain, M. W. Ullah, U. Farooq, A. Aziz and S. Wang,
Biosens. Bioelectron., 2021, 177, 112973.

38 A. Singh, S. K. Arya, N. Glass, P. Hanifi-Moghaddam,
R. Naidoo, C. M. Szymanski, J. Tanha and S. Evoy, Biosens.
Bioelectron., 2010, 26, 131–138.

39 D. T. Gillespie, J. Phys. Chem., 1977, 81, 2340–2361.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 2
:5

6:
48

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00704b



