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Shape and size tunability of sheets of interlocked
ring copolymers†

Juan Luengo-Márquez, *ab Salvatore Assenza bcd and Cristian Micheletti *e

Mechanically bonded membranes of interlocked ring polymers are a significant generalization of

conventional elastic sheets, where connectivity is provided by covalent bonding, and represent a

promising class of topological meta-materials. In this context, two open questions regard the large-

scale reverberations of the heterogeneous composition of the rings and the inequivalent modes of

interlocking neighboring rings. We address these questions with Langevin dynamics simulations of

chainmails with honeycomb-lattice connectivity, where the rings are block copolymers with two

segments of different rigidity. We considered various combinations of the relative lengths of the two

segments and the patterns of the over- and under-passes linking neighboring rings. We find that varying

ring composition and linking patterns have independent and complementary effects. While the former

sets the overall size of the chainmail, the latter defines the shape, enabling the selection of starkly

different conformation types. Notably, one of the considered linking patterns favors saddle-shaped

membranes, providing a first example of spontaneous negative Gaussian curvature in mechanically

bonded sheets. The results help establish the extent to which mechanically bonded membranes can

differ from conventional elastic ones, particularly for the achievable shape and size tunability.

1. Introduction

The large-scale conformations of polymerized or crystalline
membranes, elastic sheets formed by particles tethered or
bonded in a two-dimensional network, can be highly susceptible
to local structural details.1–7 For instance, introducing isolated
defects can cause otherwise flat membranes to buckle out-of-
plane and acquire positive or negative Gaussian curvatures over
large scales.4–10 More strikingly, introducing even a short-ranged
self-avoidance in tethered membranes can prevent their transi-
tion from flat to crumpled as temperature increases.2,11–14 These
consequential demonstrations of the coupling of small and large-
scale structural properties have no analog in linear polymers and
originate from the unique balance between entropic and

enthalpic (elastic) contributions to the free-energy of quasi-two-
dimensional systems embedded in three-dimensions. Devising
ways to offset this balance has been a major objective both
theoretically and for applicative purposes, especially the design
of tunable materials.15–17

In addition to the above endeavors, entirely new perspectives
for designing membranes and tuning their elastic properties are
being opened by recent advancements in supramolecular chem-
istry, which have made it possible to obtain extended low-
dimensional materials by harnessing mechanical or topological
bonds in place of conventional covalent ones.18–23 Examples
include the synthesis or assembly of responsive molecular
constructs,24,25 networks of interlocked molecules,26–29 and long
linear catenanes.20,30 In consideration of their one-dimensional
character, the latter systems have represented the simplest set-
ting for understanding the effects of mechanical bonding on
conformational,31–34 dynamical35–38 and mechanical20,39 proper-
ties, also by contrast with conventional bonding. It is thus natural
to ask what novel large-scale behavior can emerge in two-
dimensional elastic sheets that, instead of being made by bonded
particles, consist of a chainmail of linked molecular rings.

Polymerized and mechanically bonded membranes are similar
in some respects and radically different in others, making their
comparison ideal to further our understanding of elastic sheets
and topological materials. A fundamental common element is that
the underlying topology is permanently fixed for both types of
membranes, insofar as conventional and mechanical bonds are
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‘‘unbreakable’’. In addition, the distance of mechanically bonded
rings can fluctuate within specific limits, similar to the distance of
neighboring nodes in tethered sheets. However, while tradi-
tional tethered membranes are structures where the connecting
elements – ranging from simple chemical bonds to linear
polymer chains – converge and bind at the nodes, in chainmails
the closed polymer chains serve at one time as tethers as well as
nodes, their bonding arising from topological constraints.

These differences are expected to be consequential for at least
two reasons. First, large-scale properties of membranes can be
sensitive to small-scale features, as noted before. Second, topological
constraints can endow mechanically bonded structures with emer-
ging physical properties. A case in point are circular catenanes of
rigid rings, which behave similarly to elastic ribbons, even though
the rings interact only sterically and not via bending or torsional
potentials.40 In addition, the fact that the elementary concatenated
units are extended structures, e.g. ring polymers, generally suf-
fices to introduce new physical regimes not accessible to the
covalently bonded counterparts, from dynamical relaxation35–37

to the response to mechanical stretching20,39,41 or spatial
confinement,42 to the available modes of entanglement.43

Further reasons for considering sheets of linked ring poly-
mers come from biological systems, as best illustrated by the
mitochondrial DNA of trypanosomes44,45 that consists of thou-
sands of interlocked DNA rings. Intriguingly, the rings show a
significant presence of sequence stretches known as A-tracts,46

which are characterized by a stiff mechanical response,47 thus
providing an example of rings with heterogeneous elasticity
in vivo. Single-molecule experiments have recently clarified that
these long-known DNA chainmails have the shape of relatively
smooth curved membranes.48–50 The membrane is bound by a
rigid perimeter, possibly itself formed by redundantly linked DNA
rings,51 but is otherwise flexible and hence endowed with significant
conformational plasticity that confers unusual mechanical and
dynamical properties to the system. For instance, the DNA chain-
mail can transition reversibly from expanded to collapsed states as
the concentration of crowders in solution is varied,52 but it deforms
continuously and without the equivalent of a coil–stretch transition
in elongational flows.49 Various theoretical and computational
models have been introduced to understand the observed properties
of kinetoplast DNA,22,48,50,53–56 including how they depend on the
network of the linked rings.56 Notably, the lateral and transverse size
of rigid-ring chainmails were found to scale with the system area
similarly to flat covalent membranes, and yet, the chainmails
invariably featured a spontaneous curvature and precisely a positive
Gaussian curvature, absent from conventional membranes.56 The
positive Gaussian curvature was consistently observed across kine-
toplast models differing by system sizes and types of linking
networks. Such systematicity suggests that the positive Gaussian
curvature emerges from the bonding topology, which introduces
anisotropies in the steric interactions of the rigid rings,56 although
other features such as connectivity defects and edge ‘‘purse-string’’
effects might be also important.

Two general aspects have remained virtually unexplored for
mechanically bonded membranes: (i) the effect of sequence-
dependent heterogeneity of the constitutive rings, particularly

the sequence-dependent bending rigidity,57–59 and (ii) the
effects of the inequivalent modes of linking the same set of
neighboring rings. Various considerations suggest that both
aspects could be consequential for the properties of chainmails.
On the one hand, sequence heterogeneity has been previously
studied in systems where topological constraints were intra-
molecular, namely block-copolymer knotted rings where the
different flexibility of the segments was varied explicitly, via
the local bending rigidity,60 or implicitly, via charged/neutral
character of the monomers and the ionic strength.61,62 In both
cases, the sequence-modulated elasticity could either pin or
delocalize the essential crossings of the knot, allowing, in turn, to
tune the global metric properties. Thus, it is relevant to ask
whether similar pinning of the essential crossings can be achieved
for the inter-molecular topological constraints of chainmail and
what the implications are for the conformational properties. On
the other hand, the inequivalent modes in which a ring can be
linked to its neighbors, that is, the inequivalent networked pat-
terns of over- and under-passes, arguably provide the most
straightforward way of exploring the cooperative effects of mechan-
ical bonding and establishing whether and to what extent
mechanically-bonded membranes are affected by features beyond
those encoded in the pairwise linking graph of the chainmail.

Here, we study both aspects with Langevin dynamics simu-
lations on block-copolymer chainmails with honeycomb lattice
topology and different patterns of linking modes for the con-
stitutive rings, which comprise a rigid and flexible segment. We
considered five different compositions of the rings, from fully
flexible to rigid, and two different linking patterns. For each of
the ten combinations of ring composition and linking pattern,
we sampled the equilibrium ensemble of the mechanically
bonded membranes and analyzed various local and global
observables to characterize how the interplay of local flexibility
and linking modes defines the chainmail properties.

The main findings of our study are three. First, we observe
that different modes of linking rings to their neighbors can
dramatically alter the conformational ensemble of chainmails with
the same honeycomb connectivity. Second, we show that a specific
pattern of linking modes systematically favors saddle shapes, thus
providing the first example of negative Gaussian curvature in
mechanically-bonded membranes. Finally, we find that varying
the composition of the block-copolymer rings can alter membrane
size and bias the nature of the contacting (interlocked) segments
but has no significant effects on membrane shape.

2. Methods
2.1. Model: chainmail types

We studied systems of rings of beads interlocked in a chainmail
with the connectivity of a honeycomb lattice consisting of two
interleaved triangular sublattices. We considered the honey-
comb lattice for two main reasons. First, despite being a simple
two-dimensional lattice, it has not been considered before in
models of topological membranes. Second, it was an early
proposed model for kinetoplasts,45 mainly inspired by the
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correspondence of the (monodispersed) honeycomb connectiv-
ity and the average one of kinetoplast DNA rings.50 Although
this correspondence is too crude for accurately modeling
kinetoplasts, it still makes the honeycomb lattice relevant for
topologically bonded membranes.

The mechanical bonding between neighboring rings is
provided by the Hopf-type linking, the simplest instance of
topological interlocking (Fig. 1a). There exist several different
modes for interlocking the rings of one triangular sublattice
with those of the other, corresponding to different successions
of over- and under-passes.40 To explore the impact of different
modes on the conformational properties of the membranes, we
consider here two types of chainmails, P1 and P2 in Fig. 1b. In
the case of P1, all rings are connected with the same mode
(Fig. S1 top in the ESI†). The linking pattern P2 was instead
chosen to include multiple linking modes into the same
membrane, thus enabling the exploration of the effect of mode
heterogeneity (Fig. S1 bottom in the ESI†).

The initial conformations of P1 and P2 were obtained starting
from the same overlapping coplanar honeycomb arrangement of
rings of m = 40 beads of size s. The rings were perfectly circular
with radius r C 6.4s, and the spacing of neighboring rings was set
to approximately 1.5r. We retained rings at a distance smaller than
about 52.44s from a designated central site, obtaining quasi-
hexagonal, hence roughly circular, cutouts of 68 rings.

The first chainmail type, P1, was obtained by tilting the rings
in the two triangular sublattices by opposite off-plane rotations.
For the system at hand, setting the rotation angle to +p/8 for the
rings in sublattice A (purple) and �p/8 for sublattice B (black)
yielded the sought linking pattern.

The alternative type, P2, was obtained with a different strategy.
Rings in sublattice B (black) were kept in their coplanar configura-
tions. Rings in sublattice A were divided into two sets,

corresponding to the green and purple alternating columns in the
rightmost panel of Fig. 1b. Next, green and purple rings were
deformed with suitable out-of-plane undulations to realize the over-
and under-passes sketched in Fig. 1c. In the resulting staggered
pattern, the over- and under-passes of the sublattice ‘‘A’’ rings with
their nearest neighbors are reversed in alternating rows.

We note that, although the local configurations of Fig. 1c can
be interconverted by flipping the outer rings, such interconver-
sion does not extend to the considered P1 and P2 patches. This
is because each ring in the patches, including peripheral ones,
take part to closed concatenated paths, which are topologically
constrained,40 so that P1 and P2 are topologically inequivalent.

2.2. Model: ring polymers

The excluded-volume interaction of any pairs of monomers in
the same or different rings is treated with a standard Weeks–
Chandler–Andersen (WCA) potential, corresponding to a trun-
cated and shifted Lennard-Jones potential,

UWCA ¼
4e

s
r

� �12
� s

r

� �6� �
þ e if r �

ffiffiffi
26
p

s;

0 otherwise;

8><
>: (1)

where the parameter e sets the energy scale.
The backbone connectivity of the rings was provided by adding

a bond potential between consecutive monomers in the form of a
standard finitely extensible nonlinear elastic (FENE) term63

UFENE ¼ �
KFENER0

2

2
ln 1� r

R0

� �2
" #

; (2)

for monomer distances r r R0 and UFENE = N for r 4 R0. The
parameters were set to the standard values KFENE = 30e/s2 and
R0 = 1.5s.63

Fig. 1 Shape and linking patterns of the considered P1 and P2 chainmails with n = 68 rings. (a) Iinitial configuration of the P1 chainmail. (b) Schematic
representation of the different patterns of linking modes defining P1 and P2 chainmails; the rings are color-coded based on the succession of over and
underpasses established with their neighbours, as illustrated in panel (c). The individual rings are circular di-block copolymers. We considered five
different compositions for the di-block rings, corresponding to rigid-segment coverage (percentage of monomers in the rigid segment) of 0%, 33%, 50%,
67%, and 100%.
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We considered diblock copolymer rings with one rigid
segment of nr = {0, 13, 20, 27, 40} monomers and one flexible
segment composed of the remaining m � nr monomers. In the
present context, a monomer is considered ‘‘rigid’’ or ‘‘flexible’’
depending on the local bending stiffness, see further below.
The considered ring length, m = 40, is consistent with previous
studies of interlocked ring polymers (catenanes), where it was
shown to be adequate for the emergence of mechanical-
bonding effects.31,34–36,42,43 The limiting cases nr = 0 and nr =
40 correspond to fully flexible and fully-rigid rings. The bend-
ing potential is

Ubend ¼
Xm
i¼1

kbendðiÞ 1�~ui �~uiþ1ð Þ; (3)

where -
ui is the unit vector from monomer i � 1 to monomer i,

assuming periodic bead indexing along the ring contour. The
bending stiffness was set to kbend(i) = 10e and kbend(i) = 0 for
rigid and flexible monomers, respectively. We note that the
nominal persistence length associated to the bending stiffness
is about 1

4 of the contour of the rings, and thus large enough to
ensure the smoothness of the rigid blocks.

The five above-mentioned block copolymer compositions
that we considered corresponded to 0, 33%, 50%, 67%, and
100% of particles in a ring belonging to the rigid segment and
were adopted uniformly for all rings in the chainmail.

2.3. Langevin molecular dynamics simulations

The canonical equilibrium properties of the chainmails were studied
with Langevin molecular dynamics simulations, which were inte-
grated with the LAMMPS software package.64 We set the temperature
of the system as kBT = e applying the Schneider–Stoll formulation as
implemented in LAMMPS.65 We used a periodic cubic simulation
box large enough to accommodate the entire initial (planar) chain-
mail. The dynamics was integrated with a damping factor of 2t and a

time step of 0.005t, where t ¼ s
ffiffiffiffiffiffiffiffi
m=e

p
is the characteristic simula-

tion time and m is the monomer mass, set equal to unity. For each
combination of linking pattern and block-copolymer ring composi-
tion, we collected two independent trajectories of duration 2.5 �
105t and 3.5� 105t, respectively, discarding an initial interval of 5�
104t corresponding to the system relaxation time, see Fig. S2 in the
ESI.† Configurations were sampled at intervals of 50t. The adequate
coverage of the sampling was verified a posteriori from the consis-
tency of the expectation values of various observables computed
separately for the two trajectories.

2.4. Observables

To characterize the conformational ensemble of the chainmails
we used a combination of local and global observables.

First, for each sampled chainmail configuration, we com-
puted the gyration tensor, R, whose general entry is:

Ra;b ¼
1

N

XN
i¼1
ðri;a � rCM;aÞðri;b � rCM;bÞ; (4)

where N is the total number of monomers in the chainmail, a
and b run over the three Cartesian components, and ri,a and

rCM,a are the a components of the position vectors of the ith
monomer and of the center of mass of the chainmail,
respectively.

The ranked eigenvalues of the gyration tensor, l1
2
Z l2

2
Z

l3
2, were used to characterize the shape anisotropy of the

chainmail and compute its squared gyration radius, Rg
2 = l1

2

+ l2
2 + l3

2. The canonical expectation values of the same
quantities were obtained by averaging over the sampled con-
formations at given chainmail type and ring composition.

We analyzed the spontaneous curvature of the chainmail by
computing the local Gaussian curvatures in the neighborhood
of each ring using the method of ref. 66. The algorithm applies
to three-dimensional embeddings of triangular meshes and
thus it is well suited to the honeycomb connectivity of our
chainmails. Specifically, a natural triangulation of the neigh-
borhood of ring i is obtained by connecting its center of mass
with those of its nearest neighbor rings of the same (A or B)
sublattice. This procedure yields six or fewer triangular facets
depending on whether the ring i is inside or at the boundary of
the chainmail. Based on the Gauss–Bonnet theorem, the local
Gaussian curvature is then computed as:

KGðiÞ ¼ 2p�
Xnf ðiÞ
k¼1

ykðiÞ

0
@

1
A 1

AðiÞ; (5)

where nf(i) is the number of triangular facets impinging on ring
i, yk(i) is the vertex angle of facet k at i and A(i) is the area of the
triangulated surface associated to the vertex i, as sketched in
Fig. 2.

Following ref. 56, we computed the global Gaussian curva-
ture of the entire chainmail as

�KG ¼

P
i

KGðiÞAðiÞP
i

AðiÞ ; (6)

where
P
i

denotes the sum over all rings in the chainmail.

3. Results and discussion

We used Langevin molecular dynamics simulations to explore
the conformational properties of honeycomb chainmails of
diblock copolymer rings, each made of one rigid and one
flexible segment. Our specific aim was to understand whether
the large-scale properties of chainmails with the same honey-
comb connectivity could significantly depend on the composi-
tion of the rings and the inequivalent modes that the rings can
be linked with their neighbors. To this end, we considered
various relative sizes of the rigid and flexible segments and two
different patterns of chainmail linking, as summarised in Fig. 1.

For the block copolymer composition, we considered five
different rigid-segment coverages, corresponding to 0, 33, 50,
67, and 100% of ring monomers belonging to the rigid segment.

For the linking patterns, we exploited the bipartite nature of
the honeycomb lattice, made of two interleaved triangular
sublattices, to design two different chainmail types, as sketched
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in Fig. 1b. The first type, P1, is homogeneous in that rings in
the two triangular sublattices present the same linking mode,
i.e., a succession of over and underpasses, with their
mechanically-bonded neighbors, modulo finite size effects.
The second type, P2, is instead heterogeneous, with the rings
of one triangular sublattice switching between the two linking
modes of Fig. 1c in alternating columns.

We considered all combinations of the selected ring composi-
tions and linking patterns, ten in total, and used Langevin
dynamics simulations to sample the equilibrated conformational
ensembles. Typical configurations for P1 and P2 chainmails for

rings with equally long rigid and flexible blocks (50% rigid-
segment coverage) are shown in Fig. 3. For clarity, the front
and side views of the chainmail are complemented with a
wireframe representation, where the nodes correspond to the
centers of mass of the rings, and the connecting edges represent
the mechanical bonding of the corresponding rings.

Although they share the same ring composition and honey-
comb lattice organization, the two representative chainmails
present noticeable structural differences, which we next exam-
ined with a systematic quantitative analysis.

3.1. Metric properties

Fig. 4 presents a comparative overview of the average metric
properties of chainmails with different compositions of the
ring diblock copolymers and linking patterns.

The root mean square gyration radii Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Rg

2
	 
q� �

of the

chainmails are shown in panel a, where they are profiled for
increasing rigid-segment coverage. The plot establishes that P2
chainmails are systematically larger than P1 ones. The size
difference is maximum when the interlocked rings are fully
flexible and progressively diminishes for increasing length of
the rigid segment, becoming negligible in the limit case of fully
rigid rings. These differences are a first indication of how the
conformational space of mechanically bonded membranes
with the same honeycomb connectivity and the same ring
composition can be varied by solely intervening on the different
modes for interlocking the same set of neighboring rings.

Fig. 2 Computation of the local Gaussian curvature. The angle of the
triangular facet k (red area) at the central vertex i is yk(i). The contribution of

facet k to A(i) in eqn (5) is
1

8
dk;a

2 cot ak þ dk;b
2 cotbk

� �
if the red triangle is

acute or right. Instead, if the red triangle is obtuse, the contribution of facet
k to A(i) is Ak/2 if yk is obtuse, or Ak/4 if ak or bk are obtuse, where Ak is the
area of facet k.

Fig. 3 Typical equilibrium conformations of P1 and P2 chainmails with rings at 50% rigid-segment coverage. The rigid and flexible blocks are colored in
red and blue, respectively. The P1 chainmail is visibly bent in a saddle-like shape, while the P2 one is approximately flat. The rightmost panels are
schematic representations of the same chainmails where the beads correspond to the rings’ centers of mass (CoMs), and the bonds connect CoMs of
linked (neighboring) rings. The P1 and P2 conformations are not shown at the same scale.
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Further and more consequential differences emerge when
comparing shape data, illustrated in Fig. 4b in terms of the
ensemble-averaged eigenvalues of the gyration tensor. To dis-
count effects related to the noted different overall sizes of P1
and P2, the three averaged eigenvalues were normalized by the
mean squared gyration radius. The first noteworthy feature is
that the curves of the normalized eigenvalues are approximately
horizontal, i.e. independent of the rigid-segment coverage. Next,
the flat profiles of the two largest eigenvalues of P1 and P2 are
well-superposed and compatible within statistical errors. Sig-
nificant deviations are instead observed for the smallest eigen-
value, which is systematically smaller for P2, indicating that it
adopts flatter shapes than P1. Similarly to the Rg results, the
difference is largest for fully flexible rings and negligible for
rigid ones. We conclude that P2 is systematically flatter than P1.

The fact that the P1–P2 differences of both size and shape
are largest for fully flexible rings is a noteworthy result in itself
(see Fig. S5, ESI†). In fact, one could have anticipated that the
flexible rings, with their convoluted conformations, could

screen better than rigid ones the anisotropic steric interactions
resulting from the over- and under-passes of neighboring rings
and hence be less conducive to emergent large-scale conforma-
tional properties. The largest difference observed for fully-flexible
rings can be attributed to their smaller size compared to rigid
rings, which allows them to interlock more tightly, thereby
amplifying the effects of topological constraints. The conclusion
is supported by similar results observed in linear catenanes.34

A pertinent question related to the observations above is
how exactly the conformations of the rings depend on being
part of P1 or P2 membranes. Analogously to the case of linear
catenanes, this question is best addressed by comparing the
size of the mechanically-bonded rings with isolated ones and by
exploring the connection between the size of linked rings and
their distance31–34,36 To this end, we considered the average
mechanical bond length, defined as the average distance
between the centers of mass of pairs of linked rings. For such
an average, we considered all pairs except those with one or
both rings at the boundary.

Fig. 4 Metric properties of the system. (a) Gyration radius of the chainmails Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Rg

2
	 
q� �

at different compositions. (b) Square root of the eigenvalues

of the gyration tensor normalized by the Rg at the corresponding composition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li2h i



Rg
2

	 
q� �
. Normalization with Rg evidences the scaling effect of the

rigidity. (c) Rring
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

ring
g

� �2� �s
of single rings inside chainmails with P1 (purple dots) and P2 (green diamonds). The orange crosses corresponds to the

observed values for an isolated ring. (d) Mechanical bond length, b, versus ring gyration radius, Rring
g , for P1 and P2 patterns. Error bars represent statistical

uncertainty, calculated as half the difference between the average values of observables from the two collected trajectories, except for the Rg of isolated
rings, whose errors are computed with block analysis and bootstrapping, see S2 in the ESI.†
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The data are presented in Fig. 4c and d and provide several
indications. First, at all considered rigid-segment coverages, the
size of chainmailed rings, Rring

g , and the mechanical bond length,
b, are practically indistinguishable between P1 and P2. Second,
chaimailed rings are significantly larger than isolated ones. This is
consistent with previous results for one-dimensional (linear)
catenanes, where the steric interactions of mechanically-bonded
neighbors make concatenated rings larger than isolated ones.34

Finally, the two sizes b and Rring
g are proportional to each other.

The results reinforce the conclusion that the observed size
difference of P1 and P2 chainmails directly arises from the
different linking patterns, given that the size of the constitutive
rings and mechanical bond length is the same for P1 and P2 at
fixed ring composition. This fact implies that the two chainmail
types cannot be distinguished by measuring simple metric
properties locally, meaning at the scale of one or two rings.

The results of Fig. 4 establish that the overall size and shape
of the chainmails are emergent properties depending on their
linking pattern and ring composition, as exemplified by the
conformations in Fig. 3. Specifically, (i) the rigid/flexible block-
copolymer composition impacts primarily the overall size of the
chainmails and only secondarily its shape, while (ii) varying the
pattern of neighboring rings’ linking modes at fixed chainmail
connectivity has a limited but still discernible effect on size and
very pronounced impact on the shape, which can be selectively
varied from approximately flat to highly non-planar.

3.2. Co-localization of rigid vs. flexible regions of linked rings

A relevant question for our system of linked block-copolymer
rings is whether the flexible and rigid segments tend to segre-
gate or mix in the chainmail due to their steric interaction at the
mechanically bonded regions. This question arises naturally
considering conventional systems of block copolymers, where
effective repulsive interactions between segments of different
types cause the latter to segregate, forming ordered structures
such as cylindrical, lamellar, or spherical domains.67–69

To address this point, for each sampled conformation, we
first identified the contacting pairs of monomers in

neighboring rings, that is, the pairs of monomers belonging
to linked rings that are at a distance smaller than the inter-

action range of the WCA potential,
ffiffiffi
26
p

s. Next, each pair was
assigned to one of three mutually exclusive classes, depending on
whether the contacting monomers both belonged to rigid seg-
ments (rr), flexible segments (ff), or were in segments of different
stiffness (fr). By cumulating this information over the sampled
conformations, we obtained the probabilities of the contacting
pairs to be in the three classes, Prr, Pff and Pfr = 1 � Prr � Pff.

The profiles of the three probabilities are given in Fig. 5a–c
as a function of the rigid-segment coverage for both chainmail
types. The data show that the two limiting cases of membranes
made of fully rigid (Prr = 1) and fully flexible (Pff = 1) rings are
bridged by probability curves that are noticeably asymmetric with
respect to the 50–50 composition. The data reveal that rr contacts
are over-represented compared to the baselines obtained by mean-
field-like (MF) combinatorial considerations based on the fraction
of monomers in rigid segments, x, which yield PMF

ff = (1� x)2, PMF
fr =

2x(1 � x), and PMF
rr = x2, see dashed curves in Fig. 5.

This bias is evident when considering the 50–50 composi-
tion where the probability of rr contacts (Prr(50%) C 0.39) is not
equal to the value obtained in the flexible case (Pff(50%) C 0.14)
as in the mean-field estimate for the balanced case, but is
approximately threefold larger. Furthermore, when as much as
one-third of the rings’ contour is flexible, the probability of ff
contacts is only marginally higher than in the fully rigid ring case.

The robustness of the observed segregation tendency of rr
contacts was tested by adopting a different criterion for selecting
contacting monomer pairs. Specifically, for any two mechanically
bonded rings, we exclusively selected the two monomers (again,
one per ring) at the shortest distance. If the latter was smaller

than the contact cutoff distance,
ffiffiffi
26
p

s, then the pair was assigned
to the ff, rr or rf class as before. Otherwise, it was labeled as not in
contact. This alternative counting of contact interactions is an apt
complement of the one discussed before because a single pair of
monomers is considered for any two linked rings. The data,
shown in Fig. S8 of the ESI,† present a bias for rr contacts
analogous to that of Fig. 5. An interesting insight emerging from

Fig. 5 Ring composition and contacting regions of linked rings. Probability of establishing a contact between two monomers belonging to flexible
blocks (a), one belonging to a flexible and one belonging to a rigid block (b), and between two particles of rigid blocks (c). Results for P1 and P2 chainmails
are shown with purple dots and green diamonds, respectively. Continuous lines correspond to the parameterized curve (Pff, panel a) and predictions (Pfr

and Prr, panels b and c) of the model (eqn (7) with DF C 0.496kBT) while dashed lines show the predicted curves when there is no entropic gain/cost for
the different combinations of contacts (DF = 0). The error bars, calculated as half the difference between the average values of observables from the two
collected trajectories (see S2 in the ESI†), are smaller than the symbols.
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the alternative analysis is that, although the rings in P1 and P2
have about the same average size and mechanical bonding
distance, the fraction of selected pairs not in contact is larger
for P1 chainmails.

Based on these converging results and considering that non-
bonded monomers exclusively interact via a steric repulsion, we
conclude that contacts between flexible regions of mechanically
bonded rings are entropically disfavoured. This is arguably due
to linked rings having more wiggle room or conformational
freedom when they come into contact with their smooth, rigid
regions rather than the crumpled, flexible ones.

To estimate the entropic cost of bringing flexible regions in
contact, we fitted the probability data with a minimalistic model
that improves on the mean-field-like combinatorial argument by
introducing an excess free energy, DF, for each contacting
monomer belonging to a flexible segment rather than a rigid one,

PrrðxÞ ¼
x2

N
;

PfrðxÞ ¼
2xð1� xÞe�DF=kBT

N
;

PffðxÞ ¼
ð1� xÞ2e�2DF=kBT

N

(7)

where N ¼ xþ ð1� xÞe�DF=kBT
� �2

is the normalization factor.
Although the model of eqn (7) is crude, it can reproduce and

predict the observed data remarkably well. To show this, we
fixed the single free parameter by solely fitting the Pff data
(solid line in Fig. 5a), obtaining DF C 0.496kBT. Next, we used
the fixed DF parameter to obtain predictions for Pfr and Prr. The
resulting curves agree well with the observed contact probabil-
ities, see solid curves in panels b and c, respectively.

The inferred DF value is comparable to the thermal energy,
which is not surprising considering the entropic origin of the
observed bias for rr contacts. At the same time, because the
contour length of the regions establishing the interlockings
does not scale linearly with the ring’s contour length,39,70 we
expect that the magnitude of the rr entropic segregation could
significantly vary with the length of the rings, which could thus
be a relevant design parameter for tuning chainmail properties.

3.3. Gaussian curvature

Taking into account the qualitatively different shapes of the
representative P1 and P2 conformers in Fig. 3, we systematically
analyzed the Gaussian curvature, KG, of P1 and P2 chainmails
both locally and globally. A further motivation for this analysis
is to compare our honeycomb chainmails with previous results
based on different architectures.56 For such systems, it was
consistently observed that the membranes invariably acquired
a cup-like shape, i.e. a spontaneous positive Gaussian curva-
ture, independently of the lattice shape or the thickness of the
rigid constitutive rings.56

Fig. 6 presents the average global Gaussian curvature, %KG, for
various ring compositions of the two types of membranes. The plot
reveals that both P1 and P2 have a negative spontaneous curvature.
At any given composition, the two membrane types are clearly

distinguished by the magnitude of %KG, whose modulus is at least
fivefold larger for P1 than for P2. Because negative Gaussian
curvatures are associated with saddle-like shapes, one has that
saddles such as the one of Fig. 3 are indeed typical for P1, and that
P2 conformers, while appearing overall flat, are slightly concave–
convex, too. In addition, %KG becomes significantly more negative as
the length of the flexible segment increases. A two-fold increase of
| %KG| for P1 is observed going from fully rigid to fully flexible rings,
a point further discussed later.

The observed negative curvature is remarkable considering
that, to our knowledge, only positive Gaussian curvatures have
been reported before for chainmails, constructed starting from
square and triangular architectures.56 Here, the systematic
emergence of negative %KG – irrespective of the linking pattern
(P1/P2) and ring composition – gives a strong indication that
the honeycomb lattice connectivity is conducive to saddle-like
shapes. This predisposition can be very strongly modulated by
the modes that neighboring rings are linked with one another
and, to a comparable but lesser extent, by the ring composition.

For a more detailed insight into the emergence and persis-
tence of saddle-shaped conformations, we analyzed KG at the
local level. To do so, we considered the longest trajectory and,
for each sampled conformation, we first computed the instan-
taneous value of KG in the neighborhood of each ring. Then we
calculated the time-averaged value of the local curvatures, and
reported them as heatmaps on a regular (flattened) representa-
tion of the underlying honeycomb lattice.

The resulting heatmaps for the case of fully flexible rings,
where |KG| is largest, are shown in the leftmost column of
Fig. 7. The time-averaged heatmap of P1 is biased towards
negative KG values, characteristic of saddle-like states. On the
contrary, the time-averaged heatmap of the P2 membrane of
fully flexible rings displays no significant negative curvature
pattern but smaller domains with both signs of KG.

We repeated the curvature analysis for the average chain-
mail structure to better interpret the time-averaged heatmaps.

Fig. 6 Average Gaussian curvature of the membranes for both linking
patterns. P2 membranes have a | %KG| an order of magnitude smaller than P1
membranes. In both cases | %KG| decreases with the overall ring rigidity. Error
bars represent statistical uncertainty, calculated as half the difference
between the average values of observables from the two collected
trajectories, see S2 in the ESI.†
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This structure was obtained with a structural alignment of all
configurations (snapshots) sampled in the trajectory. To this
end, we employed the Kabsch optimal roto-translation71 to
align the centers of mass of each conformer with those of a
reference one. The reference configuration was selected as the
conformer with the smallest average root-mean-square devia-
tion from all other snapshots in the trajectory. The resulting P1
and P2 average structures are shown in the right panel of Fig. 7,
where the beads correspond to the centers of mass of the rings
and are colored according to their local KG values, using the
same color scheme of the accompanying heatmaps.

On the one hand, the average structures provide an intui-
tively interpretable counterpart of the KG heatmaps, evidencing
the negative KG regions of the P1 saddle and the localized KG

domains of the slight P2 undulations. On the other hand, the
fact that the heatmaps of the time-averaged curvatures closely
resemble those of the KG computed for the average structure
implies that the observed curvature patterns are very persistent
in time and correlated over timescales exceeding the duration
of the simulations. We recall that the latter is several-fold larger
than the autocorrelation time of the gyration radius (Fig. S2 in
the ESI†), which is thus amply surpassed by the long lifetimes
of the observed curvature patterns. The latter eventually ought
to switch between the different states compatible with the
chainmail symmetry; consistent with this, symmetry-related
patterns are observed in different trajectories (Fig. S11 in the
ESI†).

3.4. Ring composition: effect on KG magnitude and istotropic
rescaling

The spontaneous curvature results discussed in Fig. 7 for
membranes with fully flexible rings are consistently observed
across the considered ring compositions, albeit to a diminish-
ing degree as the rigid-segment coverage grows larger.
This conclusion emerges from the series of heatmaps in

Fig. 8. The images also illustrate the point noted above that
the conformational ensemble of the chainmails comprises
states related by the discrete symmetries of the chainmails,
which depend on the symmetry of the connectivity network, the
pattern of linking modes, and the shape of the finite chain-
mails. Indeed, the principal axes of the various P1 heatmaps
can be aligned along one of three possible symmetry axes.

The combined effect of ring composition and ring linking
modes on the Gaussian curvature is recapitulated in Fig. 9,
which presents the cumulative distribution function (CDF) of
the local curvatures of P1 and P2 chainmails sampled across an
entire trajectory. The P1 and P2 CDFs of panel (a) correspond to
the case of fully flexible rings. The P1 curve is shifted to the left,
i.e., skewed towards more negative values, consistently with the
larger value of the average curvature reported above. Instead,
the effect of ring composition is shown in the top panels of
Fig. 9b and c. For both P1 and P2, the sigmoidal CDF curves
cross approximately at the same point, although with different
slopes, indicative of sharper KG distributions for higher rigid-
segment coverage. The median KG values, corresponding to
CDF equal to 0.5, are shifted towards more negative values as
the rigid-segment coverage diminishes, again consistent with
the previous conclusions based on Fig. 6.

3.4.1. Ring composition and isotropic size rescaling. As we
noted in connection to Fig. 4b, the normalized eigenvalues of
the average gyration tensor of P1 appear to be constant across
the considered ring compositions. The same property holds for
the top two eigenvalues of P2, with the third, smallest one,
varying by no more than 30%. These results suggest that the
conformational ensemble of the chainmails is largely self-
similar, meaning that the P1 or P2 average gyration tensors
for different compositions differ primarily by an isotropic scale
factor.

To more directly ascertain the size rescaling effect, we
investigated whether the probability distributions of the local

Fig. 7 Local Gaussian curvature, KG, computed for the 2.5� 105t trajectories of P1 (top row) and P2 (bottom row) chainmails with fully-flexible rings. The
leftmost column shows the heatmaps of the local values of KG averaged over the trajectories. The central column shows the KG heatmap of the average
P1 and P2 structures. Top and side views of the latter are shown on the right, each bead representing the center of mass of one ring. The beads are color-
coded based on the corresponding local KG values.
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Gaussian curvature at different rigid-segment coverage are
consistent with a simple isotropic size rescaling of the mem-
branes. To this end, we consider the affine transformation of a
membrane corresponding to multiplying the Cartesian coordi-
nates of all the nodes by the same scale factor, q. Based on the
Gaussian curvature definition, the local Gaussian curvatures of
corresponding points on the original and isotropically rescaled
membrane satisfy K̃G/KG = q�2, where the B superscript refers
to the transformed membrane.

Accordingly, we took for reference the KG cumulative dis-
tribution of the fully flexible rings case and asked whether the
CDFs for any other rigid-segment coverage could be collapsed

on it by rescaling the argument, i.e., the x axis of the plots in
Fig. 9b and c, by a suitable multiplicative factor, q�2, corres-
ponding to rescaling by q the coordinates of the conformational
ensemble of the membranes.

Using a best-fit procedure to superpose the CDFs yields the
curves in the bottom panels b and c for types P1 and P2,
respectively. The collapse of the curves for all ring compositions
is noticeably good, particularly for the P1 chainmail type.

It is interesting to consider the real-space scaling factors, q,
inferred from the best fit. The data, given in Fig. 9d, indicate
that q has a general increasing trend with the length of the rigid
block. Pleasingly, the reported values of q are comparable with

Fig. 8 Heatmaps of the local values of KG averaged over the 2.5 � 105t trajectories for P1 (top row) and P2 (bottom row) chaimails for the indicated ring
compositions. The magnitude of KG reduces with the increasing size of the rigid segment.

Fig. 9 Cumulative distribution function (CDF) of the local Gaussian curvature KG. (a) CDFs of P1 and P2 membranes with fully flexible rings, computed for
the 2.5 � 105t trajectories. The effect of varying the rigid-segment coverage for the CDF of P1 and P2 chainmails are respectively shown in the top (b) and
(c) panels. The bottom panels show that the same CDF curves can be superposed with a suitable isotropic length rescaling of chainmails. The optimal
isotropic scaling factors yielding the shown superpositions are given in panel (d). The error bars span the values of q that provide a quadratic error under
5% relative to the peak of the reference distribution.
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the ratios of other characteristic lengthscales, such as the chain-
mail gyration radius and mechanical bond length. For instance,
the CDF[KG] curves for fully rigid and fully-flexible rings are
optimally superposed for q equal to 1.26 (P1) and 1.14 (P2),
which are not dissimilar from the corresponding ratios of Rg, 1.39
(P1) and 1.29 (P2), and of b, 1.44 (both P1 and P2) in Fig. 4.

Overall, the above results support the notion that the
composition of the rings primarily defines the overall size of
the chainmails, not their shape, which can dramatically vary
with the pattern of ring linking modes. Our preliminary calcu-
lations indicate that this property is preserved as system size
increases. This emerges from additional simulations for P1
chainmails where we increased the number of constitutive
rings from 68 to 100. The results, which are presented in
Fig. S12 in the ESI,† suggest that the shape equivalence under
isotropic rescaling can hold not only across different ring
rigidities, but across chainmail sizes, too. This preliminary
result thus reinforces the notion that the membrane properties
studied here ought to be robustly preserved as system size
increases, consistent with results for other models of mechani-
cally bonded membranes. Additionally, It would be interesting
to explore the effect of varying the length of the constitutive
rings to ascertain if it could have global implications beyond
the expected impact on chainmail size.

4. Conclusions

We considered two-dimensional chainmails of interlocked ring
polymers and used Langevin dynamics simulations to study the
effects of ring composition and chainmail topology on the
equilibrium conformations. We considered two chainmail types,
P1 and P2, with the same honeycomb architecture but different
local patterns of over- and under-crossings of the linked rings; the
latter were modeled as diblock copolymers made of rigid and
flexible segments at five different relative compositions.

By examining various local and global metric observables,
we found that ring composition and linking patterns affect
chainmails in different and complementary ways. Specifically,
while the former primarily sets the overall size of the chainmail,
the latter defines the shape.

The P1 chainmail, where all rings have the same linking
pattern, innately adopts saddle-like shapes characterized by
negative Gaussian curvatures both locally and globally. Instead,
the P2 chainmail, where the above pattern is interrupted by
regularly spaced rows of differently linked rings, is flat. The
imprinting of the linking topology is so strong that the above
shapes emerge systematically throughout the considered range
of block copolymer compositions, from fully rigid to fully
flexible. Remarkably, the repercussions of the lattice topology
on the conformations of the membranes are more prominent
when the rings are more flexible, as seen both in the global
metric properties and in the curvature patterns.

In line with this result, we found that the conformational
ensembles of chainmails with the same linking pattern but
different ring compositions can be superposed with an affine

transformation corresponding to a uniform rescaling. The
composition-dependent scaling factor is defined by the char-
acteristic gyration radius of the individual rings or, equiva-
lently, by the mechanical bond length.

While it is intuitively plausible that varying ring composition
can modulate the chainmail’s overall size via the linked rings’
size and distances, the shape equivalence under isotropic
rescaling is a noteworthy and non-intuitive result. For instance,
because flexible rings have a smaller metric footprint and are
more convoluted than rigid ones, one could have surmised that
the interface regions of linked flexible rings would be intricate,
preventing the details of the linking pattern from reverberating
globally. It is thus surprising that such topological screening is
not observed and that average structures of chainmails with
fully rigid and fully flexible rings can be superposed by iso-
tropic rescaling. At the same time, ring composition does have
implications for the microscopic organization of the chain-
mails and precisely for type of blocks preferentially co-opted at
the interlocked regions. In fact, we observed that rigid blocks
are systematically over-represented over flexible ones.

The above results have several implications worthy of future
investigations. Primarily, they establish that at least one linking
pattern can yield conformations with negative Gaussian curvature.
This class of shapes, which has not been reported before for
chainmails, is relevant in supramolecular synthetic chemistry.72,73

Our results show that by extending considerations to metamater-
ials based on mechanical bonding, the saddle shape can be
achieved with an entirely new design principle, namely by control-
ling the local linking patterns. The observed robustness of the
shape-conditioning effect of the linking pattern suggests that
chainmail architectures other than the honeycomb one could yield
saddle-shaped membranes, too. In this regard, we note the parallel
work by Klotz et al.,74 which we became aware of after completing
this study’s manuscript, that reported negative Gaussian curvature
for chainmails with different network connectivity than we con-
sidered. The convergence of our study and the one of ref. 74
supports the broader relevance of negative Gaussian curvature in
chainmails and motivates the systematic search for the network
topologies where it can spontaneously emerge. Next, the shape
equivalence – up to an overall scale factor – of chainmails of
different ring compositions indicates that the latter could be a
relevant tunable parameter for designing chainmails according to
given size specifications. It would also be appealing to co-opt and
generalize analysis methods developed for networks of linked
polymers75–77 to formulate free-energy-based arguments to predict
the Gaussian curvature of chainmails as well as their elastic
properties for different ring composition and linking patterns.

In addition to the above considerations, there are several
additional elements related to the interplay of ring composition
and linking topology that would be worthy of future investiga-
tion, including aspects pertinent to biological systems such as
kinetoplasts. For instance, while here we focused on rings with
different flexibility and no intrinsic bending, one could extend
considerations to circular polymers with intrinsic curvature,
which can be relevant for DNA rings. Furthermore, it would be
interesting to relax the constraint of homogeneity and isotropy of
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the linking network; membranes composed of rings with poly-
dispersed lengths and with linking defects would arguably be
closer to prospective experimental realizations of mechanically-
bonded membranes. Such applicative avenues might involve
using molecular weaving techniques78 and molecular constructs
with rigidities tunable via external conditions, such as the pH or
the ionic strength of the solution.

In conclusion, we have introduced a set of topological and
composition features that lead to a rich phenomenology of
membrane conformations at different scales, where simple ratio-
nalizing rules emerge despite the complexity of the system. Given
the wide possibilities in which the basic ingredients can be
combined, we expect many novel scenarios to be uncovered upon
systematically exploring the physics of this setup, advancing the
rational design of mechanically bonded meta-materials.
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59 C. Roldán-Piñero, J. Luengo-Márquez, S. Assenza and
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