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Enhancing nanoscale viscoelasticity
characterization in bimodal atomic force
microscopy†

Casey Erin Adam,a Alba Rosa Piacenti,a Sarah L. Watersb and Sonia Contera *a

Polymeric, soft, and biological materials exhibit viscoelasticity, which is a time dependent mechanical

response to deformation. Material viscoelasticity emerges from the movement of a material’s constituent

molecules at the nano- and microscale in response to applied deformation. Therefore, viscoelastic

properties depend on the speed at which a material is deformed. Recent technological advances,

especially in atomic force microscopy (AFM), have provided tools to measure and map material

viscoelasticity with nanoscale resolution. However, to obtain additional information about the viscoelastic

behavior of a material from such measurements, theoretical grounding during data analysis is required. For

example, commercially available bimodal AFM imaging maps two different viscoelastic properties of a

sample, the storage modulus, E0, and loss tangent, tan d, with each property being measured by a different

resonance frequency of the AFM cantilever. While such techniques provide high resolution maps of E0 and

tan d, the different measurement frequencies make it difficult to calculate key viscoelastic properties of the

sample such as: the model of viscoelasticity that describes the sample, the loss modulus, E00, at either

frequency, elasticity E, viscosity Z, and characteristic response times t. To overcome this difficulty, we

present a new data analysis procedure derived from linear viscoelasticity theory. This procedure is applied

and validated by performing amplitude modulation–frequency modulation (AM–FM) AFM, a commercially

available bimodal imaging technique, on a styrene–butadiene rubber (SBR) with known mechanical beha-

vior. The new analysis procedure correctly identified the type of viscoelasticity exhibited by the SBR and

accurately calculated SBR E, Z, and t, providing a useful means of enhancing the amount of information

gained about a sample’s nanoscale viscoelastic properties from bimodal AFM measurements. Additionally,

being derived from fundamental models of linear viscoelasticity, the procedure can be employed for any

technique where different viscoelastic properties are measured at different and discrete frequencies with

applied deformations in the linear viscoelastic regime of a sample.

1 Introduction

The mechanical properties of soft and polymeric materials
underpin material function and application.1,2 Most soft mate-
rials, from biological structures to rubbers, are considered to be
viscoelastic, meaning they respond to externally applied defor-
mations with time delays, t, that emerge from a combination of
both elastic (with elasticity E, Pa) and viscous (with dynamic
viscosity Z, Pa s) behavior.1,2 Material properties E, Z, and t arise
from nanoscale interactions between polymers and other

molecules within the material when a stimulus is applied.1,2

Each constituent molecule of the material, and each conforma-
tion of the constituent molecules, potentially contributes a
unique E, Z, and t to the material’s viscoelastic response across
temporal and spatial scales.1–6 Quantifying E, Z, and t of a
material, especially at the nanoscale, provides insight into how
polymers interact within a material, and how the material
functions.1–5

Often, viscoelasticity is measured by dynamic experiments,
which quantify the complex modulus E* of a material.1,2 E*
contains a storage component E0, called the storage modulus,
and a dissipative/loss component E00, called the loss modulus.1,2

E0 (Pa) measures the contribution of the sample’s response that
is in-phase with the applied stimulus, and represents energy
stored by the sample per unit volume.1,4,5,7 E00 (Pa) measures the
out-of-phase component of the sample’s response, and quanti-
fies the energy per unit volume dissipated by the sample during
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mechanical stimulus.1,4,5,7 The ratio between both quantities,
tan d = E00/E0, is a measure of mechanical damping by the
material.7 Both E0 and E00 are functions of material E and Z,
and t, as well as the frequency at which the material is
deformed.1,2 The exact relation between E0, E00, tan d, and E, Z,
t depends on a model of viscoelasticity specific to the material.1,2

One of the most widely used models of viscoelasticity is the
General Maxwell Model (GMM).1,5,6,8 The GMM assumes that a
material exhibits linear viscoelasticity, where all E and Z are
constants independent of the applied stimulus.1,5,8 As shown in
Fig. S1 (ESI†), the GMM is often represented as a spring with
elastic constant Ec connected in parallel with N arms that each
consist of a spring with elastic constant En and damper with
dynamic viscosity Zn connected in series.1,5,8 Here, subscript n
represents the nth arm of the material. Each arm has a unique
relaxation timescale tn = Zn/En and creep timescale tc = Zn/Ec.1,5,8

Subscript c denotes that a spring contributes to the creep
timescale. The simplest GMM contains N = 1 arms, thereby
three material constants: Ec, Er, and Z, two timescales: tc = Z/Ec

and tr = Z/Er, and is called the standard linear solid (SLS).1,5,8

Since N = 1 for the SLS, the subscript r denotes that the spring
in arm 1 is the only spring that contributes to the relaxation
timescale of the SLS. The GMM is several SLSs connected in
parallel.1,8 Special cases of the SLS are the Maxwell (MW) and
Kelvin–Voigt (KV) models.1,8 For the MW model, Ec - 0 and the
material has two constants: Er, and Z.4 MW materials have only
one relaxation timescale, tr = Z/Er.

1,5,8 For the KV model, Er -

N and the material has two constants: Ec, and Z.1,5,8 KV
materials have only one creep timescale, tc = Z/Ec.1,5,8 Experi-
mentally, it is often not possible to measure all N arms of a
GMM’s response because N can be large, unless the material
obeys the SLS, MW, or KV models.9–13

Often, the model to describe a sample’s viscoelastic
response, as well as the relevant material constants, are calcu-
lated from experimental measurements, and not measured
directly.1,2 For example, dynamic experiments, where an oscil-
latory stimulus is applied to a sample, are used to quantify E0,
E00, and tan d, of a sample.1,2 The model, and the relevant model
parameters (E, Z, t) to describe the material’s response are then
determined from these dynamic quantities.1,2 Several experi-
mental techniques exist to perform dynamic measurements.
One widely used technique for macroscale measurements is
dynamic mechanical analysis (mDMA), which applies an oscil-
lating axial or torsional stimulus to a sample.2,14 For measure-
ments at the nanoscale, atomic force microscopy (AFM) is a
particularly useful tool because AFM can probe a sample with
nanometer resolution, can be performed in liquid, does not
require sample processing, and has higher resolution and more
localized control than other techniques such as optical and
magnetic tweezers.15,16 Additionally, cutting edge developments
in AFM allow more sophisticated dynamic measurements to be
performed. For example, novel AFM developments use photo-
thermal excitation of a cantilever to perform nanoscale dynamic
mechanical analysis (nDMA) to measure E0, E00, and tan d over a
continuous range of frequencies that covers several orders of
magnitude.14,17 Additionally, bimodal imaging techniques such

as amplitude modulation–frequency modulation AFM (AM–FM
AFM) exploit cantilever resonances to obtain high resolution
quantitative maps (images) of a sample’s nanoscale mechanical
properties.15,18–28 Bimodal imaging is particularly convenient
because sample indentations are small, typically only a few
nanometers,19 allowing measurement of thinner samples, and
increasing measurement spatial resolution.19 Additionally due to
the small indentations,19 it is reasonable to assume that samples
are measured in their linear viscoelastic regime.5

In bimodal AFM, the surface of a sample is intermittently
tapped via a tip connected to a cantilever that is oscillated
at two of the cantilever’s eigenmodes.18,19,25 At the lower
frequency eigenmode, with frequency f 1 and angular frequency
o1 = 2p f 1, the cantilever has stiffness k1, and the resonance
peak at f 1 has quality factor Q1.18,19,25 The cantilever’s vibration
at the first mode has amplitude Ar,1 far from the sample,
amplitude A1 on the sample, and phase f1.18,19,25 Similarly,
the oscillation at the higher frequency eigenmode has fre-
quency f 2, angular frequency o2 = 2p f 2, stiffness k2, quality
factor Q2, amplitude Ar,2 far from the sample, amplitude A2 on
the sample, and phase f2.18,19,25 These properties of the
cantilever (k, Q, f ) and bimodal oscillation (Ar, A, f) can be
used to calculate viscoelastic properties of a sample as detailed
in Section S4 (ESI†).18,26–28 Briefly, each eigenmode is subjected
to various types of feedback, depending on the bimodal ima-
ging technique.18 The lower eigenmode is typically subjected to
amplitude modulation, which allows calculation of a sample’s
tan d1 (subscript 1 indicates that tan d is measured at f 1) from
power dissipated and stored by the cantilever (see note S4.1,
ESI†).26,27 The higher eigenmode, with frequency f 2 and angu-
lar frequency o2 = 2p f 2, is subjected to various types of

modulation, and allows calculation of a sample’s E
0
2 (subscript

2 indicates that E0 is measured at f 2) from the frequency shift of
the second eigenmode caused by tip/sample interaction forces
(details in Section S4.1, ESI†).18,28 The most common form of
bimodal AFM applies amplitude modulation to the first mode,
frequency modulation to the second, and is referred to as ampli-
tude modulation–frequency modulation AFM (AM–FM AFM).18

In order to calculate E
0
2 in bimodal AFM, knowledge of the tip/

sample interaction geometry is required.18,28 In most cases, the
Hertz contact model is applied.18,28 The Hertz model assumes
that both the indenter and sample are spherical, homogeneous,
elastic materials, and that no adhesion is present between the

indenter and sample.5 Therefore, the calculated E
0
2 can be incor-

rect for samples with an adhesive contact.5 More details on the

calculation of tand1 and E
0
2 are provided in Section S4.1 (ESI†).

Additionally, the fact that E
0
2 and tand1 are characterized only at

two discrete and different frequencies in bimodal imaging means
that the full sample response remains unknown without addi-
tional data processing. Since bimodal AFM was developed to

accurately quantify tand1 and E
0
2 from the cantilever’s

motion,18,26–28 less emphasis has been placed on extracting addi-
tional information about the sample’s viscoelastic response. This
article describes how additional information about the viscoelas-

tic behavior of a sample can be obtained from tand1 and E
0
2.
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Bimodal AFM does not directly quantify a sample’s loss
modulus E00, nor material constants such as t, Ec, Er, and Z.
Quantification of E00 and material constants from bimodal

AFM’s tan d1 and E
0
2 is not straightforward because tan d

and E00 depend on the frequency of the applied stimulus

(per the formulas in Table S1, ESI†). Therefore, tan d1 and E
0
2

cannot be directly combined to calculate a sample’s E00 and
material constants. To circumvent this issue, it is typically
assumed that the sample is a KV material, for which E0 is
independent of frequency.24 Under this assumption, E00 and
material constants Ec, Z, and tc can be calculated from the

measured tan d1 and E
0
2 as follows.24 In the following equations,

numbers in subscripts indicate the eigenmode to which the
quantity corresponds.24

Ec ¼ E
0
2 ¼ E0 (1)

E
00
1 ¼ tan d1E0 (2)

Z ¼ tan d1E0

o1
(3)

tc ¼
Z
Ec

(4)

This approach has two main issues. First, assuming that the
sample is a KV material may be incorrect, since the model of
viscoelasticity that best applies to a sample is not immediately

apparent29 from E
0
2 and tan d1. Second, for samples that exhibit

relaxation such as MW materials, SLSs, or GMMs, assuming
that the sample is a KV material prevents quantification of the
sample’s relaxation time(s). Therefore, a new method of analyz-
ing bimodal AFM data is needed.

This article describes the development and validation of a
bimodal AFM data analysis procedure to extract additional
information about sample viscoelasticity. This additional infor-
mation includes the linear viscoelastic model that describes a
sample and estimates of model parameters, which represent
ensemble averages for the sample. The new analysis procedure

first uses measured tan d1 and E
0
2 to determine the best model of

linear viscoelasticity to describe a sample. Only models of linear
viscoelasticity are considered in this analysis, due to the fact that
bimodal AFM indentations are small,19 and therefore likely in
the linear viscoelastic regime of a sample. Once the model is
determined from the model test, the sample’s viscoelastic mate-
rial constants are calculated from model test parameters. Finally,
applying the selected model and calculated material constants
allows reconstruction of the sample’s E0( f ), E00( f ), and tan d( f ).
In this article, the analysis procedure is derived first, then
validated on AM–FM AFM measurements of a styrene–butadiene
rubber (SBR) with known viscoelastic properties.

This article also addresses another potential issue in bimo-

dal AFM experiments in the calculation of E
0
2. As detailed in

Section S4.1 (ESI†), calculation of E
0
2 in bimodal AFM requires

knowledge of tip geometry, in particular the tip radius, R.18

Typically, R is determined via calibration on a sample of known

E
0
2.19 For this calibration, the user manually enters R in the

software so the measured E
0
2 matches the expected E

0
2 of the

calibration sample.19 Calibration of R can also indicate whether
the Hertz contact model on which bimodal AFM’s calculation of

E
0
2 is based,18,28 is a good model for the tip/sample interaction.19

When it is not possible to obtain the expected E
0
2 by calibrating

R, it is a sign that the contact may be adhesive, and therefore that
the Hertz model inadequately describes the contact geometry.19

In spite of the benefits of calibrating R, it is sometimes
difficult to determine the best calibration sample for materials
with multiple components. Additionally, calibration can damage
or blunt the tip, changing R, before bimodal AFM is performed
on the actual sample. Therefore, it would be convenient to skip
calibration of R while still being able to correctly quantify

material E
0
2. The feasibility of doing so is assessed in this article.

2 Development of a novel analysis
procedure for bimodal AFM data

It is not trivial to calculate the material constants of a sample

(such as t, Ec, Er, and Z) from bimodal AFM observables (E
0
2 and

tand1) because both E0 and tand are frequency dependent. To
overcome this difficulty, a new bimodal AFM analysis procedure is
derived in this section. The procedure uses the measured tand1

and E
0
2 to determine which model of viscoelasticity a sample

obeys (Section 2.1), calculate the relevant material constants of the
sample (Section 2.2), and use these material constants to recon-
struct E0( f ), E00( f ), and tand( f ) of the sample over a large
frequency range (Section 2.3).

2.1 Determining the viscoelastic model that describes a
sample

The first step in the new bimodal AFM data analysis procedure is
to determine which model of viscoelasticity applies. It is reason-
able to assume that samples exhibit linear viscoelasticity during
a bimodal AFM experiment because sample deformations during
bimodal imaging are small, typically only a few nanometers,19

and are therefore likely in the sample’s linear viscoelastic
regime.5 Therefore, only standard models of linear viscoelasti-
city: the MW, KV, SLS, and GMM are considered here.

A test to determine whether a sample is a MW, KV, or SLS
material can be derived from the following expressions for E0,
E00, and tan d of the SLS.1,5,8

E0 ¼ Ec þ
ErZ2o2

Er
2 þ Z2o2

(5)

E00 ¼ Er
2Zo

Er
2 þ Z2o2

(6)

tan d ¼ E00

E0
¼ Er

2Zo
Ec þ Erð ÞZ2o2 þ Er

2Ec
(7)

Note that, for the SLS, E0 is a function of E00.

E0 = Ec + troE00 (8)
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Eqn (7) can be rewritten in terms of tc = Z/Ec and tr = Z/Er as
follows.

1

tan d
¼ o

tc
tr2 þ trtc þ

1

o2

� �
(9)

The ratio of tan d measured at two different frequencies, such
as the first and second eigenmode of the cantilever, can there-
fore be calculated as follows.

tan d2
tan d1

¼ o1

o2

tr2 þ trtc þ
1

o1
2

tr2 þ trtc þ
1

o2
2

2
664

3
775 (10)

Next, eqn (8) can be re-written in terms of tan d by dividing
both sides of the equation by E0 and rearranging terms.

tan d ¼ 1

otr
1� Ec

E0

� �
(11)

Bimodal AFM measures E0 at the second eigenmode, so
eqn (11) can be solved for tan d2, then substituted into eqn (10).

1

tan d1
¼ Ec

E
0
2 tan d1

þ o1tr
tr2 þ trtc þ

1

o1
2

tr2 þ trtc þ
1

o2
2

2
664

3
775 (12)

Therefore, a plot of y = tan d1
�1 against x ¼ E

0
2 tan d1

� ��1
should

be linear, with a slope m = Ec and a y-intercept b dictated by
material tr and tc, if the material is a SLS.

For a MW material, Ec E 0 and tc - N. Substituting these
conditions into eqn (12) gives m = 0. Additionally, since tc c tr

and tc c o1 or 2
�2, the intercept, b, can be approximated as

follows.

b = o1tr (13)

Therefore, eqn (12) simplifies to the following.

1

tan d1
¼ o1tr (14)

A graph of y = tan d1
�1 against x ¼ E

0
2 tan d1

� ��1
(eqn (12)) will

be a horizontal straight line for a MW material.
For a KV material, Er E N and tr E 0. Substituting these

conditions into eqn (12), m is the same as that for the SLS, but b
= 0. Eqn (12) simplifies to the following.

1

tan d1
¼ Ec

E
0
2 tan d1

(15)

The plot of y = tan d1
�1 against x ¼ E

0
2 tan d1

� ��1
will be a

straight line through the origin for a KV material.
In summary, if a plot of bimodal AFM observables tan d1

�1

vs. E
0
2 tan d1

� ��1
is linear, the sample can be modeled as a SLS,

MW, or KV material. It remains unclear whether the plot will
also be linear for a GMM, which will be assessed in the
following section. Goodness of fit metrics, such as the R2 value,
for linear fits to bimodal AFM data can determine if one
of these three models describes the sample. The slope and

y-intercept of the fit can then be used to distinguish between
each model.

2.1.1 Extension to a GMM. The model test line (eqn (12))
could also work for a GMM, assuming it is possible to approx-
imate the GMM as an SLS. Such an approximation is reasonable
in certain cases, since the GMM consists of N SLSs connected in
parallel, each with a unique elastic constant En, viscous con-
stant Zn and time response tn (details in Section S1, ESI†).

For most GMM materials, the total number of arms in the
GMM, N, is large. However, the distribution of the N different tn

typically only has a few peaks, with values at different orders of
magnitude (i.e. tn = ns, ms, ms, s, min, etc. . .).9–13 Depending on
the excitation stimulus, some peaks (subgroups) in the distri-
bution of tn will contribute more to the sample’s response than
others. Arms that contribute most to the material’s response to
a dynamic stimulus of frequency f have tn on the order of 1/ f ,29

because arms with larger tn respond too slowly to contribute
much to the material’s response, and arms with faster tn only
contribute briefly to the material’s initial response to the
stimulus, leaving arms with tn E 1/ f to dominate the majority
of the response. For example, a material’s response to a
dynamic stimulus with a frequency in the kHz range, like that
applied by bimodal AFM, is more likely to be dominated by
GMM arms with tn on the order of ms–ms.29

Assuming that bimodal AFM only excites one subgroup of
GMM arms that have similar tn, the subgroup could be
approximated as a single SLS, likely with a large standard
deviation in Ec, Er, and Z due to the variety of arms contributing
to this approximation. In other words, the model test line in
eqn (12) could still be fitted to bimodal data from a GMM.
However, because the governing equations of the GMM and SLS
are different, the slope and y-intercept of the GMM model test
line (eqn (12)) are not the same as that for the SLS, as follows.

While the line in eqn (12) could still be fit to bimodal
measurements of a GMM, it is not possible to directly relate
Ec or other material parameters to the slope, mGM, and y-
intercept, bGM, of this line because there are too few AFM
observables and too many unknowns, even if only a subgroup

of GMM arms is excited. The unknowns include: E
0
1, tan d2, E

00
1 ,

E
00
2 , Ec, the number of arms N (for the material as a whole or for

the subgroup of arms), and the N different En and Zn. However,
it is possible to use mGM and bGM to obtain bounds for the
GMM’s Ec, as detailed in Section S6 (ESI†). Briefly, algebraic
manipulations (see Section S6, ESI†) of the expressions for E0

and tan d of a GMM (Section S1 and Table S1, ESI†) result in the
following expression.

Ec

E
0
2

o 1� tan d1bGM �
mGM

E
0
2

þ Ec

E
0
1

(16)

Here, numbers in subscript indicate the eigenmode. The only

unknowns in eqn (16) are Ec and E
00
1 . For a GMM (see formulas

in Table S1, ESI†), 0 o Ec/E0 r 1. These limits can be

substituted into eqn (16) to obtain a more Ec

�
E
0
1 ¼ 0

� �
or less

Ec

�
E
0
1 ¼ 1

� �
restrictive bound on Ec. Assuming that Ec is close

to the bound on Ec allows the value of Ec to be approximated
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from these bounds. The more restrictive bound results in
eqn (17).

Ec � E
0
2 1� tan d1bGMð Þ �mGM (17)

The less restrictive bound results in eqn (18).

Ec � E
0
2 2� tan d1bGMð Þ �mGM (18)

Since the value of Ec is estimated by setting Ec equal to Ec’s
bound, the most restrictive estimate of the bound (eqn (17))
should be used when possible to avoid inadvertently over-
estimating Ec. Should nonphysical, for example negative, values
of Ec arise from applying eqn (17), then eqn (18) should be used
instead. A detailed derivation and discussion of these points
can be found in Section S6 (ESI†).

To estimate Ec of a GMM for this article, it is assumed that
the value of Ec is approximately equal to this upper bound.
Therefore, this method has the potential to overestimate the
value of a GMM’s Ec in samples where this assumption does not
hold. Before applying this method, the reliability of calculating
Ec via this assumption, and compared to treating the sample
solely as a SLS must be assessed (see Table 1).

2.2 Solving for material constants from bimodal AFM data

Note that, if the sample is a KV material, all material constants
(tc, Z, Ec) can be calculated for each point in the bimodal AFM
map via eqn (1)–(4). Therefore, the calculations in this section
are to determine ensemble average material properties (tc, tr, Z,
Ec, Er) of MW, SLS, and GMM materials.

For materials obeying the GMM, there are too few knowns to
calculate all material constants. Since only Ec (via eqn (12) for
SLS or MW materials or via eqn (17) or (18) for GMM materials),

tan d1 (via bimodal AFM measurements), and E
0
2 (via bimodal

AFM measurements) are known, it is not possible to calculate
the number of arms N in the material, nor all N values of En, Zn,
and tn. Therefore, to estimate properties of a sample obeying
the GMM, it is necessary to again assume that the subgroup of
GMM arms contributing most to the sample’s response can be
approximated as a single SLS, likely with a large standard
deviation in the values of Er and Z. Therefore, the following
manipulations apply for all but KV materials.

As derived in the previous sections, Ec = 0 for MW materials.
The slope and y-intercept of the model test line (eqn (12)) can
be used to calculate Ec for the SLS and the upper bound of Ec

(eqn (17) or (18)) for a GMM. The remaining material constants

(Er, Z, tr = Z/Er, and tc = Z/Ec) can be determined from E
0
2, tan d1,

and Ec via the expressions for E0 and tan d of the SLS (eqn (5)
and (7), respectively) as follows.

Eqn (7) in terms of tan d1, o1, Ec, tr, and Er is as follows.

tan d1 ¼
Ertro1

Ec þ Ec þ Erð Þtr2o1
2

(19)

Eqn (5) in terms of E
0
2, o2, Ec, tr, and Er is as follows.

E
0
2 ¼

Ec þ Ec þ Erð Þtr2o2
2

1þ tr2o2
2

(20)

There are only two unknowns in the system given by eqn (19)
and (20): Er and tr, which can therefore be calculated by solving
the system of equations. First, Er can be expressed in terms of tr

(as well as Ec, E
0
2, and o2) by rearranging eqn (20). Substituting

the result (eqn (22)) into eqn (19) eliminates Er and provides an
expression for tr (eqn (21)). For ease of writing, E0 of a GMM and
SLS (formulas in Table S1, ESI†) is written as E0 = Ec + w, where w
represents the contribution to E0 from the N GMM arms
(or single SLS arm) at a particular o. The value of w2 is the

difference between E
0
2 and Ec.

tan d1E
0
2o1

2o2
2

� �
tr3 � w2o1o2

2
� �

tr2

þ tan d1 Eco2
2 þ w2o1

2
	 
� �

tr � w2o1 ¼ 0

(21)

Er ¼ w2 1þ 1

tr2o2
2

� �
(22)

Note that, if the sample is a MW material, tr can be determined
from the y-intercept of the model test line (eqn (13)) instead
of eqn (21). Once tr and Er are known, Z can be calculated as
Z = trEr. For materials obeying the SLS or GMM (not MW), tc can
be calculated as tc = Z/Ec.

Since eqn (21) is a cubic polynomial, there are three possible
values for tr. The root corresponding to the sample’s tr can be
determined by excluding negative and/or complex roots. If
there is more than one real positive root, the root corres-
ponding to the sample’s tr can be selected by calculating tan d1

and E
0
2 from the material constants via the relevant equation

(formulas in Table S1 (ESI†), use SLS formulas if the material is
a GMM or SLS, or MW formulas if the material obeys the MW
model) and choosing the value of tr which gives the closest

calculated tan d1 and E
0
2 to the measured tan d1 and E

0
2. If there

are no real or positive roots, which can occur for numerical
solvers if polynomials are flat in the root vicinity, alternate
means of calculating sample parameters are described in
Section S7 (ESI†).

2.3 Reconstructing frequency-dependent behavior

Once a sample’s material constants are known, it is possible to
calculate E0, E00, and tan d of the material for a dynamic
stimulus at any frequency by substituting the material con-
stants into the relevant equation (Table S1, ESI†). Since GMM
samples must be approximated as a SLS in order to calculate
sample material constants, SLS equations should be used in the
reconstruction for both SLS and GMM materials.

3 Analysis of error caused by
performing bimodal AFM without tip
radius calibration

For a spherical tip of radius R, E
0
2 is proportional to

ffiffiffiffiffiffiffiffiffi
1=R

p
(details in Section S4.1 and eqn (S14), ESI†).18,28 Typically, R is

estimated by measuring a calibration sample of known E
0
2, and

manually altering R in the software until the measured E
0
2
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agrees with the known calibration E
0
2.19 The calibration sample

should have similar E
0
2 to the actual sample.19 However, select-

ing a calibration sample can be difficult for materials made of
multiple components.

Without calibration, a less exact R can be obtained from the
manufacturer’s specifications for the tip, which include the
mean tip radius %R and range of possible radii. By definition of
the standard deviation, the full range of R is larger than the
standard deviation, SR. However, equating SR with the full
range of possible radii provides a worst case estimate of the
error caused by lack of R calibration.

The additional error in E
0
2 caused by taking R and SR from

the manufacturer specifications can be estimated from %R, SR,

the mean value of the measured E
0
2 E

0
2;m

� �
; and the standard

deviation of the measured E
0
2 S

E
0
2;m

� �
via error propagation.

The result is eqn (23), as derived in Section S5 (ESI†).

S
E
0
2

E
0
2

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
E
0
2;m

E
0
2;m

��� ���

0
B@

1
CA

2

þ 1

2

SR

jRj

� �2

vuuuut (23)

Therefore, the fraction of the error in E
0
2 due to uncertain R,

written here as f ER, is calculated as follows.

fER ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

S
E
0
2;m

S
E
0
2

vuut (24)

Note that it is possible that R changes during an experiment
due to tip blunting.30 However, blunting can be discounted for
two reasons. First, significantly blunt tips often prevent a
repulsive tip/sample interaction.30 As described in Section S4
(ESI†), calculation of tan d1 (eqn (S13), ESI†) requires a repul-
sive interaction, and the tan d1 map will be lost if this inter-
action is not repulsive.26,27,30 Therefore, as long as a repulsive
tip/sample interaction is maintained, it can be assumed that
blunting is not significant enough to change %R and SR. Addi-
tionally, tips can become blunted during a measurement
regardless of whether R is calibrated, so neglecting blunting
in measurements with uncalibrated R does not introduce any
additional error compared to calibrated R.

4 Validation of the novel analysis
procedure
4.1 Materials and methods

A styrene–butadiene rubber (SBR) was used as a test sample for the
new bimodal AFM analysis procedure due to the fact that SBRs are
widely used, and therefore their properties are well known.31 This
particular SBR has already been characterized,14,17 as published in
Macromolecules.17 Data from this characterization are reused here
with permission from Macromolecules (see data permission at the
end of the article for more details) to validate the new analysis
procedure. The SBR is a GMM,32 and possesses an adhesive tip/

sample contact.14,17 These characteristics are ideal in testing how
the new analysis procedure performs, because they are most likely
to challenge bimodal AFM measurements. Specifically, the fact
that the SBR obeys the GMM32 will test whether a GMM can
indeed be approximated as a SLS (as assumed in Section 2.1.1).

Additionally, since calculation of E
0
2 uses the Hertz contact model

and thereby assumes a non-adhesive contact,18,28 the fact that the
SBR has an adhesive tip/sample contact means that the measured

E
0
2 is inaccurate.6,17 If the new analysis procedure successfully

works for the SBR in spite of these difficulties, the method is
robust.

As detailed in the Macromolecules publication,17 AFM
experiments were performed on dry SBR samples with an
Oxford Instruments Asylum Research Cypher ES AFM, using
Oxford Instruments Asylum Research software version 16.9.220
in Igor Pro software version 6.38B01. AFM experiments were
performed using AC240TSA cantilevers (kc,1 B 2.5 N m�1, kc,2 B
50 N m�1, f c,1 B 60 kHz in air, and f c,2 B 390 kHz in air, R B
7 � 3 nm) and AC160TSA cantilevers (kc,1 B 13 N m�1, kc,2 B
364 N m�1, f c,1 B 290 kHz in air, and f c,2 B 1.5 MHz in air,
R B 7 � 3 nm), driven via photothermal actuation with full
excitation laser (Oxford Instruments Asylum Research blue-
DriveTM, 405 nm wavelength) power, and calibrated via Asylum
Research’s GetRealTM calibration method30,33,34 in order to
avoid blunting the tip.

Amplitude modulation–frequency modulation AFM (AM–FM
AFM) was performed on the SBR. AM–FM AFM is a bimodal
imaging technique that drives the AFM cantilever at two
eigenmodes, measuring sample tan d1 via the lower frequency
eigenmode undergoing amplitude modulation (AM)26,27 and

sample E
0
2 via the higher frequency eigenmode undergoing

frequency modulation (FM).18,19,25,28 The second mode is also
subject to a dissipation feedback loop to prevent the second
mode’s oscillation from dropping beneath the detection
limit.19,25,28 Further details on AM–FM AFM can be found in

note S4 (ESI†), and the formulas to calculate tan d1 and E
0
2 in

Section S4.1 (ESI†).
Two AM–FM AFM experiments were performed. First, a

single spot on the SBR was scanned multiple times with a
variety of drive amplitudes and setpoints, to test if AM–FM AFM

could provide stable quantification of E
0
2 and tan d1 without

calibrating R. Second, multiple spots on the SBR were scanned

to quantify the SBR’s E
0
2 and tan d1. After the final spot on the

SBR surface, nanoscale dynamic mechanical analysis (nDMA)
was performed at select points in the final AM–FM AFM image.
The second AM–FM AFM scan (over different spots on the
sample), nDMA, and macroscale DMA (mDMA) of the SBR have
already been published,6,14,17 and are used here with permis-
sion to serve as controls for the output of the novel analysis
procedure. Macroscale DMA details are provided in Section S2
(ESI†). Nanoscale DMA details can be found in Section S3
(ESI†).

For data processing, AM–FM AFM height images of SBR
topography were flattened using Asylum Research software
version 16.10.208 in Igor Pro software version 6.38B01, in order
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to remove any variations in sample topography that were not
due to SBR features. This flattening was done by hand, in order
to avoid introducing flattening artifacts. The processed files
were then analyzed by a custom script in MATLAB R2019b

9.7.0.1261785 that calculated tan d1 and E
0
2 of the sample

(eqn (S13) and (S14), Section S4.1, ESI†), then applied the
new bimodal AFM analysis procedure (Section 2). Results from
the analysis procedure developed in this paper were compared
to both nDMA and mDMA measurements.14,17 The new bimo-
dal AFM analysis procedure was considered valid if the calcu-
lated SBR parameters reproduced values similar to nDMA and
mDMA measurements of the SBR.

4.2 SBR results

4.2.1 Distributions and statistics of SBR AM–FM AFM data.
As shown in Fig. 1, individual AM–FM AFM maps/images of the

SBR had varying distributions of E
0
2 and tan d1. Such variation

likely arose from variation in the features, curvature, or topo-
graphy, of the sample surface at any given area, since the
shallow indentations in AM–FM AFM render AM–FM AFM
measurements susceptible to sample topography.19,27 Histo-

grams of all pixel values in a single image of tan d1 or E
0
2

exhibited unimodal or bimodal distributions. As shown in
Fig. 1(A), the presence of bimodal distributions in the data
influenced calculation of the mean and standard deviation of
AM–FM AFM measurements, and thereby resulted in values
that did not accurately represent the data. To overcome this
issue, the mean and standard deviation of AM–FM AFM mea-
surements of the SBR were calculated by fitting Gaussians to
the data distributions, as described in Section S8 (ESI†), rather
than via the standard formulas. Fig. 1(A) shows that calculating

the mean from Gaussians results in statistics that represent the
most prominent peak of the distribution. Fig. 1(B) shows that
this Gaussian fit method of calculating sample statistics
matches the values from the standard formulas if the data
distribution is unimodal. For individual image statistics, the
distribution used for the fit comprised of pixel values from a
single AM–FM AFM image. For overall statistics, the distribu-
tion comprised of pixel values from all AM–FM AFM images of
the SBR. Note that this method of calculating the mean and

standard deviation was only necessary for E
0
2 and tan d1, and

was not employed for other SBR parameters.
4.2.2 Measurement error due to uncalibrated tip radius. It

was first necessary to ensure that lack of tip radius (R) calibra-

tion does not interfere with correct quantification of E
0
2 and

tan d1. To this end, the effect of user controlled parameters
during an AM–FM AFM experiment was studied by scanning a
single spot on the SBR multiple times, with a variety of drive
amplitudes and setpoints, in order to ensure that, regardless of

how the user handled the AFM, the measured E
0
2 and tan d1

were consistent.
As detailed in Section S4 (ESI†), during an AM–FM AFM

experiment, the user controls the amplitude feedback loops for
both modes (AM for the first mode, and dissipation feedback for
the second mode) by changing the setpoint, As, and drive ampli-
tude of each mode.19,25,30 Note that the user does not directly
control FM of the second mode because the cantilever’s resonance
frequency is what regulates the FM feedback loop.19,25,30 The drive
amplitude determines the free amplitude, used as a reference
amplitude, Ar, of the cantilever’s oscillation.30 Combinations of
user-controlled parameters (As and Ar) can be summarized by a
single metric for each eigenmode, the ratio of As,1/Ar,1 and As,2/Ar,2.
The lower the ratio, the harder the user is tapping on the sample.30

To examine the feasibility of performing bimodal AFM
without first calibrating R, AM–FM AFM was performed on
the SBR with a variety of As/Ar combinations for each mode.
This test was performed to ensure that: (i) AM–FM AFM could

still correctly quantify a sample’s E
0
2 even without first calibrat-

ing R, (ii) that uncertain R did not result in too large an error in

E
0
2 (see Section 3), and (iii) test how tan d1 and E

0
2 depended on

user-determined parameters. The test in (iii) is necessary to

ensure that the values of tan d1 and E
0
2 are stable regardless of

how the user handles the AFM during an experiment. If tan d1

and E
0
2 vary with As/Ar, it would be difficult to determine the

actual value of the sample without calibrating R.
Fig. 2 shows the effect of As/Ar on the mean E

0
2 and tan d1.

Results were similar for both cantilevers. The dissipation feedback

parameters (As,2/Ar,2) did not affect tand1 and E
0
2. This result is

expected, because the dissipation feedback of mode 2 prevents
the mode’s amplitude from falling below the detection floor, and
is not used in AM–FM AFM calculations (Section S4).19,25,28

AM feedback parameters affected E
0
2 and tan d1. In general,

if As,1/Ar,1 was too high, the value of tan d1 and E
0
2 varied more

in response to changes in As,1/Ar,1. If As,1/Ar,1 was too low, the
topography image became distorted or the dissipation feedback
could no longer operate. In the later case, the dissipation

Fig. 1 Representative distributions of SBR AM–FM AFM measurements. All
distributions were obtained from the values of individual pixels from a
single AM–FM AFM image of the styrene–butadiene rubber sample (SBR).
Two different AM–FM AFM images, collected on different areas of the SBR
surface, are shown. Storage modulus, E

0
2 , and loss tangent, tand1, distribu-

tions from the first image are shown in (A) and (B), respectively, and from
the second image are shown in (C) and (D), respectively. A Gaussian fit (see
Section S8, ESI†) to the distribution is shown as a magenta line if a two term
Gaussian was used or as a dark blue line if a single term Gaussian was used.
The mean (points) and standard deviation (error bars) calculated via the
standard formulas and via the Gaussian fit constants are shown as an
orange � or a purple asterisks, respectively. These measurements were
obtained with an AC240TSA cantilever, but are also representative of those
obtained with an AC160TSA.
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feedback was likely lost because the tip was tapping the sample
too hard, interfering with the AFM’s ability to drive the second
mode. Regardless, loss of the dissipation image or distortion in
the sample’s features during the scan are signs that the user’s
As,1/Ar,1 is too high or too low to accurately quantify the sample.

Still, AM–FM AFM quantification of tan d1 and E
0
2 was stable for

several values of As,1/Ar,1. These results suggest that reliable and

consistent quantification of tan d1 and E
0
2 can be obtained as

long as the user decreases As,1/Ar,1 just enough to ensure a
repulsive tip/sample interaction (where phase one obeys f1 o
901, to employ eqn (S13), ESI†) and a stable value of E

0
2 and

tan d1. Representative AM–FM AFM images of the SBR obtained
using this procedure are shown in Fig. 3.

After performing AM–FM AFM at multiple spots on the SBR
surface, resulting in 25 AM–FM AFM images from AC240TSA

scans and 13 images from AC160TSA scans, the mean E
0
2 and

tan d1 were calculated by fitting a Gaussian to the resulting
distributions for each quantity as described in Section 4.2.1.
The mean � standard deviation of the SBR’s tan d1 was 1.9 �
0.5 for the AC240TSA and 1.6 � 0.4 for the AC160TSA. The

mean � standard deviation of the SBR’s E
0
2 was 570 MPa � 89

MPa for the AC240TSA and 7.0 GPa � 0.6 GPa for the
AC160TSA. Applying eqn (24), the uncertainty in R contributed
to 79% of S

E
0
2

from AC240TSA measurements and 65% of S
E
0
2

from AC160TSA measurements. These results suggest that, if R
is not calibrated, the uncertainty in R is not negligible, and

should be propagated through the measured E
0
2. However, E

0
2

can still be reliably measured, even without calibrating R. Note
that one downside to lack of R calibration is that there is no
longer an indication of tip/sample pairings where the Hertz
contact model does not apply (e.g. adhesive contacts)19 without
the use of additional experiments like indentations, nDMA,
or mDMA.

In order to ensure that AM–FM AFM measurements correctly

quantified E
0
2 and tan d1, both quantities were compared with

the nDMA and mDMA controls, and these results have already
been published.6,14,17 In summary, the measured tan d1 agreed

well with the mDMA control.6,14,17 However, AM–FM AFM’s E
0
2

was 10–100� larger than E0 measured by mDMA.6,14,17

Comparison of mDMA and AM–FM AFM data with nDMA

measurements shows that the discrepancy between E
0
2 and the

mDMA control is not due to uncertain R or the use of an
incorrect As,1/Ar,1.6,14,17 Instead, the observed overestimation of

E
0
2 by AM–FM AFM is due to the fact that AM–FM AFM employs

the Hertz contact model to calculate E
0
2,18,28 since E0 of nDMA

calculated with the Hertz contact model shows similar disagree-
ment with mDMA.6,14,17 E0 of nDMA calculated by modeling the
contact geometry as a hyperboloid indenter with adhesion14,17

agrees well with mDMA, suggesting that this model is the best
contact model for the tip/SBR interaction.6,14,17 In other words,
adhesion is present between the tip and SBR. The Hertz contact
model upon which AM–FM AFM relies assumes that no adhesion
is present between the tip and sample,5 and therefore inade-
quately describes the tip/SBR interaction.6,14,17 While reliance on

the Hertz model results in an incorrect estimation of E
0
2 for AM–

FM AFM, the value of tand1 is correct because tan d is indepen-
dent of contact geometry.6,14,17,35

In summary, quantification of tan d1 and E
0
2 in AM–FM AFM

is still possible, even without using a sample of known modulus
to calibrate R. Regardless of R calibration, incorrect quantifica-

tion of E
0
2 will occur if the Hertz contact model is not suitable to

describe the tip/sample interaction.
4.2.3 Determining the viscoelastic model to describe the

SBR. Fig. 4 shows a representative plot of y = tan d1
�1 vs. x ¼

E
0
2 tan d1

� ��1
(Section 2.1, eqn (12)) for AM–FM AFM data at a

single spot on the SBR, that is, for a single AM–FM AFM image.
Each image was fit with the model test line (eqn (12)). Fit

Fig. 2 Effect of user-controlled parameters on AM–FM AFM measure-
ments. The ratio of setpoint As over free amplitude Ar of each AM–FM AFM
eigenmode is controlled by the user. The effect of the lower frequency
mode, mode 1, As,1/Ar,1 on E

0
2 and tan d1 is shown in (A) and (B), respectively

(blue diamonds). The same for the higher frequency mode, mode 2, is
shown in (C) and (D), respectively (blue diamonds). Red asterisks indicate
images where the AFM could not adequately track dissipation of the second
mode (due to the specific As and Ar), and thus could not adequately perform

dissipation feedback. Magenta lines indicate the mean value of E
0
2 and tan d1

from AM–FM AFM data not part of the imaging parameter test. Error bars
and shading represent the standard deviation of each measurement.

Fig. 3 Representative AM–FM AFM images of the SBR. SBR topography
(A) and (D), storage modulus E

0
2 (B) and (E), and loss tangent tan d1 (C) and

(F) are shown. Scale bars are 1 mm. The images in (A)–(C) were obtained
using an AC240TSA cantilever, and are representative of the 25 AC240TSA
images. Images in (D)–(F) were obtained using an AC160TSA cantilever,
and are representative of the 13 AC160TSA images of the SBR.
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metrics for each image can be found in Table S2 (ESI†).
The mean � standard deviation R2 value of the fits was
0.99 � 0.02 for data measured with an AC240TSA, and 0.95 �
0.04 for data measured with an AC160TSA. For both cantilevers,
the slope and y-intercept of the fit were greater than zero (see
Table S2, ESI†).

It is already known that the SBR is a GMM.32 The good linear
fit of the model test (eqn (12)) derived from SLS equations
(Section 2.1) to SBR AM–FM AFM data suggests that a subgroup
of GMM arms within the SBR, all with similar tn, contributed

most to E
0
2 and tan d1. Specifically, the AM–FM AFM excitation

frequencies in these experiments are more likely to excite GMM
arms with tn on the order of 0.1–10 ms. The good fit of the SBR
data to the model test line supports the notion that
this subgroup of arms can be approximated as a single SLS,
likely with a large standard deviation in its parameter values
(Ec, Er, and Z), as discussed in Section 2.1.1.

While the model test plot in Fig. 4 can be fit with a line, the
points seem to have a hyperbolic or logarithmic shape, rather
than a linear shape. This observation suggests that the model
test has a curve if the sample obeys the GMM, and a line if the
sample obeys the SLS. It is reasonable to hypothesize that the
curve in the model test line for a GMM may be due to super-
position of all SLSs in the material that responded to the
stimulus. Future investigation of this observation may improve
the calculation of GMM material constants from AM–FM AFM
data. Regardless, the large R2 values of the linear fits suggest
that, even though the model test appears to have a hyperbolic
shape, a line still approximates the trend in the data well.
Again, this observation supports the notion that bimodal AFM
excites a subset of GMM arms, all with similar tn, and that can
be approximated as a single SLS.

4.2.4 SBR material constants and frequency dependent
behavior. SBR material constants, calculated via the new ana-
lysis procedure (Section 2.2), are shown in Table 1. As expected
for a subgroup of GMM arms being approximated as a single
SLS, the calculated material constants have large standard
deviations. However, calculated material constants agree well
with literature values.31 Most of the parameter values agree
between the SLS and the GMM. However, Ec is two orders of
magnitude lower for the GMM than the SLS. Comparison with
SBR DMA at low frequencies (Fig. 5(A)) shows that the GMM’s

estimation of Ec is more accurate than the SLS’s estimation.
Therefore, to determine Ec of a GMM material, it is important
to employ the calculation in Section 2.1.1, and not simply use
that of the SLS (Section 2.1). Assuming that Ec is close to its
upper bound (eqn (17) or (18)) calculated from the slope and
y-intercept of the model test is still more accurate than taking
Ec to be the slope of the model test (eqn (12)) if the sample
obeys the GMM.

The values of SBR E0, E00, and tan d over a range of frequen-
cies (E0( f ), E00( f ), and tan d( f )) were calculated by substituting
the GMM material constants in Table 1, into eqn (5)–(7),
respectively. This reconstruction of the SBR’s frequency-
dependent behavior is shown in Fig. 5 for AC240TSA cantile-
vers, and Fig. S2 (ESI†) for AC160TSA cantilevers. Reconstruc-
tions using SLS material constants are not shown, since GMM
parameters (Table 1 and Section 2.1.1) are more accurate.

The accuracy of reconstructed E0( f ), E00( f ), and tan d( f ) can
be assessed via comparison to nDMA and mDMA control data
(the control data has been previously published,17 and is reused
here with permission). Even though a hyperboloid indenter
with adhesion is a better model of the tip/SBR interaction,14,17

AM–FM AFM only uses the Hertz contact model to calculate

E
0
2.18,28 Therefore, AM–FM AFM reconstructions should be

Fig. 4 Representative model test for a single AM–FM AFM image of the
SBR. All pixels from a single AM–FM AFM image of the SBR are shown
(points) along with the linear fit to the data (magenta line, eqn (12)), used to
determine the best description of the SBR’s viscoelastic response. The fit
equation and R2 value are also shown. The data in this figure are taken
from a single AM–FM AFM image, but are representative of the fits to other
images (fit details in Table S2, ESI†).

Table 1 Material constants of the SBR. Material constants were calculated for each AM–FM AFM image of different locations on the sample surface (a
total of 25 for the AC240TSA and 13 for the AC160TSA). Table values represent the mean � standard deviation of these calculations

Parameter Cantilever GMM SLS

Ec (Pa) AC240TSA 2.65 � 106 � 2.27 � 106 1.97 � 108 � 1.26 � 108

AC160TSA 4.42 � 107 � 1.07 � 108 5.23 � 109 � 1.00 � 109

Er (Pa) AC240TSA 4.23 � 108 � 2.86 � 108 3.32 � 108 � 2.61 � 108

AC160TSA 8.22 � 109 � 1.50 � 109 3.81 � 109 � 1.70 � 109

Z (Pa s) AC240TSA 533.91 � 257.52 406.57 � 304.47
AC160TSA 2.82 � 103 � 534.20 1.61 � 103 � 636.79

tr (s) AC240TSA 1.73 � 10�6 � 0.97 � 10�6 1.34 � 10�6 � 0.18 � 10�6

AC160TSA 4.48 � 10�5 � 8.08 � 10�5 2.34 � 10�5 � 4.80 � 10�5

tc (s) AC240TSA 3.45 � 10�4 � 5.37 � 10�4 2.10 � 10�4 � 1.85 � 10�4

AC160TSA 3.44 � 10�7 � 0.40 � 10�7 4.29 � 10�7 � 0.32 � 10�7
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compared to nDMA data calculated with the Hertz contact
model, not the adhesive hyperboloid model. In other words,
AM–FM AFM reconstructions of E0( f ) and E00( f ) should match
nDMA curves (Hertz model) at low frequencies, but should be
10–100� larger (Section 4.2.2) than mDMA values. The recon-
structed tand( f ) should match both nDMA and mDMA data
because tand is independent of contact geometry.14,17,35 At low
frequencies, where E0 B Ec (see Section S1, Table S1, ESI†), the
reconstruction aligns with the nDMA, suggesting that assuming Ec is
close to the upper bound of Ec was correct for this sample. However,
as previously described (Section 4.2.2), the estimated Ec, reconstruc-
tion E0, and nDMA results are higher than mDMA values because
the nanoscale measurements employ the Hertz contact model.

Red arrows in Fig. 5(A) indicate frequencies where the
reconstruction of E0( f ) deviates from the controls. There are
two main regions where the reconstruction does not accurately
predict E0. First (i) is the transition between the low frequency
and high frequency plateaus of E0 (the glass transition of the
SBR36), which occurs between 102–108 Hz in the mDMA. Second
(ii) is the glassy plateau8,36 of E0 (at f 4 109 Hz in the mDMA).

(i) For the glass transition,8,36 mDMA shows that SBR E0

transitions gradually (between 102–108 Hz) from the low fre-
quency to the high frequency plateau. The transition in the
reconstruction is sharper (ranges only between 104–106 Hz) and
underestimates E0 between 102–104 Hz. These observations
suggest that the glass transition of the SBR results from a sum
of the various contributions of multiple different tn of different
orders of magnitude (i.e. ns, ms, ms, etc. . .). This sum results in a
broad glass transition, as expected for a GMM.8 Since the AM–
FM AFM reconstruction only uses a single tn, the transition is
much sharper than the reality. Therefore, these results suggest
that GMM arms in the subgroup that contribute to the SBR’s
response to AM–FM AFM stimulus are only part of the subgroup
of arms that contributes to the SBR’s glass transition.

(ii) For the glassy plateau8,36 of the SBR (at f 4 109 Hz), the
reconstruction underestimates E0( f ). Again, this observation
suggests that GMM arms that contribute most to this plateau
are not part of the subgroup that dictates the SBR’s response to
AM–FM AFM stimulus. This observation is not surprising, since
the microsecond tn that dictate the SBR’s response to AM–FM
AFM stimulus would respond too slowly to affect the SBR’s
response to higher frequency stimuli ( f 4 107 Hz).

As shown in Fig. 5(B), the reconstructed E00( f ) aligns well
with nDMA results between 103–106 Hz. As expected, the value
of E00 calculated by nDMA and the reconstruction is higher than
that of mDMA due to the use of the Hertz contact model
(as already discussed Section 4.2.2). For frequencies outside
of this 103–106 Hz range, E00 is underestimated by the recon-
struction (indicated by red arrows in Fig. 5(B)). This observation
is a byproduct of using the SLS to approximate the GMM for the
reconstruction. For the SLS, N = 1, and E00 increases to a peak at
frequencies near the glass transition of the sample, then
decreases again (eqn (6)). For a GMM, E00 can have a broader
peak due to contributions from the additional tn.8 Therefore, it
is not surprising that E00( f ) is not adequately reconstructed for
frequencies too slow or too fast for the subgroup of GMM arms
that respond to AM–FM AFM stimulus.

In general, the reconstructed tan d( f ) agrees with the nDMA
and mDMA controls where E0( f ) and E00( f ) also agree with the
controls, and deviates from nDMA and mDMA results when the
reconstructed E0 and E00 do so as well (Fig. 5(C)). Specifically,
reconstructed tan d matches the controls well between 102–103

Hz, and again between 104–106 Hz. The lack of agreement
between the reconstructed tan d and controls at 103–104 Hz is
due to the reconstruction’s inability to capture the glass transi-
tion between the low and high frequency plateaus in E0. The
discrepancies between reconstruction tan d( f ) and the controls
at frequencies larger than 106 Hz, or smaller than 102 Hz are
due to the reconstruction’s inability to accurately model E00( f ).

Fig. 5 Frequency dependent behavior of the SBR (AC240TSA). Storage
moduli (E0), loss moduli (E00), and loss tangents (tand) over a range of
frequencies are shown in (A)–(C), respectively. Mean AM–FM AFM recon-
structions are compared to control macroscale dynamic mechanical
analysis (mDMA, squares) and nanoscale DMA (nDMA, lines) measure-
ments. All data besides the reconstructions have been published
previously,17 and are used here with permission. AM–FM AFM reconstruc-
tions from each of the 25 individual AM–FM AFM images are also shown in
gray. Red arrows indicate regions where the reconstruction deviates from
the controls by failing to account for all arms in the GMM. E0 and E00 of
nDMA measurements were calculated using the Hertz contact model.
AM–FM AFM and nDMA were performed using an AC240TSA cantilever.
Error bars and shading represent the standard deviation.
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Reconstructions performed with an AC160TSA (Fig. S2, ESI†)
showed similar results. However, estimation of the transition in
E0 was more accurate, and therefore the reconstructed tan d was
more accurate (although not an exact match to the controls)
between 105 and 106 Hz. Additionally, reconstructed Ec was
higher than that of the AC240TSA. This observation suggests
that the accuracy of the reconstruction may vary, depending on
where f 1 and f 2 occur relative to the glass transition of a sample.
Based on mDMA, the SBR’s glass transition was between 104 and
106 Hz. For the AC240TSA, f 1 and f 2 were roughly in the middle
of this transition. For the AC160TSA, f 1 and f 2 occurred toward
the higher frequency end of the transition. These results suggest
that the reconstruction may be better at predicting lower fre-
quency behaviors of a sample when f 1 and f 2 are lower than or
inside the glass transition. If f 1 and f 2 are higher than the glass
transition, the reconstruction may be better at predicting glass
transition and high frequency behavior. These differences likely
stem from assuming that Ec is approximately its upper bound
(eqn (17) or (18)). Since f 1 and f 2 are higher for the AC160TSA,
and measure values closer to the SBR’s glassy plateau, the upper
bound of Ec is calculated to be higher. In the future, it would be
interesting to further test this hypothesis with additional canti-
levers that have f 1 and f 2 at different frequencies relative to the
glass transition of the sample.

Together, these results suggest that bimodal AFM data can
be used to perform limited reconstructions of a GMM sample’s
frequency dependent E0( f ), E00( f ), and tan d( f ). For the most-
accurate measurement of a sample’s frequency dependent
behavior, it is best to combine bimodal AFM data with other
techniques like nDMA, rather than rely only on the reconstruc-
tion of E0( f ) and E00( f ) from bimodal AFM data. However,
bimodal AFM reconstructions can capture important quantities
of a sample’s frequency dependent behavior, especially for
frequencies near f 1 and f 2. At the bare minimum, the recon-
struction allows for fairly-accurate estimation of E0 at f 1, E00 of
at least one of the two measurement frequencies, and can be
used to predict Ec of a sample. The method described here can
still be used to approximate Ec of a GMM, as long as it is
acknowledged that the value of Ec of a GMM is the upper
bound, and not necessarily the exact value of Ec. To improve
reconstruction accuracy, bimodal AFM measurements of the
same sample with different cantilevers could be combined, for

example by comparing E
0
2 and tan d1 between cantilevers.

However, such reconstruction is beyond the scope of this work.
The analysis procedure presented here can be employed even if
only one cantilever is used to measure the sample. Additionally,
for bimodal AFM measurements of samples that obey the
GMM, it would be interesting to derive a method of estimating
N from bimodal AFM data, possibly by comparing observations
made with several cantilevers with different f 1 and f 2.

5 Discussion

The SBR selected to validate procedure outputs was well
characterized,17 but also likely to confound bimodal AFM

measurements via the non-Hertzian tip/sample contact,17 and
test the limits of the analysis procedure by adhering to the
GMM32 (Section 4.1). In spite of these complications, the
procedure still yielded useful information about the sample’s
viscoelastic behavior. Additionally, the steps used in this article
to assess procedure outputs are among several that can be
employed to cross-validate procedure outputs for any sample.
The following discussion describes potential means of improv-
ing bimodal measurements of samples like the SBR and how to
cross-validate analysis procedure outputs for any sample mea-
sured by bimodal AFM.

The main confounding property of the SBR sample in this
article was the adhesive, non-Hertzian tip/sample contact,
meaning that bimodal AFM’s use of the Hertz contact model

to calculate E
0
2,14,17 and therefore analysis procedure calcula-

tions of sample elastic constants and E00, yielded artificially high
values compared to the mDMA control. To improve measure-
ment accuracy, it is either necessary to apply additional contact
models to bimodal AFM or place the sample in conditions that
render the tip/sample contact Hertzian. The first, and most
versatile, means of addressing the tip/sample contact would be

to derive expressions to calculate E
0
2 in bimodal AFM measure-

ments using other contact models besides the Hertz model.

Currently, E
0
2 can also be calculated using the Lennard-Jones

force (LJF) and Derjaguin–Muller–Toporov (DMT) contact
models.28 However, bimodal AFM theory could be expanded to
include other contact models like the Johnson–Kendall–Roberts
(JKR) model or the adhesive hyperboloid.

A second means to potentially eliminate non-Hertzian con-
tacts on samples in air is to perform measurements in liquid
instead. Liquid environments can reduce adhesive forces37,38

and therefore increase the likelihood that the Hertz model
applies. While liquid environments can reduce adhesive
forces,37,38 the mechanical properties of a sample often differ
between air and liquid environments.1 Therefore, control mea-
surements such as mDMA or nDMA should be performed in
similar conditions to bimodal measurements. It is also impor-
tant to note that measuring a sample in liquid does not
guarantee a Hertzian, or even a nonadhesive contact. For
example, many biological samples still exhibit adhesion, even
in liquid environments.16

Regardless of whether a non-Hertzian tip/sample contact
can be addressed, the measurements in this paper demonstrate
that the new analysis procedure can still be applied even if the
Hertz model does not accurately describe the tip/sample inter-
action. At minimum, the procedure can help the user deter-
mine how best to model the sample’s viscoelastic behavior. To
assess the reliability of procedure outputs for a given sample,
procedure outputs should be compared against other measure-
ments, as in this article. Such cross-validation can be accom-
plished in several ways, depending on the control data available
for comparison. Measurements that can be used to cross-
validate analysis procedure outputs include: mDMA, nDMA,
nanoindentation, relaxation experiments, creep experiments,
and literature measurements of similar samples. The pros and
cons of each cross-validation measurement, and how cross-

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 1
2:

47
:3

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00671b


7468 |  Soft Matter, 2024, 20, 7457–7470 This journal is © The Royal Society of Chemistry 2024

validation can be performed with each measurement, are
elaborated in Section S9 (ESI†).

At minimum, it is important to cross-validate Ec of a GMM
material. As described in Section 2.2, Ec is calculated first, then
used to solve for the remaining material constants (eqn (21)
and (22), Section 2.2). Additionally, if the sample is a GMM, it is
necessary to assume that Ec is close to the bound on Ec (Section
2.1.1 and Section S6, ESI†). If this assumption does not apply,
the estimation of Ec, and therefore all other parameters, will
not be accurate. Therefore, it is essential to cross-validate Ec

(see Section S9, ESI†) for any GMM sample. If procedure Ec does
not match that of the cross-validation experiment, GMM para-
meter estimation should not be employed because the assump-
tion necessary for the procedure to estimate Ec does not hold.

5.1 Likelihood of encountering a special case of the GMM

Note that it is difficult to find samples guaranteed to behave as
one of the GMM’s special cases, since the behavior of a sample
is affected by experimental conditions. For example, collagen
has been modeled with either the GMM or SLS, depending on
experimental conditions.9,39–44 While there is no guarantee that
a sample will behave as a MW, KV, or SLS material, knowledge
of each model’s characteristics can help identify candidate
samples more likely to obey the GMM’s special cases.

In general, MW materials tend to be more fluid.36 Therefore,
samples with little crosslinking, weak iterations between consti-
tuent polymers, or made of mobile constituents would be more
likely to obey the MW model. KV materials are more difficult to
identify than MW materials. However, since tr = 0 for a KV
material, samples that do not exhibit relaxation are more likely
to behave as a KV material. Relaxation experiments16 could help
identify candidate samples that do not relax. Finally, the SLS will
apply in conditions that restrict the number of arms in a GMM
that respond to bimodal stimulus. Such conditions might
include thin and uniform samples, since there are fewer unique
constituents in uniform samples, and fewer dimensions for
polymers in the material to interact in thin samples, thereby
reducing the number of arms in the GMM.

6 Conclusions

In summary, bimodal AFM techniques such as AM–FM AFM can

be performed on samples to quantify tand1 and E
0
2 of the sample,

even without first calibrating the AFM tip radius on a sample of
known modulus. If tip radius is not calibrated, the additional

uncertainty in E
0
2 should be taken into account by propagating the

uncertainty in R through measurements of E
0
2 (eqn (23)). Addi-

tionally, without tip radius calibration, there may be no indicator
if the Hertz contact model does not apply unless bimodal AFM is
performed together with other types of experiments such as
nDMA, nanoscale indentations, or mDMA. Regardless of tip

calibration or lack thereof, the measured E
0
2 can be incorrect if

the Hertz contact model, on which bimodal AFM calculation of E
0
2

relies,18,28 is not a good model for the tip/sample interaction. In
the future, it would be prudent to expand (as already done for the

DMT model and the Lennard-Jones potential via fractional

calculus28) the calculation of E
0
2 in bimodal AFM to include other

contact models like the Johnson–Kendall–Roberts model5 and the
adhesive hyperboloid.14,17,45

The new analysis procedure developed in this article (Section 2)
can be used on bimodal AFM data to extract additional information
about a sample’s viscoelastic response. A flow chart of the proce-

dure is shown in Fig. 6. First, tand1 and E
0
2 can be used to test

whether the sample obeys any of the standard models of linear
viscoelasticity (MW, KV, SLS, and GMM), and distinguish between
each model (Section 2.1, eqn (12)). Ability of the model test to
distinguish different sample components that potentially obey
different models of viscoelasticity was not assessed in this article.
However, if material components do not all fall in the same group
of points for the model test, it may be possible to use the model test
to identify viscoelasticity of multiple components within a sample.

Once the best model for a sample’s viscoelastic response is
known, model parameters can then be calculated (Section 2.2),
and the frequency dependent behavior of a sample’s E0( f ),
E00( f ), and tan d( f ) can be reconstructed (Section 2.3). Accuracy
of the reconstruction is limited if the sample is a GMM, and
depends on where the measurement frequencies fall in the
sample’s rheological behavior (for example, relative to the glass

transition), but can at minimum, provide the value of E
0
1, a

bound for Ec, and E00 of at least one of the two measurement
frequencies. For the most accurate measurement of E0( f ),
E00( f ), and tan d( f ), it is best to combine bimodal AFM with
other techniques like nDMA, rather than rely solely on the
reconstruction. Regardless, future bimodal AFM experiments
can use the analysis procedure developed in this article to gain
additional insight into a sample’s viscoelastic behavior, espe-
cially which model of linear viscoelasticity best applies to the
sample, and thereby gain additional insight into a sample’s
function or application.
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