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Controlling wall–particle interactions with activity

Luke Neville, *ab Jens Eggers a and Tanniemola B. Liverpool ab

We theoretically determine the effective forces on hard disks near walls embedded inside active nematic

liquid crystals. When the disks are sufficiently close to the wall and the flows are sufficiently slow, we can

obtain exact expressions for the effective forces. We find these forces and the dynamics of disks near the

wall depend both on the properties of the active nematic and on the anchoring conditions on the disks

and the wall. Our results show that the presence of active stresses attract planar anchored disks to walls if

the activity is extensile, and repel them if contractile. For normal anchored disks the reverse is true; they

are attracted in contractile systems, and repelled in extensile ones. By choosing the activity and anchoring,

these effects may be helpful in controlling the self assembly of active nematic colloids.

1 Introduction

Active fluids are a class of complex matter where the individual
components consume energy to perform mechanical work.1,2

They show a rich phenomenology, from flocking,3–5 to non-
equilibrium phase transitions and novel emergent collective
behaviour.6–11 To date, most work has focused on understanding
this behaviour, however, a major challenge going forward, is how
to control activity, i.e. which components of a system are active,
when that activity is to be switched on/off, how to use it to steer
emergent collective behaviour towards a desired function and
possibly with a view to even extract useful work.12,13 One promis-
ing way that has been proposed to do this is using active colloids,
a suspension of microscopic self-driven particles, in a passive
solvent. By controlling activity, the colloids can in principle be
designed to self-assemble efficiently14–16 and one can even start to
think about how to design soft micro-machines.17–19

In this work we are interested in a complementary class of
systems, passive particles immersed in an active matrix.20,21

To be concrete we focus on active nematics, where the activity
is introduced on hydrodynamic scales, in terms of contractile or
extensile stresses.22,23 These stresses appear naturally in suspen-
sions of active anisotropic particles such as bacterial colonies,11,24

the cell cytoskeleton25 and in synthetic biomimetic systems such as
mixtures of microtubules, polymers and kinesin.26,27 Unlike iso-
tropic fluids, nematics have additional topological constraints,28

which are perhaps most obvious when particles are added.
The anchoring of the nematic to the particles surface endows
the particle with non-zero topological charge29 which must be

counteracted by additional point defects outside the particle. These
additional defects can radically change the elastic forces, leading to
attraction between particles.30–32 These attractive forces can be
incredibly strong, and have been used to create self assembling
colloidal crystals.33,34 Once activity is added to this kind of system
however, new phenomena appear, which can be controlled by
tuning the particle shape, and the anchoring of the nematic liquid
crystal on the particle surface.20,35,36 For example, colloids that
would be stationary in passive liquid crystals can be propelled
along by their own topological charge.37,38

The bulk behaviour of such systems can be studied by
looking at infinite systems ignoring the effects of boundaries,
however as real experimental systems are always confined it is
important to understand the role of boundaries, e.g. interactions
between particles and walls. Furthermore these interactions can
be the starting point to understand the interactions between
particles and hence the collective behaviour of many such
particles. The detailed study of such interactions is the goal of
this paper.

In passive liquid crystals the elastic forces can lead to
interactions between embedded particles that can be attractive
or repulsive,39 however it is interesting to explore if activity can
change the magnitude or even sign of interaction (i.e. from
repulsive to attractive or vice versa).

To study these forces we use a simple two dimensional
system, where the particle is a hard disk, located in the vicinity
of a flat wall. Although two dimensions is a simplification,
many experimental nematic liquid crystal systems are thin
films and so are approximately two dimensional.23 Hence an
analysis in two dimensions is a natural starting point for a
detailed theoretical study of these systems. Studying this pro-
blem analytically poses a challenge because of the multiple
connectivity of the domain,40 but can be circumvented using
appropriate conformal mapping.41 Recently, similar problems
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were tackled using the director description of the nematic by
adapting methods used to study of point vortices in potential
flow.42,43 However, these approaches are well suited mainly for
the large wavelength behaviour and struggle to resolve details
of the nematic configurations in the vicinity of the inclusion.
We use a complementary approach to describe the nematic, the
2nd rank Q-tensor, which captures the near-field as well as
the far-field behaviour, and in which there is also a natural
regularization of topological defects. By explicitly obtaining the
Q tensor configurations and using them to calculate the forces
on the disk, we find that a disk near a flat wall is always repelled
by the elastic forces, but may be attracted or repelled by active
ones. What controls this depends on a combination of activity
and anchoring, and is reminiscent of the anchoring effects in
channel flows.27,44,45

The rest of the paper is structured as follows, in Section 2 we
introduce our model of a particle near a wall. In Section 3 we
solve for the nematic director around the particle and use it to
calculate the forces, finding that active forces can lead to an
attraction or repulsion of the particle. In Section 4 we perform a
matched asymptotic analysis, finding that the force is domi-
nated by a small region under the disk. In Section 5 we discuss
the location of the topological defects and their effect on the
force, before finally discussing our results in Section 6.

2 Model and statement of problem

To study wall–particle interactions we use the set up in Fig. 1
consisting of a large circular particle of radius R placed inside
in incompressible active nematic at a distance d from a flat
uniform wall. The nematic strongly anchors to the wall and
surface of the disk, and by symmetry the disk moves in a
direction perpendicular to the wall.

To model the nematic we use the equations of active
nematodynamics describing the coupling of an incompressible
velocity field v to the elasticity of the nematic order parameter
Q, a symmetric trace-less two tensor1 in the one Frank elastic
constant approximation. The two components of the order
parameter Qxx = Q1, and Qxy = Q2 may be related to the angle

of the nematic director using y ¼ 1

2
arctan Q2=Q1ð Þ, and the

scalar order of the nematic by Q0
2 = Q1

2 + Q2
2.

DtQ ¼ �
1

g
dF
dQ

; (1a)

Zr2v � rP + ar�Q + r�rK = 0. (1b)

The internal structure of the nematic means that we must
account for advection as well as rotation of the nematic
director. This is given by the first equation, where Q relaxes
to a minimum of its free energy, F, while being advected and
co-rotated by the generalised derivative Dt.

46 The rate of this
relaxation is governed by the rotational viscosity g. Alongside
the equation for Q we have the Stokes equations for the fluid,
where P is the pressure, and Z is the viscosity. In addition to the
viscous stresses, sv

ij = Z(qiuj + qjui) � Pdij there are additional
elastic and active stresses from the nematic. The active stresses
ra = aQ come from the local flows around each nematogen, with
a o 0(40) for locally contractile (extensile) flows. The elastic
stresses rK derive from the Landau–de Gennes free energy

F ¼
ð
dr
K

2
riQjk

� �
riQjk

� �
� A

2
QijQij þ

A

4
QijQij

� �2
; (2)

where K is the elastic constant of the nematic, and A controls
the strength of the nematic order.47

We make two simplifying approximations, the first being
that the distance between the disk and the wall is smaller than
the elastic screening length LK

2 = A/K. Assuming this we may
neglect the A terms in the free energy and take the harmonic
approximation48

F ¼
ð
dr
K

2
riQjk

� �
riQjk

� �
: (3)

Importantly this approximation is only valid when there is a
wall, and the harmonic approximation to Q does not work well
for an isolated disk.

Secondly, we assume the advective time scale to be much
longer than the diffusive time scale. By comparing advective
and diffusive terms in eqn (1) we find this is true when h2 { KZ/
ag, where h is the closest distance between the disk and wall.
This is the same condition for no spontaneous active flows in a
channel of thickness h.49 Although the region under the disk is
curved we expect similar qualitative behaviour and so all active
flows under the disk ought to be weak.

Assuming these two conditions leads to a simpler, linear set
of equations,50

r2Q = 0 (4a)

Zr2v � rP + a�rQ + r�rK = 0, (4b)

rK
ij ¼ �K riQklrjQkl �

1

2
dij rmQklj j2

� �
þ ½Q;H�ij ; (4c)

where H = dF/dQ, and the elastic stress is derived from the
harmonic free energy in the Appendix.

As the speed of the disk is as yet unknown, the velocity
boundary conditions are zero velocity on the wall, and v = U on

Fig. 1 A disk of radius R sitting in an active fluid above a wall. The distance
between the centre of the disk and the wall is d, and the closest distance
between the disk and wall is h = d � R.
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the disk. U will later be found with the condition that the disk

be force free,51 Fi ¼
Ð
Disk rv

ij þ ra
ij þ rK

ij

� �
njdS ¼ 0. The bound-

ary conditions for Q are determined by the anchoring on the
wall and disk, which we assume to be strongly planar or
normal. From now on we shall work in units where R = 1
unless explicitly stated.

To calculate the hydrodynamic forces on the disk we will
first solve for Q, then substitute it into the Stokes equations to
find the stresses.

3 Solution
3.1 Nematic field

We assume that the nematic strongly anchors to all surfaces,
giving boundary conditions

Q1 = �cos 2yd on the disk, (5a)

Q2 = �sin 2yd on the disk, (5b)

Q1 = �1 at the wall and infinity, (5c)

Q2 = 0 at the wall and infinity, (5d)

where yd is the polar angle centred on the disk. This strong
anchoring condition is an approximation, valid when the
boundary free energy is negligible compared to the bulk free
energy.47 The + gives planar anchoring, and the � normal.
Comparing the Q boundary conditions and the definition of the
active stress, we see that switching from planar to normal
anchoring is equivalent to switching the sign of a. In what
follows we shall assume planar anchoring for all calculations.

To solve for Q we use conformal mapping, noting that
Laplace’s equation is invariant under any conformal map.40

Defining z = x + iy, the relevant conformal mapping is52

wðzÞ ¼ sþ iz

s� iz
, zðwÞ ¼ is

1� w

1þ w
; (6)

where s depends on d = 1 + h through

s ¼ 1� r2

2r
; (7a)

r ¼ d �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 1
p

: (7b)

This map takes the blue region in Fig. 1 to an annulus of inner
radius r and outer radius 1, see Fig. 2. The wall maps to |w| = 1,
the disk to |w| = r, and the point at infinity to w = �1.

Defining the complex field, Q = Q1 + iQ2, the solution is
found using polar coordinates in the annulus, and is equivalent
to a Laurent series in w and %w,

Q ¼ 1þ ðr� 1Þ logw�w

2 logr
þ
X1
n¼1

cn wn � 1

�wn

� � !
; (8)

where the coefficients cn are

cn ¼
ð�1Þn

1� 1=r2n
ð1þ nÞr2 � 2nþ ðn� 1Þr�2
	 


: (9)

Q in real space is then given by Q(w(z)). Examining plots of this

solution in Fig. 3 we see two �1/2 topological defects slightly
below the equator of the disk, with their position given by the
zeros of Q0.53 These are needed to counteract the net +1
topological charge of the disk and represent the lowest energy
configuration of defects. The series solution in (8) may be inter-
preted as a multipole expansion, with the nth term corresponding

Fig. 2 Conformally mapped domain. The inner circle with radius r
corresponds to the disk boundary, the outer circle with radius 1 to the
wall, and w = �1 to the point at infinity.

Fig. 3 Nematic texture around the disk when d = 1.5R. (top) Planar
anchoring, (bottom) normal anchoring.
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to the nth multipole.54 For large disk–wall separations the
solution converges rapidly as only the first two terms are needed
to capture the quadrupole defect structure.

3.2 Reciprocal theorem

With Q found we use it to calculate the forces on the disk. To do
this we will not need to calculate the velocity field using eqn (4),
but shall instead apply the Lorentz reciprocal theorem.55,56 The
Lorentz reciprocal theorem relates the stress tensors in two
solutions of the Stokes equations in the same domain but with
different boundary conditions. To derive the result, consider
two copies of the Stokes equations in a domain D

Zr2v � rP + r�R = 0, (10a)

Zr2v̂ � rP̂ = 0, (10b)

where only one of the copies contains extra stresses R, and we
have used a carat to distinguish the secondary problem vari-
ables. Using these and incompressibility the following integral
identity holdsð

D

ri v̂jsij
	 


�ri vj ŝij
	 


dr ¼
ð
D

Sijrivjdr; (11)

where we have defined the two stress tensors

sij = Z[riuj + rjui] � Pdij + Sij, (12a)

ŝij = Z[riûj + rjûi] � P̂dij. (12b)

Applying the divergence theorem to the above integral yields
the modified Lorentz reciprocal theoremð

@D

ûisij � uiŝij
	 


njdS ¼ �
ð
D

Sijri ûjdr; (13)

where qD is the boundary of D, n is the unit normal to the
boundary directed into the fluid domain, and dS is the bound-
ary surface element.

To apply this theorem we use the boundary conditions for v,
and choose boundary conditions for v̂ to be zero velocity on the
wall, and v̂ = Û on the disk. Substituting these into eqn (13)
we find

ÛiFi �UiF̂ i ¼ �
ð
D

Sijri ûjdr; (14)

where we identified the total (non-viscous) force on the disk F
as the integral of the (non-viscous) stress on its surface.57 From
the (translational) symmetry of the problem we expect the force
to be perpendicular to the wall, so choosing Û = ey we have

Fy ¼ UiF̂ i �
ð
D

Sijri ûjdr: (15)

This form of the reciprocal theorem is most helpful to us.
To apply (15) to the active nematic problem we set R = aQ +

rK (non-viscous part of the stress) and the solve for the
secondary velocity v̂ using

Zr2v̂ � rP̂ = 0, (16a)

v̂ = 0 on the wall, (16b)

v̂ = ey on the disk. (16c)

We are able to take advantage of the fact that the solution to
eqn (16) is already known, having first been found by Jeffrey
and Onishi,58 and later re-derived by Crowdy using complex
analysis.52 The rest of the paper is devoted to performing the
integrals in eqn (15) a task which is the main technical result of
this paper.

3.3 Active force

The linearity of eqn (15) allows the (non-viscous) force to be
split into an active and elastic contribution F = Fa + FK, where
the active contribution is

Fa ¼ �a
ð
D

Qijri v̂jdr: (17)

Before performing this integral it is instructive to integrate
by parts

Fa ¼ aÛj

ð
Disk

QijnidS þ a
ð
D

v̂jriQijdr; (18)

where we have used the boundary conditions on the disk to
factor out the constant Û in the surface integral. The first term
on the right hand side is the integral of the active stress over the
disk, and so contains no information about stress due to active
flows. These are contained in the second term which couples
the secondary flow to the driving term in the Stokes equation. It
is interesting to contrast with earlier work on particles in active
nematics using directors rather Q-tensors. Only the equivalent
of the first term was calculated there, as the required secondary
solution to the Stokes equations was unknown.36,54

To perform the integral we change to complex coordinates,
and integrate in the conformally mapped domain

Fa
y ¼ �a

ð
D

Qijri v̂jdr ¼ �2a
ð
D

Re
@v̂

@�z
�Q

� �
dr; (19)

where v̂ = v̂x + iv̂y and %Q = Q1 � iQ2 is the complex conjugate of Q.
Doing the integral yields an active force (with dimensions
reinstated)

Fa
y ¼ �

paRð�1þ rÞ2ð1þ rÞ �1þ r4 � 4r2 log r
� �

2r3 logr 1� r2 þ 1þ r2ð Þ log rð Þ ;

� 4
ffiffiffi
2
p

pRae1=2 þOðeÞ:

(20)

These results imply that at short distances, planar anchored
disks are repelled by active forces in contractile nematics, and
attracted in extensile ones. By switching the sign of a we see the
reverse is true in normal anchored nematics. We delay a physical
explanation for this till Section 4, where lubrication theory is
used to understand the forces origin.
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3.4 Elastic force

The elastic contribution to eqn (15) is

FK ¼ �
ð
D

sKijri v̂jdr

¼
ð
Disk

sKij v̂inidS þ
ð
D

v̂jrisKij dr:

(21)

where we have integrated by parts. Using r2Q = 0 and the
definition of rK, the second term vanishes. The elastic forces
therefore do not affect the flow and are given by the surface
integral of rK over the disk

FK ¼ Ûj

ð
Disk

sKij nidS: (22)

To perform the integral we write the stress and surface normal
vectors as complex variables sK = s11 + isK

12 and n = n1 + in2,
which after substitution give

FK ¼ �4K
I
Disk

Im½s�n�dS; (23)

¼ �4K
I
Disk

Re
@Q

@�z

@ �Q

@�z

d�z

dS
dS

� �
: (24)

We calculate this integral using the conformally mapped
coordinates, giving

FK ¼ 8pK
Rð1� r2Þ 2c0

2 þ 2c0c1 þ
X1
n¼1

2n2cn
2

"

þ nðnþ 1Þcncnþ1 þ nðn� 1Þcncn�1

#
;

(25)

where c0 = (r � 1)/2 log r, and cn are as defined in (9).
As shown in Fig. 4 (top) the series converges quickly and only two

terms in the sum are required for an accurate result; again because
two terms are the minimum to capture the quadrupole structure of
the defects. The asymptotics for small e are also dominated by these
terms, with the force diverging as e�1/2 as the disk approaches the
wall due to the increasing curvature in the nematic director.

FK � 2
ffiffiffi
2
p

Kp
R

e�1=2 þOð1Þ; (26)

This force is repulsive because the Landau–de Gennes free energy is
higher when the disk is closer to the wall and the nematic director is
more distorted.

3.5 Steady state

To calculate the steady state separation we substitute the active
and elastic forces into eqn (15), with the requirement that the
disk be force free.51 In steady state, the velocity of the disk, U,
vanishes, giving the condition FK + Fa = 0. Using this and the
sign of the active force, we conclude that planar (normal)
anchored disks have a stable steady state height when the
nematic is extensile (contractile) as otherwise all forces on
the disk are repulsive. Assuming this to be true we numerically
solve the force balance condition for e, with the results shown

in Fig. 4. These numerical solutions are compared against the
asymptotic result esteady = K/2aR2, derived by balancing the
leading order active and elastic terms.

4 Matched asymptotic analysis

The exact results we have derived give the force on the disk for
arbitrary e, but do not indicate where the force comes from. Is
the force dominated by the region under the disk, outside, or is
it from both? To investigate this we perform a matched
asymptotic analysis of the force integrals (17) and (22).59–61

4.1 Lubrication analysis

Before moving onto a formal asymptotic analysis of the problem
we first apply a naive lubrication analysis of eqn (4) by which we
mean neglecting horizontal derivatives for vertical ones62

qy
2Q2 = 0, (27a)

Zqy
2vx � qxP + aqyQ2 = 0. (27b)

The boundary conditions are vx = 0 on the disk and wall; Q2 = 0
on the wall; and Q2 E 2yd on the wall, where we have expanded
the boundary conditions for small disk angle. The distance
between the disk and the wall is approximately h(x) = e + x2/2,
and the disk angle is h0(x) = x. Using these we find Q2 = 2yx/h,

Fig. 4 (top) A log–log plot of the elastic force against e after including N
terms in the summation. After two terms there is an adequate result for
small e. (bottom) The steady state value of e against Ac = aR2/K. The
numerical result was calculated using 4 terms in the series for the elastic
force, and the asymptotic value is given by e = 1/2Ac.
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and a horizontal velocity

vx ¼
P0

2Z
yðy� hÞ � ax

hZ
yðy� hÞ; (28)

where P0 = qxP. If the disk moves upwards at velocity U then flux
arguments give the pressure as

P ¼ 2a log
h

R
� 6UZ

h2
: (29)

Unfortunately the active contribution diverges logarithmically. This
means that this lubrication theory must be matched to an outer
region to get a finite answer. This logarithmic divergence was also
found in the study of active nematic droplets, however it did not
cause problems because of the finite drop size.62 Substituting this
pressure into the velocity equation, we find all active flow terms
cancel out, meaning that the dominant active effect is from an active
pressure rather than active flows. This justifies our earlier assump-
tion of neglecting advection at leading order. Interestingly, integrat-
ing the pressure under the disk, we find the active force active to be

Fa � 4p
ffiffiffi
2
p

Rae1=2 þ divergent terms to be matched (30)

i.e. the finite part of the active pressure force gives the correct leading
order result.

One may wonder why we referred to the lubrication analysis
above as ‘naı̈ve’. This is because a more detailed asymptotic
analysis reveals that all Q terms are irrelevant to leading order
in e. This more detailed asymptotic analysis is given next.

4.2 Inner expansion

To regularise the divergent terms in (30) we use a matched
asymptotic analysis and split the domain into an inner and
outer region. We then solve the problem separately in these
regions, before matching them together. The inner region
corresponds to a small area under the disk as in Fig. 5. The
surface of the disk is at y = h(x), where

hðxÞ ¼ 1þ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

� eþ 1

2
x2 þ 1

8
x4 þ o x4

� �
: (31)

From this expansion we see that the inner variables are defined
by y = eY, and x = e1/2X, in which

hðxÞ
e
¼ HðXÞ ¼ 1þ 1

2
X2 þOðeÞ; (32)

and the angle of the disk is yd = h0(x) B e1/2H0(X). Substituting
these scaled variables into eqn (4), (5) and (16) leads us to pose
the expansions

Q1 = q1,0 + eq1,1 + . . ., (33a)

Q2 = e1/2q2,0 + e3/2q2,1 + . . ., (33b)

v̂x = e�1/2û0 + e1/2û1 + . . ., (33c)

v̂y = v̂0 + ev̂1 + . . ., (33d)

P̂ = e�3/2P̂0 + e�1/2P̂1 + . . ., (33e)

where the scaling of v̂x compared to v̂y is from incompressi-
bility. Substitution of these back into eqn (4) and (16) yields the
leading order equations

ZqY
2û0 � qXP̂0 = 0, (34a)

qYP̂0 = 0, (34b)

qY
2q1,0 = 0, (34c)

qY
2q2,0 = 0. (34d)

Solving these with appropriate boundary conditions (5) and
(16) gives

q1,0 = 1, (35a)

q2;0 ¼
2XY

H
; (35b)

û0 ¼
6XYðY �HÞ

H3
(35c)

v̂0 ¼
Y2 3H2 þ 6X2Y � 2H 3X2 þ Y

� �� �
H4

; (35d)

which are shown in Fig. 6. As with the naive analysis, these
inner solutions alone give a divergent force. We now calculate
the outer solution and match them together.

4.3 Outer expansion

The outer region corresponds to e = 0, or when the disk touches
the wall. To solve for Q and v̂ we will apply conformal mapping,
defining the variable z = m + ix =�2/z, with m,x real.41 Under this
map the region outside the disk transforms to the channel

Fig. 5 Inner and outer regions for matched asymptotic expansion. In the
outer region the disk is touching the wall. In the inner region the height of
the disk above the wall is parameterised as y = h(x), where x is the
coordinate along the wall.
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m A (�N,N), x A [0,1], where the plane wall maps to x = 0, the
disk to x = 1, and the point at infinity to m = x = 0.

We begin with Q, for which the boundary conditions (5)
translate to

Q = 1 at x = 0, (36a)

Q ¼ m� i

mþ i

� �2

at x ¼ 1; (36b)

and we have used Q = Q1 + iQ2. We solve Laplace’s equation by
Fourier transform in the m direction, with the solution

Q ¼ 1þ 4

ð1
�1

dk

2p
eikm�kðk� 1Þsinh kx

sinh k
: (37)

This can be integrated63 to give

Q ¼ 1� 2cð1� iz=2Þ þ 2cð1� i�z=2Þ

� cð1Þð1� iz=2Þ þ cð1Þð1� i�z=2Þ;
(38)

where c is the digamma function, and c(1) its derivative.

This solution, shown in Fig. 7 (top), exhibits two �1/2 topologi-
cal defects slightly below the equatorial line parallel to the
director orientation far from the inclusion at positions (x1/2, y1/

2) E (�1.484, 0.876)R. This can be compared to a disk in free
space where the defects are equatorial and their position is
known to be x1/2 E 1.236R,64 and so we see that the displace-
ment of the defect from the disk’s equatorial line is due to the
interaction between the disk and the wall.39 In contrast, we think
that the larger distance for the Q-tensor model is due to the
harmonic approximation of the Landau–de Gennes free energy
(2). This is because the higher order terms control the defect
size, with defects being larger for smaller values of A.39,53,64

With Q in hand we turn to the outer velocity of the secondary
problem, v̂, which solves the ordinary Stokes equations with
boundary conditions:

ûx + iûy = 0 on the wall, (39a)

ûx + iûy = i on the disk, (39b)

ûx + iûy = 0 at infinity. (39c)

There is an inconsistency in the boundary conditions where the
disk touches the wall, so we search for solutions that are valid

Fig. 6 Nematic director and secondary velocity in the inner region. (top)
The nematic director is parallel anchored to all surfaces with Q0 E 1
everywhere. (bottom) The velocity is zero on the wall, vertically upwards
on the disk, and has a stagnation point at the origin.

Fig. 7 Nematic director and secondary velocity in the outer limit. (top)
The nematic director is parallel anchored to all surfaces, becoming
uniformly horizontal at infinity. (bottom) The velocity diverges at the point
where the disk touches the wall and so we only plot its direction.
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everywhere except this point. As far as we are aware the solution
to this problem does not yet exist in the literature.

We begin by writing the stream function as combination of
two analytic functions65

ĉ = Im[%zf(z) + g(z)], (40)

from which the complex velocity is given by

ûx � iûy ¼ �zf 0ðzÞ þ g0ðzÞ � f ðzÞ; (41)

where 0 denotes a z derivative. Defining g0(z) = G(z) and
converting to z coordinates yields

ûx � iûy ¼ �
z2

z
f 0ðzÞ þ GðzÞ � f ðzÞ; (42)

where f (z) = f (z(z)). On the disk �z = z, and on the wall �z = z � 2i,
therefore the boundary conditions may be re-written as two
functional relations

�zf0(z) + G(z) � %f(z) = 0, (43a)

z2

2i � z
f 0ðzÞ þ GðzÞ � �f ðz� 2iÞ ¼ �i; (43b)

where �f ðzÞ ¼ f ð�zÞ. These two equations only depend on analytic
functions of z, and therefore hold over the entire channel. Sub-
tracting one from the other we arrive at a functional relation for f (z)

2izf0(z) + (2i � z)[%f(z) � %f(z � 2i) + i] = 0. (44)

This is solved by the polynomial

f ðzÞ ¼ 3i

4
z2 � 1

4
z3; (45)

and (45) into (43) determines G(z) to be

GðzÞ ¼ 3i

4
z2 � z3: (46)

With f (z) and G(z) we have the stream function and hence the full
secondary velocity field. This solution, shown in Fig. 7 (bottom),
satisfies all the boundary conditions and although regular in the z
plane, diverges at the touching point when converting back to real
coordinates.

To check that our inner and outer solutions match we take
the outer limit of the inner expansion and compare it to the
inner limit of the outer expansion.61 We find they match, with
the overlapping function given by

Q1,match B 1, (47a)

Q2;match �
4y

x
; (47b)

vx;match � �
24y

x3
; (47c)

vy;match � �
36y2

x4
: (47d)

4.4 Active force

The active force is given by the integral of f a = �aQijriv̂j over
the entire domain outside the disk. To see why we need

asymptotic matching let us calculate the inner contribution
to this force, which to leading order is given by

Fa
in ¼ � ae1=2

ðL
�L

ðH
0

@X û0 � @Y v̂0ð Þq1;0

þ @Y û0ð Þq2;0dXdY þOðeÞ;
(48)

where L is some length at which the inner solution fails. In
many problems this integral converges to a finite value as L
tends to infinity and the outer problem can be ignored.58,59 In
our case the integral diverges, implying that we must match to
an outer region

Fa
in ¼ ae1=2 4p

ffiffiffi
2
p
� 4L

h i
þO L�1

� �
: (49)

To perform matching we construct a globally valid asympto-
tic approximation to f a which is then integrated over the entire
domain. As f a combines two functions it mixes various powers
of e, which, although not a problem in the outer region (e = 0),
complicates matters in the inner region. To leading order f ainner

is given by eqn (48) converted back to outer, (x,y) coordinates.
To match f ainner to the outer integrand, f aouter, we take the

outer limit of the inner expansion and the inner limit of the
outer expansion.61 Comparing the two we find an overlapping
contribution

f aoverlap ¼ �
48ay
x4
þ 96ay2

x6
; (50)

which upon integration over the inner region gives Faoverlap B
�4ae1/2L + O(L�3), i.e. the overlap is responsible for the diver-
gence. This term will appear in both the inner and outer
contributions to the active force but with a relative minus
sign between them, cancelling when the two contributions
are added.

We now construct globally valid approximation according to

f auniform = f ain + f aout � f aoverlap, (51)

using which the total active force is Fa ¼
Ð
f auniformdr, where we

integrate using the conformal coordinates defined in Section
3.1. The result is

Fa � 4
ffiffiffi
2
p

pRae1=2 þOðeÞ; (52)

which agrees with the exact result from eqn (20), and we have
succeeded in regularising the naive result in (30). This result
indicates that the leading order contribution to the active force
comes from the curvature in the nematic director in a small
region under the disk.

4.5 Elastic force

The elastic force is calculated as a surface integral using
eqn (22). The leading order inner contribution is

FK ¼ Ûj

ð
Disk

sKij nidS � �e�1=2
ðL
�L

@q2;0
@Y

� �2

dX : (53)
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Substituting (35) gives the elastic force

FK � 2
ffiffiffi
2
p

Kp
R

e�1=2 � 16K

RL
þO L�3

� �
; (54)

which converges to a finite value as L tends to infinity and
confirms the exact result of eqn (26). Again, this result shows
that the leading order contribution to the elastic force is due to
the small region of nematic curvature under the disk.

5 Comparison of Q-tensor and
nematic director

Numerical studies of disks near walls in two dimensional
passive liquid crystals indicate that as the disk approaches
the wall, the topological defects also move closer.39 Although
these studies were based upon minimising the full Landau de-
Gennes free energy (2), for non-zero A, our analysis indicates

that some of the qualitative behaviour, such as defects moving
below the equator, may be captured by setting A to zero.

To understand the location and impact of the topological
defects, it is worth considering the opposite limit to what we
have done so far, i.e. letting the nematic become very stiff. This
corresponds to letting the A parameter in eqn (2) tend to
infinity such that the magnitude of the Q-tensor is fixed at
one. In this limit it is known that minimising the full Landau
de-Gennes free energy is equivalent to solving r2y = 0, where y
is the angle of the nematic director field.47 Using the director,
topological defects correspond to singularities in the angle and
must be added in by hand.

It is interesting to see how our analysis with A = 0 differs.
Unfortunately we do not find it possible to use y when the disk
is above the wall due to the multiple connectivity of the
domain. However when the disk is touching we may apply
the Fourier transform techniques of Section 4.3. Following the
same steps we used to find Q gives

y ¼ �2 arctan x
m
þ 2 arctan coth

pm
2
tan

px
2

� �
; (55)

where p/2 may be added to switch from planar to normal
anchoring. Note that y diverges at the point where the disk
touches the wall. Interestingly this solution has no visible
topological defects though the disk still has a net +1 charge,
and our Q tensor based solution had defects. As shown in
Fig. 8, this appears to be because the two �1/2 topological
defects move under and around the disk as it approaches,
merging to create a �1 defect at the point of contact. This only
happens in the y description because the defects are point-like
objects, whereas in in the Q tensor description the defects
always have a finite extent. Note that in the inner region, the
nematic textures found using either the Q-tensor or director
angle are the same, and so the leading order active and elastic
forces are identical.

6 Conclusions

We have shown that a disk immersed in active liquid crystals
can be attracted or repelled by walls depending on a combi-
nation of activity and anchoring conditions. In particular,
planar (normal) anchored disks are repelled (attracted) by
active forces when the nematic is contractile (extensile). When
the disk is sufficiently close to the wall and the flows are
sufficiently slow, we can obtain exact expressions for the
effective forces by combining tools from complex analysis and
the Lorentz reciprocal theorem. This theorem allowed us to
avoid solving the Stokes equations forced by active stresses, and
instead use a solution to the Stokes equations when activity was
zero. We then applied a matched asymptotic analysis to study
the same problem when the disk was very near the wall which
revealed that the leading order contribution to the force came
from the small region between the disk and the wall.

Our calculations are done in the strong elastic limit when the
active nematic affects the fluid velocity field but in which the
flow does not affect the nematic director field. Nevertheless we

Fig. 8 Director angle in the outer limit. (top) The nematic director is
parallel anchored to all surfaces, becomes uniformly horizontal at infinity,
and diverges where the disk touches the plane. (bottom) Schematic
illustration of what happens to the �1/2 topological defects as the disk
approaches and then touches the wall.
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expect qualitatively similar behaviour even when back-flow
is relevant. These results can be experimentally tested by placing
floating disks into two dimensional active nematic
films.20,23,27,66 Our results will be important when the disks are
close to the wall, or each other, whereas active turbulence will
dominate when they are far apart. As such, these effects will be
important when studying dense suspensions of colloidal disks,
and by combining activity and anchoring can perhaps be used to
enhance (or reduce) the self-assembly of active nematic colloids,
as in ref. 33. At very high activity, the nematic director field far
from the wall becomes highly disordered with associated hydro-
dynamic flows (this is sometimes called ‘‘active turbulence’’)
characterised by a typical lengthscale governed by the balance of
activity, elasticity and dissipation. We expect that our results
here will be relevant when the separation between the disk and
the wall is small compared to this lengthscale. Far from the wall,
in this highly active regime, the disks will be pushed around by
the chaotic flow.9 This problem is not suitable to detailed
mathematical analysis of the type we do here and is best studied
numerically. However it is possible that the fluctuating forces on
the disks could be approximated for by a random force with a
spectrum chosen to match that of the disordered flow.8,67 This is
a possible direction for future work in this field.

We must not forget that typically in these experiments20,23,27,66

the two dimensional active nematic film lies between two other
fluids and to be accurately modelled, one must include the fluid
dissipation from the three-dimensional fluids above and below
the film, a problem that was first popularised by Saffman and
Delbrück.68 It is well known that this implies that there is two-
dimensional Stokes behaviour only on length-scales much
smaller than the Saffman–Delbrück length.68–73 Hence our
calculations are valid only when this length is larger than all
the length-scales in the problem. Including the effect of a finite
Saffman–Delbrück length makes it hard to use complex analytic
techniques to solve for the velocity field and one will only
be able to obtain approximate results using the matched
asymptotic techniques outlined above. It is possible to go
beyond the strong anchoring limit by adding a surface anchor-
ing term in the free energy (2) to account for the finite
anchoring strength of the nematic.47 This alters the boundary
conditions on the disk and wall (5), and hence makes it difficult to
use complex analytic techniques.42 We leave this for the future.

We foresee two further extensions of this work: the first
being the problem of two disks meeting each other, rather than
one approaching a wall; the second being the same problem in
three dimensions, where complex analytic techniques could
not be used. For the first problem, the secondary velocity field
is known,74 but it is difficult to solve for Q. This is a known
problem, as even solving Laplace’s equation for a scalar field
with constant boundary conditions on two disks while going to
zero at infinity is famously hard.75,76 For the second problem of
a sphere approaching a wall, even the secondary velocity is
difficult as one must use bi-spherical coordinates.59,77 Moreover,
the nematic director configuration is much trickier as there is
not a unique director field that is planar or normal anchored
everywhere to the sphere.29
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Appendix: elastic stresses

Using Q, the full equations of active nematics are78

@tQþ v � rQ ¼ �1
g
dF
dQ

; (56a)

Zr2v � rP + ar�Q + r�rK = 0. (56b)

We neglect co-rotation and flow aligning terms as their stress
tensors are zero if r2Q = 0. We work with a simplified
free energy

F ¼
ð
dr
K

2
riQjk

� �
riQjk

� �
; (57)

but the same method holds for more complicated free energies.
To derive the elastic stress we follow78 and calculate the rate of
change of free energy.

dF

dt
¼
ð
dr
dF
dQ

@tQ ¼ �
ð
drKr2Q � @tQ; (58)

where we have integrated by parts and dropped a surface term,
assuming that Q has fixed boundary conditions on any surface.
We now replace qtQ using (56)

dF

dt
¼
ð
drvjrjQ � r2Q� K2

g
r2Q


 

2: (59)

Now consider the total change for a small time dF ¼ dF

dt
dt, and

balance the change in free energy due to the flow with the one

caused by stress.53ð
drKvjrjQ � r2Q ¼

ð
drsijrivj : (60)

Comparing each term we find a total stress

rK
ij ¼ �K riQklrjQkl �

1

2
dij rjQkl



 

2� �
: (61)
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F. Peruani, H. Löwen, R. Golestanian, U. B. Kaupp and
L. Alvarez, et al., J. Phys.: Condens. Matter, 2020, 32, 193001.

13 C. Maggi, J. Simmchen, F. Saglimbeni, J. Katuri, M. Dipalo,
F. De Angelis, S. Sanchez and R. Di Leonardo, Small, 2016,
12(4), 446–451.

14 K. J. Bishop, S. L. Biswal and B. Bharti, Annu. Rev. Chem.
Biomol. Eng., 2023, 14, 1–30.

15 C. P. Goodrich and M. P. Brenner, Proc. Natl. Acad. Sci.
U. S. A., 2017, 114, 257–262.
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