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Many-defect solutions in planar nematics:
interactions, spiral textures and
boundary conditions

Simon Čopar *a and Žiga Kos *abc

From incompressible flows to electrostatics, harmonic functions can provide solutions to many two-

dimensional problems and, similarly, the director field of a planar nematic can be determined using

complex analysis. We derive a closed-form solution for a quasi-steady state director field induced by an

arbitrarily large set of point defects and circular inclusions with or without fixed rotational degrees of

freedom, and compute the forces and torques acting on each defect or inclusion. We show that a

complete solution must include two types of singularities, generating a defect winding number and its

spiral texture, which have a direct effect on defect equilibrium textures and their dynamics. The solution

accounts for discrete degeneracy of topologically distinct free energy minima which can be obtained by

defect braiding. The derived formalism can be readily applied to equilibrium and slowly evolving nematic

textures for active or passive fluids with multiple defects present within the orientational order.

I. Introduction

Interactions, dynamics, and orientation of topological defects1

govern the behaviour of materials with liquid crystal-like orien-
tational order. Equilibrium multi-defect textures can be rea-
lised by photo patterning of the alignment axis on one of the
surfaces2 or by patterning of micro-pillars.3 Such photo-
patterned templates can guide the swimming direction of
bacteria4,5 and artificial swimmers,6 produce a tuneable photo-
nic response,7 or can be used to study elastic properties and
reconfigurations of nematic disclinations.8–11 The applicability
of such designed photo-patterned templates generally depends
on the shape and orientations of topological defects. Topolo-
gical defects play a major role also for other symmetries of the
orientational order parameter, for example, escaped structure
in nematic cells can exhibit defects in the effective two-
dimensional polar vector field,12 polar order can emerge in
ferroelectric nematics13 and in active biological materials.14

Disclinations in the hexatic phase and their mutual interac-
tions are a key mechanism in the melting of two-dimensional
crystals.15 Distinctly out of equilibrium, driven nematic layers16

and active nematics17 are characterized by the proliferation and

annihilation of topological defects. In active nematics, defects
show disordered dynamics, called active turbulence, or form
ordered textures,18 and have biologically-relevant properties.19

One approach towards modelling driven or active defect
dynamics are particle-like models,20–23 based on the descrip-
tion of nematic alignment, where the director field is in
equilibrium, apart from the positions and orientations of
defects. Interactions and self-propagation of defects lead to
their movement and reorientations. As shown by the above
examples, analytical models of various liquid crystalline tex-
tures are needed as initial or boundary conditions and, more
importantly, to derive general theorems about emergent orien-
tational structures and their dynamics.

Complex analysis is an important tool to generate solutions
of field theories in two dimensions. As all complex analytical
functions solve the Laplace equation, models with energy
proportional to (rf)2 can be solved by finding analytical
functions that satisfy the boundary conditions. Additionally,
conformal mapping can be used to transform the problem to a
domain where solution can be readily obtained. A well known
example is 2D hydrodynamics of ideal incompressible fluids,
with Kutta–Joukowsky theory giving the lift generated by an
airfoil by transforming a solution on a unit circle to a realistic
airfoil domain.24 Complex analysis is also often used to solve
for two-dimensional potentials in electrostatics25 and solitonic
solutions in ferromagnets.26 A similar approach can be taken
for fluids with an orientational order parameter isomorphic to
einf, where n describes the polar (n = 1), nematic (n = 2), or
higher-order symmetry, and f the polar angle of the
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Slovenia
c International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-

SKCM2), Hiroshima University, Higashi-Hiroshima, Japan

Received 16th May 2024,
Accepted 5th August 2024

DOI: 10.1039/d4sm00586d

rsc.li/soft-matter-journal

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
/1

8/
20

26
 9

:2
6:

55
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-7566-0260
https://orcid.org/0000-0002-2888-996X
http://crossmark.crossref.org/dialog/?doi=10.1039/d4sm00586d&domain=pdf&date_stamp=2024-08-16
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00586d
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM020035


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 6894–6906 |  6895

orientational order. For example, in the approximation of a
single elastic constant, alignment of the nematic liquid crystals
restricted to the 2D Euclidean plane can be described by a free

energy
K

2

Ð
ðrfÞ2d2r, where K is the elastic constant and -n =

(cosf,sinf) is the director field. The equilibrium texture is
solved by harmonic functions f and singular points of f
correspond to topological defects (disclinations).

The conformal description of topological defects is regularly
used to generate analytical models of liquid crystalline textures.
Solutions for non-trivial planar geometries are often achieved
by conformal mapping,27–33 or by stereographic projection for
spherical domains,34,35 for describing defects dynamics in
active nematics in Q-tensor formalism,36 and active nematic
textures in the director formalism.37 Complex field approach
can also be used to solve for a shape of nematic domains with a
free boundary under different anchoring conditions.28,38 Some
of the well known solutions are the core energy of a single
nematic defect,39,40 the director field and the interaction energy
of a pair of defects,41 and drag force and mobility tensor for
moving defects.40,42 These solutions focus on topological
defects, where the director field rotates by a multiple of p along
a loop circumnavigating the defect core. Another singular
solution of the planar Laplace equation is a type of defect,
where the director polar angle changes logarithmically with the
distance from the defect core.40 Such spiral solutions with a
radially varying director naturally occur in, for example, ‘magic’
spiral problems.39,43,44 However, a solution for an arbitrary
number of defects with a given orientation and boundary
condition has to include a combination of topological defects
and logarithmic singularities. No such general framework has
yet been formulated.

In this paper, we develop a complete formalism for planar
nematic textures involving an arbitrarily large set of point
defects with arbitrary winding numbers and logarithmic singu-
larities, quantified with the newly introduced spiral charge. We
explore the expression for the director azimuthal angle f in the
form of

fðrÞ ¼ f0 þ
X
i

kiyiðrÞ þ mi ln
riðrÞ
ei

� �
; (1)

where ki is the winding number of i-th defect, mi its spiral
charge, ei the defect core radial size and (ri(r),yi(r)) the relative
polar positions from i-th defect to r. Using complex analysis, we
derive the interaction energy between nematic defects. Within
the complex analysis, winding number ki and spiral charge mi

can be joined into a complex winding number ki = ki + imi. While
ki is topologically quantized to half-integer values, mi is a
continuous variable. We show that constrained energy optimi-
zation problems for a set of topological defects and colloidal
particle inclusions represented as defects with prescribed sur-
face alignment of the director generally lead to non-zero spiral
charge and metastable solutions. Finally, we derive a general
expression for forces and torques acting on topological defects
and show how spiral charges lead to non-central forces, spiral
annihilation trajectories and defect braiding.

II. Conformal formulation of the
elastic free energy

In the following sections, we consider planar director fields
under the assumption of equal elastic constants. Specifically,
we are dealing with equilibrium director fields in the bulk
around a set of point defects with fixed positions and orienta-
tions, and a prescribed far-field boundary condition. To obtain
an analytical description of the director field and the free
energy, we express positional coordinate pairs in the form of
a complex number, z = x + iy = reiy. We can express the director
field in the complex notation as n = cosf + i sinf = eif, where f
is the director orientation angle. Local equilibrium corresponds
to r2f = 0, which we automatically satisfy by writing f as an
analytic function. In order to do so, we take f as a real part of a
complex-valued function

F(z) = f(z) + ic(z) (2)

and define the director orientation angle as f = Re(F). While
c = Im(F) has no direct physical meaning, it is connected to f
through Cauchy–Riemann equations for analytic expressions of
F, which as we show in eqn (6) considerably simplifies the
evaluations of the free energy integrals. Please note that instead
of directly writing an analytic expression for F(z), we can
deduce it from the construction of the director field as n =
w(z)/|w(z)| by introducing

w(z) = eiF(z) = e�c(z)eif(z). (3)

The benefit of this approach is that the poles and zeroes of the
function w(z) correspond to the defects in the nematic, so we
can ensure defect positions and winding numbers by writing
w(z) in a factorized form (see Section III). F(z) can be directly
computed from the expression for w(z) by taking its complex
logarithm F(z) = �i log(w(z)). Due to the nature of the complex
logarithm, the branch cuts in F(z) are unavoidable and must be
carefully considered when evaluating the free energy.

The nematic elastic energy can be expressed in the regime of
one-elastic constant K as

F ¼ K

2

ðð
jrfj2dxdy: (4)

From now on we will omit the constant pre-factor
K

2
. We can

reparameterize the free energy by the use of Green’s identity

F ¼
I

fðrf � mÞdl ¼
I

fðrc � tÞdl ¼
I

f
@c
@l

dl

¼
I

fdc; (5)

where the integration is performed over the counterclockwise
contour, parameterized by the arc length l, an outward
normal n, and a tangent t. We have considered the local
equilibrium condition r2f = 0 and the relation rf�n =
rc�t, which is obtained from Cauchy–Riemann equations for
F = f + ic. Considering |rf|2 = |rc|2 which follows
from Cauchy–Riemann equations, and exchanging the roles
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of c and f, we can also derive

F ¼
I

fdc ¼ �
I

cdf: (6)

With appropriate choices of contours, and taking into account
branch cuts, eqn (6) is easy to compute, as we show in Section
IV. For instance, along the curves of constant c or f, the
integrals in eqn (6) simply reduce to differences.

III. Spiral charge

We construct point defect solutions as complex functions with
a singularity at the coordinate origin in the form of

w(z) = eif0(z/e)k+im = (r/e)k+imeiy(k+im)+if0, (7)

where k and m are the winding number and the spiral charge,
respectively, which we discuss in detail below. To satisfy the
nematic symmetry n B �n, the winding number can take any
half-integer value. The denominator e ensures correct dimen-
sions and can be set to the size of the singular defect core, or in
case the defect is bound by a larger circular particle inclusion,
the size of the particle. From here on, we treat both particle
inclusions and real singularities in the nematic director equally
as ideal point defects. When m = 0, eqn (7) leads to the well
known ansatz for 2D nematics, expressed as square roots of
complex rational functions with poles and zeroes corres-
ponding to the defects with positive and negative winding
numbers. The additional rotation f0 corresponds to a rigid
rotation of the defect director profiles around the center for

k a 1 and to the parametric family of radial and circular defect
profiles for k = 1 (Fig. 1b–d).

We can extract the complex polar angle F(z) = f(z) + ic(z) by
taking a logarithm of eqn (7):

fðzÞ ¼ f0 þ kyþ m log
r

e
; (8)

cðzÞ ¼ my� k log
r

e
: (9)

The director polar angle f matches the standard m = 0 defect
profile at r = e, and spirals outwards logarithmically (Fig. 1b–h).
Unlike the half-integer restricted winding number k, the spiral
charge m can assume any real value, representing the pitch of a
logarithmic spiral seen in the contours of constant angle f(z)
(Fig. 1). This radius-dependent spiralling is often disregarded
in literature unless the geometry explicitly requires it.39,40 The
continuous nature of m ensures this quantity is not topologi-
cally protected from changing. It can relax to reduce the overall
elastic free energy of the system.

The singularity at the origin has a diverging elastic energy,
the nematic region is truncated at a finite radius e, representing
the size of the defect core. In the far field, we bound the system
at a large radius R, and integrate over the contour in Fig. 1a.
The elastic energy

F ¼ 2p k2 þ m2
� �

ln
R

e
(10)

generalizes the well known result at m = 040 and diverges at
R - N. Both the half-integer winding number k and the spiral
charge m can be combined into a complex generalisation of the
winding number k = k + im, which is a topological invariant in

Fig. 1 Point defects with different complex winding numbers. (a) A schematic showing the integration contour avoiding the branch cut, and the notation
for the polar coordinates, and the radii of the outer and inner contour. (b) and (c) A radial defect profile without and with spiral charge. (d) An additional
+p/2 rotation induces a tangential anchoring on the central defect. (e)–(h) Defects of other winding numbers with added spiral charge. The colour
shading shows c(z), which has a branch cut on the negative real axis if ma 0. The more familiar branch cut in the f(z), which is present at all k a 0, is not
shown. Contours of f and c form an orthogonal curvilinear grid obeying the conformal properties. Ellipses represent the director field n.
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the sense that the quantity

k ¼ kþ im ¼
I
@F
@l

dl (11)

equals the sum of the complex winding numbers of the defects
enclosed by the integration path. In the far field, the energy
(eqn (10)) will diverge unless the total k equals zero. As such, we
expect that the principle of topological charge neutrality in bulk
samples extends to the complex winding numbers. In con-
strained samples, the total real winding number k can be fixed
by the boundary conditions, and the total imaginary winding
number m can equilibrate at a nonzero value according to free
energy minimization. The boundary conditions also set the
uniform phase f0.

IV. Pair interactions

Consider now a pair of topological defects with winding num-
bers k1 = k1 + im1 and k2 = k2 + im2 at positions z =�d/2. We allow
the core radii to be different, which is reasonable if the winding
numbers themselves differ, or if one of the defects is induced
by the anchoring on a small circular colloidal inclusion (see

Fig. 3 for an example). The complex director angle can be
written as a direct sum of two defect profiles:

FðzÞ ¼ f0 � ik1 log
zþ d=2

e1
� ik2 log

z� d=2

e2
(12)

and split into components,

f ¼ f0 þ k1y1 þ m1 ln
r1

e1
þ k2y2 þ m2 ln

r2

e2
; (13)

c ¼ m1y1 � k1 ln
r1

e1
þ m2y2 � k2 ln

r2

e2
: (14)

The relative polar positions (r1,y1) and (r2,y2) from each defect
to the point in question (see Fig. 2a for a schematic) are a useful
representation, because the y1,2 parts control the position of
the branch cuts by deciding where along the circle we make the
jump by 2p. If the sum of the winding numbers is zero, k1 + k2 =
0, the branch cut can be localized to the line between the
defects.

The defect pair free energy is given by integrating eqn (6)
along the contour shown in Fig. 2a. Considering the confine-
ment radius R that is much larger than defect–defect separation
d, yields the free energy that completely decouples the winding

Fig. 2 Defect pairs with director field streamlines (blue) and contours of a constant orientation f (black). (a) A sketch of the integration contour and the
notation for a pair of defects with in principal different core radii. (b) and (c) Well known solutions for a pair of �1

2
and�1 defects with core radii e = 0.1 and

zero spiral charge terms. The case of �1
2

shows a sign discontinuity in the streamlines due to half-integer winding numbers (shown in red). (d)–(f) Three

solutions for a pair of fixed position defects with prescribed far field direction fN, prescribed homeotropic anchoring on the radial defect (left, core radius
0.15), and unconstrained hyperbolic defect (right, core radius 0.05). The solutions differ by an increasing number of np windings on the radial defect. The
(d) configuration has the lowest energy, but all are local minima. The radius of the outer boundary is set to R = 10.
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numbers and the spiral charges, F = Fk + Fm:

Fk ¼ 2p k1 þ k2ð Þ k1 log
R

e1
þ k2 log

R

e2

� �
� k1k2 log

d

e1
þ log

d

e2

� �� 	
(15)

Fm ¼ 2p m1 þ m2ð Þ m1 log
R

e1
þ m2 log

R

e2

� �
� m1m2 log

d

e1
þ log

d

e2

� �� 	
:

(16)

The first term in each part describes the far-field contribution
which is positive definite, and vanishes only when the system is
charge neutral. This is fulfilled only when the winding numbers
are opposite, and when the defects are spiralling in oppositely
oriented but equally tight spirals. The second terms describe
the pair interaction proportional to the coupling of the winding
numbers, and the coupling of the spiral charges, which act as
two independent charges that each defect possesses – one
quantized and one continuous, with opposite charges feeling
an attractive force.

The free energy is the basis for finding equilibrium director
configurations at fixed boundaries, or computing forces and
torques acting on defects and inclusions. The complete sym-
metry between winding and spiral charges with no cross terms
indicates that the only way for these contributions to couple is
through boundary conditions, which we will explore later.

V. Energy minimization

Consider a problem of finding the director solution for fixed
boundaries, which corresponds to a fixed far-field and fixed
defect positions and orientations. As the winding numbers are
topologically protected, the remaining degrees of freedom of
the system are the global phase f0 and spiral charges mi. These
degrees of freedom are not coupled by the elastic free energy
itself, but by additional constraints that may impose relations
between them. Boundary conditions are requirements imposed
on the orientation f(z) at the outer edge or on the particle
surfaces, when they are realized as particle inclusions or fixed
by external fields. To apply the boundary conditions, f(z) must
be well defined on the boundary, which requires correct hand-
ling of branch cuts. In this section, we show energy minimiza-
tion for a defect pair and a fixed far-field, while in the next
section we provide a general formalism for an arbitrary number
of defects.

The free energy is a positive definite quadratic form in terms
of the spiral charges m1 and m2, and in the absence of boundary
conditions, reaches a global minimum when all spiral charges
are zero. Applying constraints changes that. Consider an exam-
ple with a k1 = +1 defect enforced by a circular inclusion with a
radius e1 enforcing radial director, an accompanying k2 = �1
defect with core radius e2 pinned at the distance d along the
x axis, and homogeneous far-field in the direction f(R) = fN.

The boundary condition on the far-field director (eqn (13)
under the limit R c d) yields the following constraint:

fðRÞ � f0 þ m1 log
R

e1
þ m2 log

R

e2
¼ f1: (17)

To apply the boundary condition on the radial particle, we
decompose the director into the contribution affected by the
branch cut, and the rest:

f ¼ k1y1 þ k2y2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
fk

þf0 þ m1 ln
r1

e1
þ m2 ln

r2

e2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fm

: (18)

Let both angles y1 and y2 have an origin pointing to the right, as
shown in Fig. 2a, and range in the interval (�p,p). On the
circular path around the radial defect at r1 = e1, the part fk(y1)
has a value of p + y1 on the upper half-space, and �p + y1 on the
lower half-space. This is consistent with the radial condition on
the particle, and it would remain consistent if the branch cuts
were chosen in a different way. Note that fk has a constant rate
with dfk/dy1 = k1 only in the limit e1 - 0, so the boundary
condition is not met exactly for finitely sized particles. Due to
the nematic symmetry, fm can be any integer multiple of a half-
turn np without violating the boundary condition, so each n
represents a valid local free energy minimum with different
director profile. This discrete degeneracy of solutions is true for
any defect with a prescribed boundary condition. Note that fm

is not constant on this path in general due to a finite size of the
core, but in approximation, we can take the value at the center
of the defect:

fm z1ð Þ � f0 þ m2 ln
d

e2
¼ np: (19)

This approximation is valid for d c e1, and is useful for our
discussion, as it will allow us to draw more general conclusions.
As the free energy is a quadratic form, and all the constraints
are linear in f0, m1 and m2, this is an exactly solvable problem.
With two constraints (eqn (17) and (19)) and three variables (f0,
m1 and m2), free energy minimization is necessary, and yields
the solution m1 = (fN � np)/log(R/e1), m2 = 0, f0 = np, shown in
Fig. 2d–f for different values of n = �1, 0, 1. In the limit R -N,
the solution is m1 = m2 = 0. However, the value of the free energy
at the minimum, F = (fN � np)2/log(R/e1), shows that the
impact of the far-field boundary condition becomes less and
less significant with the system size. With enough space, a very
slow spiral with negligible elastic cost is enough to match any
enforced far-field orientation fN. If instead, we assume net
neutrality from the start, m1 = �m2, to ensure asymptotically
homogeneous far-field, there are enough constraints to com-
pute all three unknowns, and we obtain the solution m1 = �m2 =
(fN � np)/log(d/e1), f0 = (fN log(d/e2) + np log(e2/e1))/log(d/e1).
Note that this solution does not depend on R at all, because
charge neutrality ensures far-field homogeneity which adds no
elastic energy when system is enlarged. However, at finite R,
this solution has a higher free energy than the previously
calculated solution which used the extra degree of freedom of
nonzero total spiral charge to diminish the elastic energy even
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further. Alternatively, fN can be left unconstrained (minimised
over), which corresponds to an infinite plane. The way to model
infinite systems without imposing an artificial boundary is thus
to enforce spiral charge neutrality and minimize over the far-
field orientations, in above example, this yields fN = np. This
solution then coincides with the bounded solution in the limit
R - N.

An important aspect of this problem is that the length scales
are hierarchically well separated. The size of the particles or
defect cores must be significantly smaller than the separation
between them, e { d, so that the boundary conditions on the
circuits of radius e around the defects can be accurately met. If
the particles are too close together, spatial variation of the
director field f(z) caused by surrounding particles, cause a
deviation from the ideal boundary condition, even though the
conditions are still matched in an average sense. Such configu-
ration can still be sufficient to create initial conditions for
further numerical simulations. A similar condition applies to
the size of the entire system that should be much larger than
interparticle separation, R c d. For more tightly confined
systems, the method of mirror charges can be used to improve
upon our approximation in particular cases that allow it, or an
exact solution can be obtained if we can find a conformal
mapping from the nematic domain to one where boundary
conditions can be met, such as used by Tarnavskyy et al.,29–31

instead of just using point defects represented by simple zeroes
and poles.

An important feature of the energy minimisation described
above is that we obtain not only a single solution, but a family
of local energy minima, enumerated by n, i.e. the number of p
turns the director makes to match the boundary condition.
Each solution does have a different free energy, but the discrete
nature of the solutions means they are metastable, and more
than one can be realised in experiments, depending on the
initial condition. It may also be possible to switch between
them with an appropriate manipulation technique.

VI. Many-body generalisation

The minimal model of two interacting defects, described in the
previous section, can be generalised to a general system of N
defects. Using the same procedure of contour integration, we
arrive at a general form for the free energy (shown for m-part, k-
part being again the same),

Fm ¼ 2p
X
i

mi
X
j

mj log
R

ej
�
X
i;j;iaj

mimj log
dij

ej

( )
; (20)

where dij = |zi � zj| are the distances between the defects.
However, we also know that the winding number on the outer
boundary must match the sum of all the winding numbers on
the inside, but with inverted sense of circulation, so we can
assign the outer boundary the charge k0 ¼ �

P
i

ki. This form

makes it apparent, that the far boundary acts like just another
defect, far enough that distances from all other defects can be

treated as equal to d0j = R. Möbius transformations can map any
of the defects to infinity while preserving the topology of the
solution, so the choice of which defect sits at the infinity and
represents the outer boundary, is arbitrary and does not affect
the form of the free energy. This is helpful for understanding
the symmetry behind the system, but for the further discussion,
we will not extend the system of equations with k0. In the limit
of a large system size, R - N, the first term of eqn (20)
dominates the second and they decouple in scale. With the
diverging logarithmic terms, the first term can only be finite ifP
i

mi ¼ �m0 ¼ 0, and thus the second term is minimised within

the states with zero total spiral charge. However, this limit
converges extremely slowly, so for simulating unbounded sys-
tems, it is beneficial to enforce neutrality exactly, and minimise
over the far field boundary orientations, as discussed in the
previous section for the case of a defect pair. We derive the free
energy expression for multiple defects in unbounded uncon-
strained space under assumption of net neutrality in Appendix
B. The formalism below assumes a fixed far-field at a far
boundary at distance R from the defects without the assump-
tion of net-neutrality.

The free energy expression (eqn (20)) can be rewritten in the
matrix form,

Fm ¼ 2plMl ¼ 2plðO�DÞl; Oij ¼ log
R

ej
;

Diaj ¼ log
dij

ej
:

(21)

where it is noteworthy that the individual matrices O and D are
not symmetric unless the defect cores are all the same size. On
the contrary, the introduced energy matrix M that contains the
information about the entire system composed of the far-field
part O and the pair interaction part D, is symmetric and
positive semi-definite, as expected for an energy operator (see
Appendix A for proof). It can be rewritten, if convenient, as Mij =
log(R/dij), if we define the self-distance dii � ei. The matrix for
the k part is identical.

To apply the boundary conditions, we take the same steps
we took for the two defects, evaluating the director angle on a
path around each defect, and neglecting the displacement from
the core radius. Eqn (18) rewrites into

f zið Þ ¼ kiyi þ
X
jai

kjyij þ f0 þ
X
jai

mj log
dij

ej
;

yij ¼ arg zi � zj
� �

:

(22)

As before, the first term ensures the correct winding number,
the second is the contribution of all the rest of the defects
where correct branches must be selected for each term, and the
last term involves the unknown spiral charges mj. The first term
by itself can be thought of as the defect profile in its ‘‘canoni-
cal’’ orientation (when the director at position y = 0 points
along the x axis), the remaining terms modify this orientation
due to other defects, and together, they must match the
orientation (rotation with respect to the canonical orientation)
we enforce at the defect – the boundary condition bi.
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The difference fi between the boundary orientation bi and
the k-contribution of the rest of the defects equals the angle
that must be accumulated by the m-part, and may be comple-
mented by an arbitrary multiple of p due to rotational symme-
tries of the director,

fi � bi �
X
jai

kjyij þ nip ¼ f0 þ
X
jai

mj log
dij

ej
: (23)

Fig. 3 shows an example of changing ni at one of the defects.
The boundary condition on the outer boundary can be written
in a similar way,

f0 � b0 þ n0p ¼ f0 þ
X
j

mj log
R

ej
; (24)

where the k-contributions of all of the defects in this case
simply ensure correct winding. Due to the additional degree of
freedom f0, we can write eqn (23) and (24) in the form of an
extended (N + 1) � (N + 1) linear system:

f0
f

� �
¼ 1 xT

1 D

� �
f0

l

� �
; oi ¼ log

R

ei
; (25)

where 1 is a vector with all values equal to 1. The distance
matrix D and the matrix O = 1 # x are the same that appear in
the expression for the free energy (eqn (21)).

We want to find a free energy minimum corresponding to a
constrained orientation of some of the defects. To achieve this,
free energy has to be reparameterized in terms of fi terms rather
then mi. As some of the defects or the outer boundary might not
be necessarily fixed, some of the components fi may be uncon-
strained ‘‘slack variables’’ that need to be minimized over to
find the ground state. We compute the block-wise inverse of the
constraint matrix

1 xT

1 D

� ��1
¼ 1� xM�11 xM�1

M�11 �M�1

� �
(26)

and apply it to eqn (25). The resulting expression for the spiral
charges

l = M�1(f01 � f). (27)

can be substituted into eqn (21), to obtain the free energy,
expressed in terms of fi,

F ¼ 2pkMkþ 2p
f0
f

� �T
1M�11 �1M�1

�M�11 M�1

� �
f0
f

� �
; (28)

which as a quadratic functional can easily be minimised with
respect to any subset of fi that are not yet constrained by the
boundary condition. This procedure can solve for any number
of constraints, from a fully constrained case, where inversion of
eqn (25) is the only step, and no minimisable degrees of
freedom remain, to the fully unconstrained case with the trivial
solution mi = 0.

For any constraint, there is an infinite discrete set of local
minima, parameterized by indices ni, as shown for selected
values of ni in Fig. 3. The meaning of these indices reveals that a
system of defects with m constraints has m � 1 integer-valued
topological indices (excluding one due to the fact that adding
the same multiple of p to the entire director changes nothing).
Varying the index ni changes the number of relative half-turns
the director makes between i-th defect and all other con-
strained defects. A system of a large number of constrained
2D defects, such as a lattice of micropillars, colloidal inclusions
or other topological obstructions with fixed boundary condi-
tions, will thus always be multistable, with a multidimensional
lattice of multistable states. Although there will be a practical
limit on heavily wound spirals that are hard to create and
stabilize, we expect at least a limited number of metastable
states. Although this solution was derived for small circular
defect-inducing boundaries, the topology and multiplicity of
solutions will hold for inclusions of arbitrary shape with
topology of a disk, as long as no additional singularities appear
on the surface itself.

The values of the indices ni can be set in advance to obtain
solutions for each set of indices. Alternatively, we can view the
final system of equations as a quadratic minimization problem
with m � 1 discrete variables, N � m continuous variables and
one zero-mode. In this view, constraining the director on each
boundary quantizes one dimension of the parameter space.

Fig. 3 Four director field solutions for a regular lattice of 9 fixed homeotropic particles, accompanied by 8 defects with fixed positions. All 8 defects have
the real part of the winding number equal to k = �1, and zero spiral charge m = 0, while the defects that represent particles are constrained and in general
have nonzero spiral charges. The solutions shown differ by the amount of extra winding np, n =�1, 0, 1, 2, for the central particle. In general, each particle
with constrained boundary director has its own discrete index enumerating the local energy minima, although in most cases, extreme spiral charges are
not physically plausible.
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VII. Forces and torques

The gradient of the free energy (eqn (28)) with respect to
individual defect coordinates zi gives a quasi-static approxi-
mation of a force acting on each defect, assuming the director
reconfiguration time is much faster than the defect motion.
The dependence on inter-particle distances resides both in the
matrix M (defined in eqn (21)) and in f terms (defined in
eqn (23)) for defects with prescribed boundary conditions.
The gradient can thus be symbolically (keeping in mind matrix
and vector nature of the variables) written as

riF ¼
@F

@M
riM þ

@F

@f
rif ; (29)

with ri representing the derivative with respect to the coordi-
nates zi of i-th defect. The first term reduces to 2pkriMk �
2plriMl, with the minus sign stemming from the fact, that the
free energy is differentiated at constant f, not at constant l. The
second term is zero for unconstrained degrees of freedom,
which are minimised over f. After some simplification, we
obtain the force on the i-th defect

F i ¼ �riF ¼ �2p kriMk� lriMl� 2lrif½ �; (30)

where f was expressed in terms of l to simplify the expression.
The spiral charges l are the solution of the minimization of
eqn (28) and depend on which constraints are imposed.

The first term gives rise to pairwise central forces obeying an
inverse distance law:

2p kriMkð Þ ¼ �4p
X
j;jai

kikj
zi � zj

dij2
; (31)

The second term has the same direction and distance scaling
for the spiral charge contributions. The final term contains the
effect of the boundary condition vector f, while f0 is irrelevant,
as it does not depend on particle positions. The components
with no constraints (the slack variables) do not contribute to

this term, while the constrained components differentiate as

rifj ¼ �
X
laj

klriyjl

¼ �
X
laj

kl
i zi � zlð Þ

dil2
dij � ki

i zi � zj
� �
dij2

1� dij
� �

; (32)

giving a contribution of constraint j to the force on the particle
i. This term is weighted by the coefficients l, so the amount of
spiral charge regulates the amount each defect can influence
others. The presence of i multiplied by the distance vector
between defect pairs, describes a tangential force that is
perpendicular to the distance vector. The first term in
eqn (32) represents the reaction force acted upon a constrained
particle itself by all other particles, while the second term in
eqn (32) is the force exerted by a constraint on a different
particle.

We illustrate the importance of orientational constraints on
the forces acting on the defect pair in Fig. 4. Without orienta-
tional contraints, all spiral charges are zero and the forces are
central (Fig. 4a). The magnitude and the direction of forces
changes if both defects are constrained (Fig. 4b) or if one of
them is constrained (Fig. 4c and d). One possibility to prescribe
the orientation of a defect profile is to determine the anchoring
of nematic molecules at the surface of a colloidal inclusion with
winding number k = +1. In Fig. 5, we show how switching
between homeotropic and tangential anchoring at the surface
of one inclusion alters the forces on each defect within the
system.

In addition to forces, the director field also imparts torques
on the particles. Torques reflect energy minimization by chan-
ging the boundary condition vector b in eqn (23). However,
rotation of the boundary condition is nontrivially connected to
rotation of particles. For instance, a particle with k = 1 is
invariant to rotation, and for a particle with k = 0, rotation of
the particle by some angle results in rotation of the boundary
condition by the same angle. Considering the free energy

Fig. 4 Forces acting on a �1
2

defect pair with different constraints. (a) Without constraints, the forces are radial. (b)–(d) Defects with fixed boundary
condition are circled in red, with a red line indicating the preferred direction at yi = 0 position. Presence of boundary conditions induces tangential force
components. The far field direction, marked in the corner, is fixed at the distance R = 10, compared to the inter-particle distance d12 = 2 and defect radii e
= 0.15.
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expression in eqn (28), the torque on i-th particle reduces to

T i ¼ � 1� kið Þ@F
@bi
¼ 1� kið Þ4pmi: (33)

The spiral charge mi therefore has a direct interpretation as a
restoring torque that aims to unwind the spiral.

With forces and torques computable for every configuration,
one can write down effective dynamic equations

_zi ¼ gtiF i; _bi ¼ griT i; (34)

where gti and gri are the translational and rotational drag coefficients
of the i-th particle, respectively, and bi = bi(1 � ki)

�1 is the physical
rotation angle of the particle. Fig. 6(a) shows an example,
how the constraints on the defect profile orientations lead
to spiral trajectories in the case where a �1/2 defect pair is

let to annihilate at fixed defect profile orientations. Without the
orientational constraints, the defects would annihilate in a
straight line. Using finite translational and orientational drag
coefficients, one could in principle observe a range of annihila-
tion trajectories from straight lines to spirals.

Spiral charge can be modified by not only changing the
orientations of defects, but also by changing defect positions.
Eqn (23) tells us that the orientation of a defect is determined
from the contributions from all other defects through the
boundary condition bi:

bi ¼ f0 þ
X
j

mj log
dij

ej
þ
X
jai

kjyij þ nip; (35)

where ni is an integer. For a fixed defect profile orientation (at

Fig. 5 Forces acting on a set of �1
2

and �1 defects, with a boundary condition on a single +1 defect, which could represent a micropillar or a colloidal
inclusion. Homeotropic and planar alignment results in different forces. The boundary condition is at R = 10, the size is e = 0.15 for the large defects
and e = 0.1 for the small defects.

Fig. 6 Annihilation and braiding of a �1/2 defect pair with a fixed orientation. Defects have equal core sizes (e1 = e2 = e). (a) Non-central forces lead to
spiral annihilation trajectories. The initial separation is set to d12 = 20e. (b) Defects with the same separation of d12 = 20e are initiated without any spiral
charge (m1 = m2 = 0). By braiding the defect pair with a fixed orientation in the counter-clockwise direction around each-other, the +1/2 defect obtains a
spiral charge of �p/log(20) and the �1/2 defect obtains a spiral charge of p/log(20), in line with eqn (36).
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constant bi), a small displacement of defect positions results in
the necessary change of the spiral charges mi. By braiding the i-
th defect with a fixed orientation around the j-th defect for a full
counterclockwise turn around each other, the spiral charges of
the two defects change by

Dmi ¼ �
2pki

log
dij
ei

: (36)

We demonstrate such change of the spiral charges in Fig. 6(b)
by braiding a �1/2 defect pair for a full loop around each other,
while keeping the orientations of both defects fixed.

VIII. Discussion

The presented complex field approach to construction of harmo-
nic solutions in a planar orientational field with polar, nematic, or
higher order symmetry, is developed to solve the field around sets
of point defects or small enough circular inclusions or bound-
aries. The solutions allow for an arbitrary number and orientation
of disclinations and are represented as a combination of topolo-
gical charge (winding number k) and spiral charge m. As shown by
Pearce and Kruse, without spiral contributions (called ‘‘twisted’’
in their work), the generated solutions can not be mapped to
director fields observed in experiments.45 The benefit of our
framework is that the generated fields solve the Laplace equation
and correspond to a free energy minimum with a single elastic
constant. The forces and torques on the defect structures can also
be analytically expressed. Non-central forces and non-zero torques
are a direct consequence of the spiral charge. For the simplest
configuration of only two defects, the presence of the spiral charge
leads to spiral annihilation trajectories in agreement with the
literature.41,45 Systems that do not exactly obey the Laplace
equation, such as active systems, height-averaged thin samples
with inhomogeneous vertical profile, or systems with differing
elastic constants, are only solved approximately by our method.
Although at given positions and orientations of defects, the
director field is considered in equilibrium, the computed forces
and alignment torques can still be used to approximate defect
dynamics in active and non-equilibrium liquid crystals.46–49 The
approximation could possibly be improved upon by calculating
corrections to the forces and torques, such as the self-propulsion
force in active nematics. The defects act as quasi-particles under
the effect of pair interactions, and allow planar nematic simula-
tions at the level of dissipative particle dynamics without the need
to model the nematic host. As the spiral charges change in
response to motion due to boundary conditions, their motion is
collective, and not reducible to a simple pair potential, but the
resulting system is linear, and as such is trivial to compute
numerically for a moderate number of particles.

We show that movement of defects with a fixed orienta-
tion is directly linked to changes of the spiral charge,
similarly to how anyonic braiding was shown in k-atic liquid
crystals by modulation of the boundary condition.50 Braiding
of defects was observed also for spiral waves in living cells51

and in active nematics it was associated with topological

entropy and chaos.52–54 Harmonic director fields are of great
interest also in three dimensions.55 While our theory con-
siders purely two-dimensional fields, a future challenge
would be to address the defect textures also in quasi-two-
dimensional layers, where the director is allowed to point out
of plane.

Construction of director structures can be extended from
simple rational expressions describing finite sets of defects, to
any analytical functions with appropriate positioning of poles
and zeros to account for infinite sets of defects, such as
periodic defect arrays. The formalism remains the same, but
the tractability of the elastic energy integrals depends on the
function. For example, linear chains of dipoles can be mapped
to trigonometric functions while doubly periodic lattices
involve Jacobi or Weierstrass elliptic functions.

In this manuscript, we only considered point defect mono-
poles, which only includes complexified angle functions F with
logarithmic singularities. Our formalism can be extended to
include higher multipoles with singularities of the form z�c for
c-th multipole (see ref. 37), which do not require addition of
spiral contributions. This would allow to account for particles
with more elaborate director profiles, described through a
multipolar expansion, at the expense of more convoluted
expressions in the interaction matrix M and boundary
constraints.

Our construction is not directly meant to solve the director
field on domains that involve nontrivial boundary shapes or
larger inclusions. For such problems, see other works that
employ conformal mapping to transform the domain to one
that offers a solution in terms of simple analytical functions –
such solutions are limited to geometries that have an analyti-
cally tractable conformal mapping,27,30,31,56 or can otherwise be
solved numerically.28 Our approach is a good approximation for
most systems of small, preferably spherical particles. What is
lost in exactness of boundary conditions, is offset by the fact
that a closed-form solution can be obtained by a routine linear
algebra algorithm for an arbitrary number of constrained
boundaries. Here, we assume an infinitely strong anchoring,
with director at the boundary prescribed exactly. For handling
of finite anchoring at arbitrarily shaped boundaries, see Chand-
ler and Spagnolie.33 Finally, the method’s ability to handle
larger numbers of defects suggests a possibility of developing a
numerical scheme capable of handling finite-sized boundaries
of arbitrary shapes, akin to methods used in hydrodynamics
and electrostatics. We leave this as a future challenge.

Data availability

The code to compute the nematic textures and forces for a set of
point defects under specified boundary conditions can be
found at https://doi.org/10.5281/zenodo.12664067.
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Appendices
Appendix A. Positive semi-definiteness of free energy

We show that the free energy expression

F ¼ 2p
X
i

k	i
X
j

kj log
R

e
�
X
iaj

k	i kj log
dij

e

( )
; (A1)

obtained from eqn (20) for the defect cores of the same size, is
always non-negative, provided that the total charge of all N
defects sums up to zero:

XN
i¼1

ki ¼ 0 (A2)

and that all defects are at least 2e apart from each other (dij Z

2e for i a j).

The first term in eqn (A1) is directly set to zero once the zero
total charge condition is applied. We can rewrite the second
term of the free energy expression

F ¼ �2p
XN
i¼2

k	1ki þ k1k	i
� �

log
d1i

e
þ
XN

j¼2;jai

k	i kj log
dij

e

" #
(A3)

and set k1 ¼ �
PN
i¼2

ki, obtaining

F ¼ �2p
XN
i¼2
�
XN
j¼2

kik	j þ k	i kj
� �

log
d1i

e
þ
XN

j¼2;jai

k	i kj log
dij

e

" #
;

(A4)

which can be rewritten in a matrix form as

F ¼ 2p~j	 ~D~j; (A5)

where ~j ¼ k2; . . . ; kN½ �T and

~Dii ¼ 2 log
d1i

e
; ~Diaj ¼ � log

dij

e
þ log

d1i

e
þ log

d1j

e
(A6)

with i, j A {2,. . .,N},

The free energy is positive for arbitrary ~j, as long as the real
symmetric matrix D̃ is positive-definite. We can use the Sylves-
ter’s criterion for positive semi-definiteness, which states that D̃
is positive semi-definite, if and only if all principal minors of D̃
are non-negative.

For k = N � 1, we can construct a simplex with N vertices in a
k-dimensional space, where the Euclidean distances between

vertices correspond to Lij
2 ¼ log

dij

e
. Note that this is possible

because the condition dij Z 2e for i a j leads to non-negative

values of log
dij

e
and also to the triangle inequality

log
dij

e
þ log

djk

e

 log

dik

e
. The k-dimensional volume of the sim-

plex is always non-negative and is given by the Cayley–Menger
determinant57

Using the expression for the simplex volume, we have shown
that det(D̃) = (k!)22kV2

Z 0. All other principal minors of D̃
effectively correspond to the same calculation for a smaller
number of defects and can be shown to be non-negative using
the same arguments. Following the Sylvester’s criterion, we can
therefore conclude that the free energy is indeed positive semi-
definite (F Z 0) for an arbitrary number of defects, provided
that total charge of defects is zero and defects are sufficiently
spaced from each other.

Appendix B. Solution for an unbounded system

In Section VI, we provided a solution that allows solving for
spiral charges in a finite system bound into a circular domain
of radius R, with constraints given at any combination of
boundary conditions, including at the outer boundary. This
requires a mapping between unknown quantities f0, l and
quantities f0, f, which can either be given by boundary condi-
tions or let to vary to minimise the free energy.

An unbounded system does not have an outer boundary and
thus also has no boundary condition given there. Instead, the

V2 ¼ 1

ðk!Þ22k

�

2L12
2 L12

2 þ L13
2 � L23

2 � � � L12
2 þ L1N

2 � L2N
2

L12
2 þ L13

2 � L23
2 2L13

2 � � � L13
2 þ L1N

2 � L3N
2

..

. ..
. . .

. ..
.

L12
2 þ L1N

2 � L2N
2 L13

2 þ L1N
2 � L3N

2 � � � 2L1N
2
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(A8)

~D ¼

2 log
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e
log

d12

e
þ log

d13

e
� log

d23

e
� � � log

d12

e
þ log

d1N

e
� log

d2N

e

log
d12

e
þ log

d13

e
� log

d23

e
2 log

d13

e
� � � log

d13

e
þ log

d1N

e
� log

d3N

e
..
. ..

. . .
. ..

.

log
d12

e
þ log

d1N

e
� log

d2N

e
log

d13

e
þ log
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� log
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� � � 2 log
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sum of spiral charges must equal zero. To solve for this, we
must make f0 an unknown quantity, specifying the far-field
orientation, instead of the overall rotation f0, which can be
eliminated as an unknown and can be computed from eqn (24)
after the calculation. Using eqn (27) together with the zero total
charge condition, which can be written as 1�l = 0, we can write a
modified version of eqn (25):

0
f

� �
¼ 0 1T

1 �M

� �
f0
l

� �
: (B1)

This matrix does not depend on R, as we eliminated the outer
boundary.

Repeating the block-wise inverse eqn (26), we obtain,

0 1T

1 �M

� ��1
¼ r r1M�1

rM�11 r M�11� 1M�1� �
�M�1

� �
;

r ¼ 1M�11
� ��1

;

(B2)

and reformulate the free energy in the form,

F = 2pkMk + 2pfM�1f � 2pr(fM�11)2. (B3)

Dependence of the matrix M and the fixed boundary conditions
f on defect positions remain unchanged, so their derivatives are
unaffected by the changed boundary condition at infinity. The
expression for the force (eqn (30)) remains unchanged, but with
different values of l, obtained from the solution of eqn (B1) and
minimization of eqn (B3).
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6 S. Hernàndez-Navarro, P. Tierno, J. A. Farrera, J. Ignés-
Mullol and F. Sagués, Angew. Chem., Int. Ed., 2014, 53,
10696–10700.

7 M. Kim and F. Serra, Adv. Opt. Mater., 2022, 10, 2200916.
8 I. Nys, B. Berteloot and K. Neyts, J. Mol. Liq., 2023,

386, 122472.
9 J. Jiang, K. Ranabhat, X. Wang, H. Rich, R. Zhang and

C. Peng, Proc. Natl. Acad. Sci. U. S. A., 2022,
119, e2122226119.

10 M. Jiang, Y. Guo, R. L. Selinger, O. D. Lavrentovich and
Q.-H. Wei, Liq. Cryst., 2023, 1–9.

11 S. Yi, H. Chen, X. Wang, M. Jiang, B. Li, Q.-H. Wei and
R. Zhang, arXiv, 2023, preprint, arXiv:2312.14735, DOI:
10.48550/arXiv.2312.14735.

12 P. Pieranski and M. H. Godinho, Liquid Crystals: New
Perspectives, 2021, pp. 193–309.

13 N. Sebastián, M. Lovšin, B. Berteloot, N. Osterman,
A. Petelin, R. J. Mandle, S. Aya, M. Huang, I. Drevenšek-
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