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The effect of particle geometry and initial
configuration on the phase behavior of twisted
convex n-prisms

Poshika Gandhi * and Anja Kuhnhold

We study the phase behavior of twisted convex n-prisms with n = 3 and 4, via Monte Carlo simulations.

Biaxial phases, in untwisted prisms, can be induced by choosing specific geometries of the prisms.

However, due to the convexity of the twisted particles, a strong twisting disables the formation of biaxial

phases and stabilizes uniaxial nematic and smectic phases. Using the increased volume of the twisted

convex particles, we define an effective aspect ratio of the twisted prisms and find a homogeneous

phase behavior across the geometry of the prisms’ cross-section and even across different shapes of

the cross-section. In this representation biaxial phases are found for large aspect ratios, while the low

aspect ratio behavior can be compared to the hard cylinder phase diagram. For 3-prisms with a small

base angle, we show the influence of the initial configuration; a polar initial configuration results in a

(polar) splay nematic phase, whereas a non-polar initial configuration results in a biaxial phase.

1 Introduction

From studying the mechanisms of phase transitions to explor-
ing the mutual effect of jamming and flow dynamics,1–3 the
usage of simple models can give pivotal insight, making
simulations of hard non-spherical particle systems a corner-
stone of liquid crystal research.4–6 The physical properties of
particles, like their shape and size, can have a significant
impact on the system’s bulk behavior. For example, rod-like
particles have proven to be more efficient as depletants than
spherical particles7 and they also have a decreasing percolation
threshold with increasing particle length.8,9 Although actual
molecules used in experiments usually have more complex
properties, findings from such simple models can be trans-
ferred to applications. Some of the commonly simulated hard
particle models include spheres, platelets, cylinders, spherocy-
linders, banana-shaped particles, etc.10–21 † All these particle
models tend to have curved surfaces, as flat surfaces and sharp
edges are costly to simulate. In a 2016 paper, Dussi and
Dijkstra22 performed simulations on a novel particle shape
from a class of hard polyhedra – a twisted triangular prism
(TTP). The particles were triangular prisms with the added
shape anisotropy of twist, such that the resulting shape was

concave, i.e. the twisted prism has grooves and its center is
thinner than that of the untwisted one. They found a very rich
phase behavior depending on the cross-section and the twist of
the TTP. For the study presented in this paper, we took the same
class of particles but added a convex twisting instead, forming
anti-prisms that expand in volume with the twist. In addition, we
looked at higher polygon prisms to see if any predictive results
can be derived from going up the polygon-side scale.

The studied prisms are biaxial particles defined by having a
long axis and two shorter axes. These particles have competing
rod-like and plate-like tendencies which lead to the formation
of nematic phases either along the long or a short axis.23

However along Straley’s line, where the shape parameters (long
axis length u, short axes lengths v and w) fulfill the relation
v ¼

ffiffiffiffiffiffi
uw
p

(self-duality),24 the particles are expected to form
biaxial phases, as Straley’s line is the division between the rod-
like and plate-like ordering. This predicted behavior has been
observed for a variety of biaxial particle shapes.25–29 Similarly for
the n-prisms studied here, the prolate nematic phase is expected
for vo

ffiffiffiffiffiffi
uw
p

and the oblate nematic phase for v4
ffiffiffiffiffiffi
uw
p

.
Board-like particles (4-prisms), especially, received attention

in theoretical, simulational, and experimental works due to the
debates about the stability of their biaxial nematic phases.
Cuetos et al. confirmed the division of prolate and oblate
nematic phases along Straley’s line but could not find a biaxial
nematic phase (neither from their theoretical approach nor by
simulations).26 They concluded that the formation of a (biaxial)
smectic phase preempts the formation of the biaxial nematic.
On the other hand, there are experimental realizations of a
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biaxial nematic phase of self-dual particles that, in addition, are
polydisperse.30 Van den Pol et al. also suggested that in this case the
polydispersity has a stabilizing effect on the biaxial nematic phase.
This effect was theoretically confirmed by Belli et al.31 The same
authors also studied the effect of adding depletants to a system of
board-like particles, which can result in stabilizing prolate, oblate,
or biaxial nematic phases.32 Peroukidis and Vanakaras showed that
not only the duality of the particles is important for the formation of
biaxial phases but they found a critical aspect ratio (u/w = 9) below
which the biaxial phase vanishes even for dual-shaped particles.27

This confirmed the predictions of Shih and Alben, who predicted
that the biaxial particle needs to be ‘‘sufficiently asymmetrical’’ to
produce biaxial phases23 and also explains previous results, e.g. by
Martnez-Ratón et al., who applied fundamental measure theory to a
system of hard board-like particles.33

A 3-prism, that has a triangular cross-section, in addition to
being biaxial, is also a polar shape, i.e. it does not have the inversion
symmetry. From an application point of view, it is interesting to
know whether this polarity can be transferred to the macroscopic
(phase) behavior. The ferroelectricity of splay nematics is a typical
example that has been studied recently.34–36 But also, the effect of
the shape of the prism on the behavior of the seemingly well-known
isotropic, nematic, and smectic phases found interest.37

Here, we present phase diagrams of 3- and 4-prisms with
convex twist and varying shape parameters. Biaxial phases are
found for specific sets of parameters and both types of cross-
sections, whereas the formation of a polar phase strongly
depends on the initial configuration.

2 Model

The particle is a polygonal prism (n-prism), with a convex twist
as an additional form of asymmetry. The prism consists of two
non-coplanar n-sided polygons such that the line joining their

centers is perpendicular to both the n-gonal planes. The n-gons
are joined by 2n right-triangles, instead of the usual n rectan-
gles, to allow for a twist in the shape. This twist is defined as the
rotation of one end of the prism with respect to the other end
by an angle y, as shown in Fig. 1. After the rotation, the 2n
triangles can be realised in two ways depending on the choice
of connected vertices, leading to either a concave particle with a
decrease in the particle volume,22 or a convex particle with an
increase in the particle volume. The convex twist turns the
n-prism into an n-antiprism, where the two n-gons are con-
nected by a band of alternating triangles. In this paper we
report simulations of 3- and 4-prisms with a convex twist, as
depicted in Fig. 1, as an extension to the work on 3-prisms with
a concave twist by Dussi and Dijkstra.22 All 3-prisms are
modeled with an isosceles cross-sectional triangle, and all 4-
prisms with a rectangle as the cross-sectional quadrilateral.

Each particle is overlaid with an orthonormal coordinate
system to define its orientation in three-dimensional (3D) space
as shown in Fig. 1. The vector -u defines the long axis of the
particle (with length vector -

u =: uû) and the vectors~nð¼ :nn̂Þ and
-
w(=: wŵ) together define the cross-sectional n-gon. For the
3-prism, v and w are the base length and height of the triangle,
and for the 4-prism, v and w are the width and height of the
rectangle. As in the limit of infinite n the n-prisms form a
cylinder, we can write the volume of an n-prism with twist y in
terms of an effective cylinder of diameter deff and length u as,

Vy ¼
p
4

deff
2u) deff ¼

ffiffiffiffiffiffiffiffi
4Vy

pu

r
(1)

Then the aspect ratio of an n-prism with twist y is defined as
ay = u/deff or,

ay ¼

ffiffiffiffiffiffiffiffi
pu3

4Vy

s
(2)

The volume of a twisted n-prism, Vy, is calculated by considering
it as a combination of tetrahedrons. Each face of the n-prism forms
the base of the tetrahedron and the center of the prism forms the
apex. The center of the prism lies at the halfway point of the line
joining the n-gon centers. For a 3-prism, the centroid is considered
to be the center and for a 4-prism, the intersection of the diagonals
is considered as the center. As all the vertices, including the apex,
are known, the volume of the n-prism can be written as,

Vy ¼
1

6

X
Dijk

det ðvi � aÞ; ðvj � aÞ; ðvk � aÞ
� �

; (3)

where vi has the coordinates of the i-th vertex, a has the coordinates
of the apex, and the summation is over all the values of i, j, k that
form a face triangle.

3 Simulations

Simulations follow the Metropolis Monte Carlo (MC) algorithm
in the NVT ensemble with periodic boundary conditions in
all three dimensions. The simulations are performed with at
least 2000 particles and 106 MC sweeps, where each MC sweep

Fig. 1 Sketch of the n-prisms. (a) A 3-prism. Side view of an untwisted (above)
and a twisted (below) 3-prism with the localized coordinate system visualized.
(b) Front and back faces of a 3-prism with twist y. (c) A 4-prism. Side view of an
untwisted (above) and a twisted (below) 4-prism with the localized coordinate
system visualized. (d) Front and back faces of a twisted 4-prism.
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contains as many steps as the number of particles. Each MC step
can lead to a translational move, a rotational move along an
arbitrary axis, or a rotational move along the particle’s long axis.
As the particles only interact via excluded volume interactions,
after each step the moved/rotated particle is checked for overlaps
with its neighboring particles. The overlap mechanism used for
the simulations relies on the separating axes theorem,38 with
slight modifications for edge–edge overlap. The details of the
modification are given in the appendix.

For the initial configuration the particles are put on a simple
cubic lattice and have their long axes aligned. As 3-prisms can
form polar phases, we tested both polar (ŵ aligned) and non-polar
initial conditions. The polar initial configuration mimics the effect
of a temporary aligning field that could be used in applications to
bias the formation of polar phases. During the equilibration, the
maximum displacement and maximum rotation angle are
adjusted to give acceptance rates between 0.45 and 0.55. Transla-
tions along the long axis have a larger step size compared to those
in other directions to speed up the equilibration and the explora-
tion of configuration space. For all simulations, the parameters u
and v have fixed values of 5.0 and 1.0 respectively.

The equilibrium phases are identified using orientational
order parameters, positional density data, and visual inspec-
tion of the snapshots. The nematic order parameter Sx for
x A {û, v̂, ŵ} is defined as the largest eigenvalue of the tensor
Qx, whose components are given by

Qx
ab ¼

3

2Np

XNp

i¼1
xiaxib
� �

� 1

2
dab; (4)

where Np is the number of particles and xia is the a-th
component of the chosen particle axis x of the i-th particle. Sx

is 0 for an isotropic phase, and increases towards its maximum
1 for a nematic phase. The eigenvector corresponding to Sx

defines the nematic director n̂x for the chosen direction x.
For each molecular axis x A {û, v̂, ŵ}, a biaxial order

parameter can be defined using the three tensors (Qu, Qv, Qw)
and their eigenvectors. However, it is sufficient to measure the
biaxiality with respect to a primary axis only. The eigenvector
corresponding to the largest of the three nematic order para-
meters Sx is chosen as the primary axis n̂x. The eigenvectors
corresponding to the remaining nematic order parameters are
labelled as m̂ and l̂. For example, if the particles are primarily
aligned along their long axis û, then the primary axis n̂ is the
nematic director regarding û, and the nematic directors w.r.t
the molecular axes v̂ and ŵ form the axes m̂ and l̂. The biaxial
order parameter Bp corresponding to this primary axis can be
defined as,26,39

Bp¼u ¼
1

3
m̂ �Qv � m̂þ l̂ �Qw � l̂ � m̂ �Qw � m̂� l̂ �Qv � l̂
� �

: (5)

Bp is 0 for isotropic and uniaxial phases and increases towards
its maximum 1 for a biaxial phase, because then the first two
terms are +1 and the last two terms are �0.5. The smectic
phase, in turn, is characterised by a combination of the visual
inspection of the positional heat map and the following order

parameter,40

L ¼ 1

Np

XNp

j¼1
eikppj

�����
����� (6)

where kp = 2p/l, l is the periodicity of the smectic layers, and pj

is the coordinate of the j-th particle, both are in the direction of
the simulation box closest to the primary axis defined above.

A system is labeled ‘equilibrated’ when the order parameters
fluctuate around a mean value for at least 105 MC sweeps. For
splay nematic phases, where the effect of the initial configu-
ration is found, the order parameters are required to be stable
for at least 5 � 105 MC sweeps. The positional heat maps and
visual inspections of the snapshots are used to check whether
the smectic planes or the splay fault lines are still moving
within the simulation box, in which cases the runs are con-
tinued even when the order parameters have stabilised.

Depending on the nematic order parameters Sx for x A {û, v̂, ŵ},
the biaxial order parameters Bp, the smectic order parameter L,
and the heat maps for particle density, we identify the following
phases: isotropic (I): random orientation of all particle axes (0.0 o
Sx o 0.3); prolate nematic (Nu): alignment of the long û-axes (Su 4
0.3, Sw o 0.3, Bu o 0.5); oblate nematic (Nw): alignment of the short
ŵ-axes (Sw 4 0.3, Su o 0.3, Bw o 0.5); biaxial nematic (Nb):
alignment of the long and short axes (Sx 4 0.3, Bp 4 0.5, L o
0.5); smectic A (Smu): alignment of the long axes plus layering along
the director n̂u (L 4 0.5); biaxial smectic (Smb): alignment of the
long and short axes plus layering along the directors n̂u and n̂w (Bp

4 0.5, L 4 0.5).

4 Results and discussion

Fig. 2 and 3 show the effect of the twist angle y on 3- and 4-
prisms, respectively. Consistently, for all simulated shapes, the
increase in y leads to a larger region of the I phase in the phase
diagrams. In addition, for y Z 0.4 rad (E22.91) only the Nu

phase is found irrespective whether the particle formed a Nu or
Nw phase at y = 0.

Fig. 2 (top) shows the phase diagram of 3-prisms with b = 1.0
rad (E57.31) and vo

ffiffiffiffiffiffi
uw
p

. For zero twist, they form the I phase
at low volume fractions and the Nu phase for all studied volume
fractions above Z = 0.30, as expected from previous studies
about triangular prisms.37 As y is increased, the range of the I
phase increases. For Fig. 2 (bottom), the zero twist configu-
ration for b = 0.45 rad (E25.81), with v �

ffiffiffiffiffiffi
uw
p

shows a small I
and Nw region for low volume densities and a Nb phase with -

u
as the primary axis for Z Z 0.2, which is again in agreement
with previous results, where a transition Nw–Nb was found
above a threshold of u/w = 11.29 The tendency to align along
the long axis becomes apparent as y is increased, and the Nb

phase is lost. For 3-prisms, the Nb phase was also observed for
particles with smaller b where v � 1:25

ffiffiffiffiffiffi
uw
p

.
Fig. 3 shows the phase diagrams of 4-prisms in the Z � y

representation. For 4-prisms with w = 1.0 and 0.5, as vo
ffiffiffiffiffiffi
uw
p

,
the Nu phase is expected. This is confirmed for w = 1.0 in Fig. 3
(left). The result is comparable to the phase behavior of hard
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colloidal tetragonal parallelepipeds studied by John and
Escobedo.28 However, they conclude that the prolate nematic
phase only becomes stable for u/v 4 5 while we already find it
for u/v = 5. For volume fractions larger than the ones we
studied, they find a smectic phase; this appears in our volume
fraction range for non-zero twist. As y is increased, the Nu phase
region shrinks with a direct I � Smu transition appearing for y =
0.6. For w = 0.5 in Fig. 3 (center), the Smu phase is observed for
y = 0 and Z Z 0.45. As seen before, the increasing y shrinks the

Nu phase to allude to a direct I � Smu for ys larger than
considered for this paper. For 4-prisms with w = 0.2 (Fig. 3
(right)), the board-like particles at zero twist show I, Nw, Nb, and
Smb phases. As y increases the uniaxial Smu phase appears
between the Nb and the Smb phase. On further increase of y, the
Nw and lower-Z Nb phases turn into Nu, and Smb disappears
from the parameter space explored. The Nb phase was obtained
for the zero twist dual shape with u/w = 25 and v/w = 5, which is
in agreement with the predictions that u/w 4 23 is needed for
the Nb phase.29 However, ref. 29 also predicts an intervening
Smu phase for u/w o 28, whereas we observe a direct Nb � Smb

transition for u/w = 25, as shown in Fig. 3 (right). Thin board-
like particles showed a stable Smw phase in ref. 26 however we
did not find traces of such a phase.

For both 3- and 4-prisms, a direct I � Nb transition was not
found in agreement with several studies,26,29 but in contrast
to the thin board-like spheroplatelet particles that showed a
I � Nb � Smu transition along the dual shape.27,41 In ref. 42 a
direct I � Smu transition was found for 4-prisms with a square
cross-section and not a Nu phase. This is in contrast to our
simulations (Fig. 3 (left)).

Twisting distorts the sides of the n-prism in order to
accommodate the rotation, making the shape no longer con-
ducive for stacking. The increase in the particle volume and
decrease in the aspect ratio with y further alludes to the fact
that the particle shape is no longer capable of sustaining
oblate and biaxial nematic phases and shows more rod-like
tendencies than plate-like (in terms of the distinction using
Straley’s line). The shift of the phase boundaries towards larger
Z is, hence, a consequence of the decreasing aspect ratio of the
particle.

The n-prisms with a concave twist were reported to form
several chiral nematic phases with periodic boundary conditions
in ref. 22. In general, it is not trivial to simulate chiral nematic
phases because the cholesteric pitch can be much larger than the
simulation box length, and periodic boundaries suppress the
formation of a chiral nematic phase with equilibrium pitch.
Several approaches have been introduced to tackle this problem,
e.g. twisted or self-determined boundary conditions or using hard
walls.43–45 The convex twist has however, for the simulated para-
meters and volume fractions, been incapable of producing chiral
nematic phases, both for periodic boundaries and hard walls.

Fig. 3 Phase diagrams of 4-prisms with u = 5.0 and v = 1.0 as a function of twist angle y (radians). Left: Base height w = 1.0 such that vo
ffiffiffiffiffiffi
uw
p

. Center:

Base height w = 0.5 such that vo
ffiffiffiffiffiffi
uw
p

. Right: Base height w = 0.2 such that v ¼
ffiffiffiffiffiffi
uw
p

. The shape of the cross-sectional n-gon for each graph is sketched
above and accurately represent their relative sizes in the simulations. See text for explanation of the legends.

Fig. 2 Phase diagrams of 3-prisms with u = 5.0 and v = 1.0 as a function of
twist angle y (radians). Top: Base angle b = 1.0 rad (E57.31) and

ffiffiffiffiffiffi
uw
p

� 1:97

such that vo
ffiffiffiffiffiffi
uw
p

. Bottom: Base angle b = 0.45 rad (E25.81) andffiffiffiffiffiffi
uw
p

� 1:099 such that v �
ffiffiffiffiffiffi
uw
p

. The shape of the cross-sectional n-gon
for each graph is sketched above and accurately represent their relative
sizes in the simulations. See text for explanation of the legends.
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As compared to the concave twisting, nematic phases also appear
at much larger volume fractions. This can be due to the fact that
convex twisting increases the volume of the particle significantly,
thus lowering its aspect ratio. As the defined aspect ratio of an
n-prism is seemingly independent of the shape of the particle, we
plotted the results of all the 3-prisms together in Fig. 4a, and the
results of all the 4-prisms together in Fig. 4b. The grey lines in
both the graphs correspond to y = 0 for the particle shape shown
above it. The sizes of the 3- and 4-prisms are characteristic of their
actual sizes in the simulations in relation to other 3- and 4-prisms.
As y increases, the aspect ratio ay decreases and the data points lie
to the left of the grey line. Therefore, overlaps in the data between
twisted n-prisms and the untwisted n-prisms with a different
cross-section occur frequently. These graphs show strong correla-
tions between the stable phases at a particular volume fraction
with the aspect ratio without much dependency on the particle
shape. The regions of transition between the phases follow
consistent trends, even when the exact transition lines seem to
depend on the particle shape. Next, in Fig. 5 the data for both

3- and 4-prisms is plotted together, and the phase diagrams
coincide surprisingly well. This implies that the volume occu-
pied by a particle is a bigger determining factor in the entropic
stability of the resulting phase as compared to the particle’s
shape. The observed stable phases around ay = 10, however, vary
between the I, Nu phases found for n-prisms with vo

ffiffiffiffiffiffi
uw
p

or
large y, and the I, Nw, Nb phases found for n-prisms with
v �

ffiffiffiffiffiffi
uw
p

. This can be due to the prediction23 that the particles
need to be ‘‘sufficiently asymmetrical’’ to produce biaxial phases.
In addition, the regions of the I, Nu, and Smu phases agree with
the ones of hard cylinders.16

Just like the chiral nematic phases, the splay nematic
phase22 was also not obtained in our simulations. All simula-
tions for 3-prisms were setup with non-polar initial configura-
tions, however introducing polarity at the setup leads to the
emergence of the splay nematic phase (NS), see Fig. 6 (bottom).
This phase is characterized by a nematic order of the long axes
and a splay deformation in the director field of the ŵ-axes.
Fig. 6 shows the effect of a polar initial configuration on the
phase diagram, and Fig. 7 shows a snapshot of the phase along
with the characteristic director profiles. For non-polar initial
configurations, the region with b o 0.6 rad (E34.31) and Z Z

0.20 mainly forms the biaxial nematic phase (Nb). However, for
polar initial configurations, the splay nematic phase domi-
nates. In addition, the Nu phase emerges at a lower b for a
polar initial configuration. The NS phase stays stable till at least
y = 0.2 rad (E11.41), beyond which the simulations at suitable
volume fractions could not be performed. We did not compute
the free energy of the different states to be able to judge which
of the modulated nematic phases is the stable equilibrium
phase, but it is likely that the barrier between them is very large,
and thus a transition very unlikely, which in turn is a relevant
finding for possible applications of polar phases. There are
further hints that a double splay phase might have a lower free
energy than the single splay phase, which has been reported
more commonly in both experiments and simulation studies.46

For the rest of the phase diagram, the simulated parameters
produced phases independent of the initial configuration.

Fig. 5 Phase diagrams of both 3-prisms and 4-prisms plotted together as
a function of their aspect ratio with a sketch of the size comparison
between the particle shapes.

Fig. 4 The dependence of phase formation on the aspect ratio. Phase
diagrams of all (a) 3-prisms and (b) 4-prisms are shown. The grey lines
correspond to the zero twist shapes with the cross-section sketched
above. The symbols refer to the stable phases observed in the parameter
space and are consistent with the legend of other plots.
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5 Conclusion

We studied the phase diagrams of twisted 3- and 4-prisms
using extensive Monte Carlo simulations. Twist as a form of
asymmetry in a particle makes a drastic change to the particle
shape and the volume it occupies. We observed that twist
affects all the n-prisms similarly. As y increases, the phase
boundaries shift towards higher volume fractions. In addition,
if a modulated nematic phase emerges for the untwisted prisms
(Nu, Nw, or NS), it gives way to a I � Nu � Smu phase
combination, even hinting at a I � Smu transition at higher y.
These results are unlike the effects for concave twisting,22

where the untwisted phase is sustained for large ys, and that
even induces a blue phase. Even though both concave and

convex twisting remove stacking opportunities for the particles,
a concave twist creates crevices in the shape which allows
particles to slide into each other. Convex twisting, on the other
hand, increases the particle volume making the shape behave,
qualitatively, like a hard cylinder. For n-prisms with larger n, we
expect a similar behavior – existence of modulated nematic
phases for asymmetrical cross-sectional n-gons, which evolve
quickly into Nu and Smu phases. Convex twisting, also, did not
produce any signs of a chiral nematic phase.

For the dual shapes, the Nb phase was found for 3-prisms
with u/w 4 20 and for 4-prisms with u/w = 25, and was stable
across a large range of volume fractions. No direct I � Nb

transition was found, rather a small region of Nw phase
preceded the Nb. For thin board-like 4-prisms, a direct Nb �
Smb phase transition was observed without an intervening Smu

phase and the existence of a Smw phase could not be confirmed
in our simulations. In addition, for all simulated shapes no
direct I � Smu was found for untwisted shapes.

Remarkably, we found an almost uniform phase behavior by
introducing an effective aspect ratio of twisted n-prisms. Con-
vex twisting leads to an increasing volume of the particles,
which in turn reduces their effective aspect ratio. The phases in
the volume fraction – effective aspect ratio diagram overlap

Fig. 6 The effect of polar initial configuration. Phase diagrams of 3-prisms
with y = 0, u = 5, v = 1 as a function of base angle b (radians). Top: Polar initial
configuration with the splay nematic phase. Middle: Non-polar initial
configuration with the biaxial nematic replacing the NS. Bottom: A sketch
of the initial configurations: Left – polar, Right – Non-polar.

Fig. 7 (a) Snapshot of the simulation box with splay nematic phase. The
particles are colored according to the orientation of the base height vector
w
-

. The sketch shows the relation between color and orientation. (b) The
nematic director profile n̂w represented in terms of spherocylinders colored
according to their orientation. (c) A 2D director profile of the same snapshot
with the arrows representing the nematic director of that grid. The colors
represent the value of nematic order parameter Sŵ as shown on the right.
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independent of the geometry (shape and side lengths) of the
prisms’ cross-section.

For particle shapes with inherent polarity, the initial
configuration of the setup played a significant role in the phase
they formed. A polar splay nematic phase was formed when the
starting configuration was also polar. The NS was stable over
large ranges of Z and b, and opens opportunities to form polar
phases by just using an initial polar configuration.

For larger volume fractions than studied in this paper, one
could compare the phase behavior to the one of the corres-
ponding two-dimensional system (hard triangles for n = 3 and
hard rectangles for n = 4),47–50 and determine the effect of the
third dimension and of the convex (or concave) twist.
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Appendix
Appendix A Overlapping mechanism

A convex polyhedron I is described by the set of its vertices VI,
which can be paired together to form edges EI. The relevant
edges can be grouped into faces defined by an outward facing
normal NI. An overlap between these convex polyhedrons can
then be discovered using the hyperplane separation theorem.
In intersection/collision detection, it takes the form of a separ-
ating axis theorem.38 If the vertices of the polyhedrons can be
projected onto a line such that they do not overlap, then the
line is called a separating axis and the objects do not overlap. If
no such line exists, then the polyhedrons overlap as visualized
in Fig. 8. There is a finite number of lines that need to be
considered for an overlap between the objects I and J – the face
normals, NI and NJ, and the cross product of the edges EI � EJ.
For 3-prisms with triangular faces, 16 face normals and 81
edge–edge cross products are the candidates for a separating
axis. For 4-prisms with triangular faces, 24 face normals and
144 edge–edge cross products are the candidates.

The overlap check starts with the face normals, as the
process with them is quicker for objects that are further away
from each other. If all face normals fail as separating axis then
the edge–edge overlap check is performed. All the directors
(face normals and cross products) are unit vectors which are
placed on an arbitrary vertex of the face or the edge in question.
For edge–edge overlap, this arbitrary placement of the director
requires a high floating-point precision in calculating the
projections. To reduce the necessary precision, we modified
the placement of the director and placed it at the point of the

shortest distance between the edges. In this way, the required
precision is lowered because instead of comparing two floating-
point numbers, we only check if the distance between the
projection of the vertices and the point of shortest distance is
more or less than zero and it outweighs the additional task of
finding the shortest distance between the edges. As shown in
Fig. 8 (bottom), the measurement process goes from calculating
the distance of the blue projection from both the red projec-
tions, to just calculating the distance from the black projection.
Apart from this modification, the rest of the algorithm given in
ref. 38 has been used as-is.
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17 H. Löwen, Phys. Rev. E, 1994, 50, 1232.
18 S. C. McGrother, D. C. Williamson and G. Jackson, J. Chem.

Phys., 1996, 104, 6755–6771.
19 P. Bolhuis and D. Frenkel, J. Chem. Phys., 1997, 106, 666–687.
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