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Spatiotemporal control of structure and dynamics
in a polar active fluid†

Saptorshi Ghosh,a Chaitanya Joshi, b Aparna Baskaran *a and
Michael F. Hagan *a

We apply optimal control theory to a model of a polar active fluid (the Toner–Tu model), with the

objective of driving the system into particular emergent dynamical behaviors or programming switching

between states on demand. We use the effective self-propulsion speed as the control parameter (i.e. the

means of external actuation). We identify control protocols that achieve outcomes such as relocating

asters to targeted positions, forcing propagating solitary waves to reorient to a particular direction, and

switching between stationary asters and propagating fronts. We analyze the solutions to identify generic

principles for controlling polar active fluids. Our findings have implications for achieving spatiotemporal

control of active polar systems in experiments, particularly in vitro cytoskeletal systems. Additionally, this

research paves the way for leveraging optimal control methods to engineer the structure and dynamics

of active fluids more broadly.

I. Introduction

Active systems are a diverse class of non-equilibrium assem-
blies composed of anisotropic components that transform
stored or ambient energy into motion. Idealized realizations
that have contributed to the development and refinement of
this conceptual framework include bacterial suspensions,1–3

minimal systems of purified cytoskeletal proteins,4–11 synthetic
self-propelled colloids,12–14 swarming bacterial cells,15–19 and
model tissues and cell sheets.20–32 In these systems, the inter-
play between internal activity and the interactions among the
active agents results in a wide range of emergent collective
behaviors.33–38 These behaviors emerge spontaneously without
requiring a central control mechanism. However, there is
typically no means to select which behavior emerges or to
switch between states, which significantly limits the function-
ality of active materials.

Recent experimental advances have put the objective of
control within our reach. Experiments have demonstrated that
light can be used as a control field to assemble self-limited
functional structures in active colloids39,40 and to exert spatio-
temporal control of motility induced phase-separation
(MIPS).41,42 By shining sequences of light that vary in space

and time on active materials constructed with light-activated
motor proteins, researchers can control the average speed of
active flows43,44 and steer defects in active nematics,45 and
drive the formation and movement of asters in isotropic
suspensions.46

Theoretical progress toward functionalizing active matter
has taken two paths. The first has been to impose spatiotem-
poral activity patterns and observe their effects on the system
dynamics,45,47–49 thereby identifying easily accessible target
states. The second is to use the framework of optimal
control50,51 and optimal transport52 to identify spatiotemporal
activity patterns that will drive the system to a pre-chosen target
dynamics.47,53,54

The work described in this article belongs in this second
class. We study the optimal control theory of the classic active
matter theory, a dry 2D active polar fluid, first considered by
Toner and Tu.55,56 We treat the convective speed of the active
particles as the control parameter and identify control solu-
tions that drive the system to targeted steady states, including
forcing an aster to move to a given spatial location, causing
propagating stripes to reorient along a particular direction, and
driving a propagating stripe to convert into a stationary aster.
In the previous work most closely related to this one, Norton
et al.53 obtained a control solution to switch a confined active
nematic between two symmetric attractors (changing handed-
ness of a circular flow state). Here, we show that an optimal
control framework can solve much more diverse problems,
including switching among attractors with very different
broken symmetry patterns and driving the system into states
which are not stable attractors at a given set of parameters.
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Further, we analyze the identified optimal solutions to uncover
generic control principles that are broadly applicable to active
polar fluids.

This paper is laid out as follows. In Section II, we review the
hydrodynamic theory and describe the key features of the
steady states that arise in the absence of control. Section III
describes the method for implementing optimal control theory.
In Section IV, we report the results of the control solutions for
driving the system to particular steady states or switching
between them. Then, we analyze the control solutions in terms
of the dynamical equations of motion to identify the essential
mechanisms that drive the system into the desired behavior,
with the goal of identifying generic principles. We also inves-
tigate how robust the optimal control solutions are to errors
arising from experimental noise and inaccuracies in model
parameters. Finally Section V concludes with a discussion on
testing these results in experiments.

II. Model

We consider a macroscopic description of an active polar fluid
in 2D, in terms of a conserved density field r(r,t) and the
polarization field s(r,t) = r(r,t)P(r,t), a vector characterizing
orientational order in the fluid. As noted by Toner and Tu,55

the order parameter is also a velocity that convects mass in an
active fluid. While a number of distinct dynamical equations
for these hydrodynamic quantities have been considered in the
literature,57–60 the particular model we study is of the form

qtr = �=�(os � D=r) (1)

qts + l1s�=s = �n(a2(r) + a4(r)|s|2)s � =(or) + K=2s

+ l2sa=sa + l3s=�s. (2)

We briefly discuss the physics it captures and the emergent
phenomenology that results from it. Extensive studies can be
found in prior work on this model.61–65

The density dynamics eqn (1) is an advection-diffusion
equation where the advective velocity is proportional to the
orientational order parameter P(r,t). The dynamics of
the orientational order has three features: (i) It has a self-
convection term with coefficent l1, encoding the absence of
Galilean invariance in the ‘dry’ theory.55,56 (ii) It has terms
consistent with model A dynamics that drive the system down-

hill on a free energy landscape where F ¼
Ð
r

a2ðrÞ
2
jsj2þ

a4ðrÞ
4
jsj4 þ K

2
@asb
� �

@asb
� �

þ l
2
jsj2= � s, encoding the fact that

the flocking occurs due to spontaneous symmetry breaking.
(iii) It contains a hydrostatic pressure term of the form

P � or� l2
2
jsj2, where l2 encodes the tendency for elongated

self-propelled particles to splay due to recollision events.62,66,67

In this study of spatiotemporal control, we choose a2(r) =
(1 � r/rc) and a4(r) = (1 + r/rc)/r2, yielding a continuous mean-
field transition from an isotropic s to a homogeneous, polar
or a swarming state (|s| 4 0) at the critical density r = rc.

For simplicity, we choose D = K. Without loss of generality we
set the critical density rc = 1. We further reduce the number of
independent parameters and set l1 = l2 = l3. We set the unit of
time as t0 = n�1, the relaxation time scale of the orientation

field, and the unit of length as l0 ¼ ðD=nÞ
1
2. The simplified

dimensionless equations are:

qtr = �=�(os � =r) (3)

qts = �(a2(r) + a4(r)|s|2)s � =(or) + =2s + l(sa=sa + s=�s � s�=s).
(4)

These reduced equations involve three parameters: (1) The self-
propulsion speed or activity, o, is the main control variable and
dictates both density advection and an effective pressure/com-
pressibility; (2) l captures the interplay between interparticle
interactions and activity; and (3) the mean density, r0, which is
set by the initial condition. We note that if these equations are
derived from a microscopic model of self-propelled particles
with aligning interactions, the {li} parameters would be
complex functions of multiple parameters from the micro-
scopic model, including the activity strength. To simplify the
analysis we have set them all equal to l and independent of
activity. The system behaviors are not qualitatively affected by
neglecting this dependence.62,66,68,69 Additional discussion of
these equations and other related models can be found in ref.
62, 66 and 67 and review articles.37,38,70

The phenomenology of this model is described in ref. 62 and
summarized in Fig. 1a. For the purposes of this work, we note
that the dynamics of this system admits two inhomogeneous
steady states: (i) propagating stripes composed of ordered
swarms moving through a disordered background, which are
referred to as polar drops elsewhere in the literature,63,71 when
o/l c 1, and (ii) a stationary high density aster, again in an
isotropic background, when l/o c 1. Both of these states arise
close to the threshold density for orientational ordering (which
we set to rc = 1), and correspond to the system phase separating
into a dense ordered phase and a dilute disordered phase. In
this study, we fix the homogeneous density at r = 1.07 and
consider the problem of controlling the inhomogeneous steady
states using spatiotemporal patterning of the convective
strength o, referred to as the activity or control parameter in
the rest of this paper.

This model has the virtue of mathematical simplicity and a
minimal number of parameters, thus enabling physical insight
from the optimal control solutions. At the same time, the states
we seek to control are directly realizable in experiments (see
Section V). Further, in the ESI,† we show that this theory is
linearly controllable on short length scales. Thus it is ideal for
investigating applications of optimal control in active systems.

III. Optimal control

Spatiotemporal control of the system involves identifying an
activity field o(r,t) in an interval t A [0,tF] such that the state of
the system evolves from some initial condition r(r,0), s(r,0) to a
chosen target state r*(r,t), s*(r,t) within the control window
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[0,tF]. In the optimal control framework, we identify such a
solution by minimizing the scalar objective function

J ¼
ðtF
0

dt

ð
O
dr

A

2
�o2 � �o0

2
� �2þB

2
=�o2 � =�o2

�

þ K

2
d�o2

�
dt

� �2þC
2

r� r�ð Þ2þD
2

s� s�ð Þ2
� (5)

subject to the constraints that the dynamical fields r(r,t), s(r,t)
obey eqn (3) and (4) at every time point in the control window.
We include the activity as o = �o2 to constrain the solution
to positive activity values, since o o 0 is unphysical in this
system. The term (�o2 � �o0

2)2 penalizes deviations of the
magnitude of the control variable o from the preferred
(i.e. baseline) value of the activity o0 = �o0

2, and thereby
restrains the control solution to the vicinity of a chosen value

of activity. The terms
B

2
=�o2 � =�o2 and

K

2
d�o2

�
dt

� �2
promote

smoothness of the activity field in space and time. To simplify
the presentation of results, we set K = 0 and thus do not
penalize time-variations.

The terms (r � r*)2 and (s � s*)2 measure the deviations
from the target state, r* and s*. We constrain our search of
optimal state trajectories to those that obey the system
dynamics by introducing Lagrange multipliers, Z and n, which
are adjoint variables for r and s. These dynamical constraints
are enforced in the optimization by adding them to the cost

function as

L ¼ J þ
ðtF
0

dt

ð
O
dr Z @trþ . . .ð Þ þ n � @tsþ . . .ð Þ½ �: (6)

The necessary condition for optimality is rL ¼ 0,72,73 so
dL=dZ, dL=dm, dL=dr, dL=ds, dL=d�o, dL=dr tFð Þ, dL=dt tFð Þ ¼ 0.
The first two conditions return eqn (3) and (4) governing r and
s. The following two conditions yield the dynamical equations
for the adjoint variables Z and n,

qtZ = C(r � r*) � =2Z � �o2=�n + (dra2(r) + dra4(r)|s|2)(n�s).
(7)

qtn = D(s � s*) + (a2(r) + a4(r)|s|2)n + 2a4(r)s(n�s) � l[�s=�n
+ 2n=�s � =(n�s) + s�=n � na=sa] � =2n � �o2=Z.

(8)

with boundary conditions at tF: {Z,n}(r,tF) = 0, and periodic
boundary conditions on the domain. dJ =d�o ¼ 0 yields an
equation to update the control input as,

2A�o(�o2 � �o0
2) � 2B�o=2�o2 � 2K�o(d2�o2/dt2)

� 2�os�=Z � 2�on�=r = 0. (9)

We use the direct-adjoint-looping (DAL) method74 to mini-
mize the cost function under the constraint that the dynamics
satisfies eqn (3) and (4), to yield the optimal schedule of activity in
space and time (see ESI† Sections SIV and SV for more details).

Fig. 1 Phenomenology of the bulk active polar fluid in the absence of control: (a) phase diagram and representative snapshots of the inhomeogenous
steady states as a function of model parameters l and o, with the mean density set to r0 = 1.07. The propagating stripes (‘S’) and asters (‘A’) are phase-
separated domains of high polar order in a background of a low density disordered state. The intermediate state ‘B’ (which is not relevant for the present
work) corresponds to a state of transient blobs of polar order coexisting with a disordered background. ‘H’ is the homogeneous state. (b) Linear scans of
the density r and magnitude of polarization field s along the direction perpendicular to the interface of the phase-separated domains. In the stripes,
the polar order is homogeneous in the domain while the aster is a domain of high splay with a defect with topological charge +1 at its center.
(c)–(e) Illustration of optimal control goals considered in this study. (f) Schematic of the method that we use to solve the optimal control problem,
the direct adjoint looping (DAL) method.
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Specifically, we construct an initial condition by performing a
simulation with unperturbed dynamics (eqn (3) and (4)) until
reaching steady-state, at a parameter set that leads to a desired
initial behavior. We construct a target configuration in the
same manner, using a different parameter set that leads to
the desired target behavior. We also specify a time duration tF

over which the control protocol will be employed, and an initial
trial control protocol. We then perform a series of DAL itera-
tions; in each iteration the system and the adjoint dynamics
are integrated from the initial condition for time tF under the
current control protocol, and the cost function (eqn (5)) is
computed from the resulting trajectory. The adjoint equations
are integrated backwards in time to propagate the residuals.
After each backward run, the control protocol is updated
via gradient descent, �oiþ1 ¼ �oi � DdJ =d�o, to minimize the
cost function. We employ Armijo backtracking75 to adaptively
choose the step-size for gradient descent and to ensure con-
vergence of the DAL algorithm. Once the optimal spatiotem-
poral activity pattern has been computed, performing a forward
integration using eqn (3) and (4), the same initial condition,
and o = �o2 will yield the solution trajectory. We have imple-
mented this entire calculation in the open-source Python finite
element method solver FEniCS.76 We have provided the asso-
ciated source code and data here.

IV. Results

Using the optimal control framework described in Section III
and the hydrodynamic equations eqn (3) and (4), we have
computed spatiotemporal control solutions that steer the sys-
tem state toward the target configuration, for each of the target
behaviors shown in Fig. 1(c)–(e). In this section, we describe
these calculations, and physical insights that can be learned by
studying the computed control solutions.

A. Aster advection

First, starting in a parameter regime where a stationary aster is
stable (o = 0.05 and l = 0.8), we seek to advect an aster to a new
location. The control problem specifies the initial and final
states of the system as well as the elapsed time; that is, the
spatial dependence of the density and polarization fields at
every point in space at times t = 0 and t = tF = 2000.

Fig. 2 summarizes the results of this computation. Fig. 2a
and b respectively show the time evolution of the system
configuration and the applied control field that drives the
transformation. At early times, the applied control is strongest
at the aster core while it is lowest in front of the aster along the
direction we seek to move it. The aster then elongates to
assume a comet-like shape, with a denser, polar-ordered head
(see snapshots at t = 50, 100), as it advects toward the target
location. Note that the activity is largest to the rear of the aster
in this region. Thus, the control solution pushes (rather than
pulls) the aster.

To quantify how the position and profile of the aster change
over the course of advection, we measure its center-of-mass

position (xCOM, yCOM) and asphericity. Here, we track the
y-coordinate of the center of mass, which is calculated as

yCOM ¼
P

ij:rij 4r0

jrij

, P
ij:rij 4r0

rij , and the asphericity is given

by the ratio of eigenvalues of shape tensor: Iab ¼P
ij:rij 4r0

rij rij
�� ��2dab � rija r

ij
b

� 	
, where Latin indices denote grid

points and Greek indices correspond to Cartesian coordinates,
and rij is the distance of the ijth grid point from the center of
mass. As shown in Fig. 2c, the control window naturally
partitions into two stages. During the initial stage (0 o t t 100)
the aster rapidly changes shape into the comet-like configu-
ration, as seen by the decrease in its asphericity, while simulta-
neously undergoing advection, moving towards the target point.
Then, over the remaining long time window (100 t t o tF) the
aster reforms slowly, the asphericity increases back to 1, and it
moves the remaining small distance to the target position.

For further description of the aster profile during these
stages, we present the angle of the polarization field y as a
function of the azimuthal angle f around the aster core at four
time points in Fig. 2d. At the initial time (t = 0) the system is
radially symmetric with polarization vectors pointing toward
the aster center, while by t = 50 and t = 100 the symmetry of y in
the top [0,p] and bottom [�p,0] quadrants is broken, with more
polarization at the bottom points toward the advection direction,
and the front-end remains aster-like with a radial configuration.
The orientation returns to the aster configuration by t = tF.

Further, we can understand the control solution physically
by noting that the dynamics of s is such that gradients in the
control field o create a torque on the orientation field, i.e.,
qts B �r=o or equivalently qty B =o � s. We then calculate

the integral of the torque s� ¼
Ð
O0@ty

� �
over two domains,

OL: [x A {x0 � 10, x0}, y A {0, Ly}] on the left and and OR:
[x A {x0, x0 + 10}, y A {0, Ly}] to the right, with x0 = 40 in our case
(Fig. 2e). When the aster unwinds and advects, the region to the
left has a positive torque (countercockwise rotation) and the
region on the right experiences negative torque (clockwise
rotation), which correspond to the partial unwinding of the
aster. This is also illustrated by the snapshot shown for t = 35,
where the dashed line (x = 40) represents the axis along the
aster’s motion. During the subsequent reformation phase, as
the aster regains circular symmetry, the profile winds back such
that the left/right subdomains experience clockwise/counter-
clockwise torque respectively. The snapshot shown at t = 1000
illustrates this behavior. Eventually, the system relaxes suffi-
ciently close to an unperturbed aster configuration that the net
torque becomes zero.

1. Specifying the trajectory of aster advection. A limitation
of the approach described thus far is that convergence of the
control solution becomes unreliable when trying to advect the
aster over distances significantly greater than its size (D%y E 30).
This is because the gradients in the objective function are
extremely shallow for the initial stages of the trajectory when
the target state is far from the initial state. While techniques
to find global minima can potentially overcome this problem,
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an alternative approach is to change the objective function to
ensure sufficient gradients at all stages. A simple example of
the latter strategy is to prescribe the entire trajectory of the
aster. This approach has the added benefit of controlling the
translocation speed, but has the potential drawback of arriving
at a suboptimal solution (either slower translocation or higher
control cost), since the problem is more constrained.

We applied the latter strategy to the problem of trans-
locating an aster a distance of D%y = 120. We formulated the
control problem to translocate the aster at a constant speed %v
for a time tadv, followed by a time treform for reformation of the
aster. We set the target trajectory as a series of configurations in
which the initial state with an aster has been translated by 1
additional unit along the translocation axis. The configurations
are separated by a time increment D%t = tadv/D%y, so that in the
final target state configuration at time t = tadv, the aster center-
of-mass will have traveled D%y, with a mean advection speed of %v.
We then allow the additional time treform for the aster to acquire

its target profile. We find that specifying the path in this way
allows specifying a target distance that is arbitrarily far with-
out any difficulties in achieving convergence of the control
solution.

Fig. 3a and b show the system configurations and corres-
ponding control solution o for an example with %v = 1/20,
tadv = 2400, and treform = 1200. At t = 0, the activity is maximum
at the core of the aster, but unlike the previous setup where
only initial and final state of the aster are specified, the order of
magnitude remains same throughout the advection phase of
aster. During the first phase of the solution (constant advec-
tion), the aster undergoes partial dissolution and, as intended,
a roughly steady rate of translation toward the target (see
snapshots at t = 1200, 1900). However, because we specified
the trajectory at discrete intervals spaced by D%y = 1, the optimal
control field oscillates with a period of about D%t E D%y/%v = 20.
These oscillations arise due to the discrete nature of the
objective function that we have imposed, and thus they are

Fig. 2 Advecting an aster. The control solution for moving an aster from (xI = 60, yI = 40) at t = 0 to (xF = 60, yF = 70) at time tF = 2000. All length and
timescales are presented in dimensionless units, which are defined in Section II. (a) and (b) Snapshots of (a) the density r (color map) and polarization s
(arrows) profiles and (b) the control solution activity field o (color map). The ‘x’ symbols in the snapshots in (a) and (b) show the position of the aster core.
At times t = 50, 100 the upper quadrant of the aster unwinds and the aster becomes prolate while the aster core maintains the +1 defect. At t = 2000 the
aster is reformed at the target location. (c) Analysis of the aster shape: the left y-axis shows the asphericity of the aster (defined as the ratio of eigenvalues
of the shape tensor, see Section IV A) and the right y-axis shows the y-coordinate of the center of mass of the aster as a function of time. (d) The aster
profile, as characterized by the polarization direction y as a function of the azimuthal angle f around the aster center (defined as the position at which the
density is maximum, which coincides with the defect core, where t = 0). The measurement is taken at radius r = 20 from the core. (e) The active torque,
=o � s, integrated over the left, OL, and right, OR, subdomains of the aster (see Section IV A) as a function of time, showing the driving forces for
unwinding and closing of the aster in each subdomain due to activity gradients. The objective function parameters are {A, B, C, D, K, o0} = {0.1, 1.0, 2.0,
2.0, 0, 0.05}, l = 0.8, and the simulation box size is 128 � 128. A video of this trajectory is in ESI† Movie S1.
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not eliminated by penalizing time variations in activity with
nonzero K.77 The oscillatory behavior is evident in Fig. 3c,
which shows the positions of the maxima of r and o and the
minimum of the y-component of the torque, ty, as a function of
time. The maximum in the control solution o exhibits strong
oscillations of 20 length units between the front and rear of
the aster (while the activity remains low at the aster core, see
Fig. 3b), whereas the density maximum moves at a nearly
continuous speed toward the target. The minimum ty tracks

polarization toward the �ŷ direction and it consistently coin-
cides with the high activity point at the front of the aster. Taken
together, these observations show that the control solution
pushes the aster from the rear, while exerting torques at the
front that maintain aster-like polarization. This is captured in
Fig. 3d which shows y as a function of the azimuthal angle f at
two intermediate times during the advection phase, t = 1200
and 1900. Finally, during the second (reformation) phase, the
aster re-acquires its radially symmetric steady state density and

Fig. 3 Prescribing the path and speed of aster advection. The control problem is formulated in two stages: in advection, the aster moves at a mean
speed of %v for tadv time units; in reformation, the aster reacquires its steady-state profile over a timescale treform. The figure shows two examples. In both
cases, the control task is to move the aster by 120 length units in the ŷ direction. (a)–(d) Example 1: slower advection, with %v = 1/20, tadv = 2400, treform =
1200. (e)–(h) Example 2: faster advection, with %v = 1/5, tadv = 600, treform = 1200. (a) and (e) Snapshots of the density (color map) and polarization (arrows)
profiles for examples 1 (a) and 2 (e). For both examples, snapshots are shown for the initial state t = 0, two intermediate times during the advection phase,
and the final point at t = 3600 (slow)/t = 1800 (fast). (b) and (f) Corresponding snapshots for the activity field (color map). The ‘x’ symbols in the snapshots
in ((a), (b), (e) and (f)) show the position of the aster core. (c) and (g) Tracking the progress of the aster and the control solution. The plot shows the y-
components of the position corresponding to the aster core (density maximum, r, green curve); activity maximum (o, blue curve); and the minimum
torque (ty, red curve). (d) and (h) The polarization direction y as a function of the azimuthal angle f, measured at a distance r = 20 from the aster core, at
indicated times. The objective function parameters for both examples are the objective function parameters are {A, B, C, D, K, o0} = {0.1, 1.0, 2.0, 2.0, 0,
0.05}, l = 0.8, and the simulation box size is 120 � 200. Videos corresponding to Examples 1 and 2 are provided in ESI† Movies S2 and S3.
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polarization profile. The dynamical interplay among these
forces can be seen in the ESI.†

Since we are specifying the path of the aster, we can
investigate how the control solution depends on the chosen
advection rate. Fig. 3e–h shows analogous results for a trajec-
tory in which the advection phase is shortened to tadv = 600,
forcing a higher translation speed %v = 1/5. The higher speed
leads to a qualitatively different type of trajectory; the aster
unwinds into a flock during the advection phase, and then
reforms during the second phase. Here the control solution
takes a bean-shaped spatial profile, which initially pulsates
periodically to unwind the leading edge of the aster and push
the aster toward the target position. At early times (by t = 150)
the rear of the aster adopts a flock-like state with polarization
primarily pointing in the ŷ-direction; by t = 450 most of the
aster becomes flock-like. The extent of polarization along ŷ is
particularly clear from the plot of y(f) at t = 450 (Fig. 3h, green
triangles).

The trajectories in Fig. 3 demonstrate that imposing differ-
ent constraints in the control problem, such as the time
duration, can lead to very different activity profiles and inter-
mediate states in the optimal solution. We can qualitatively,
but not quantitatively, understand the transition from aster-
like to flock-like behaviors to result from higher values of
activity o required to meet the imposed advection speed (due
to the shorter time duration). In addition to setting the effec-
tive self-propulsion speed, the activity o controls the effective
compressibility of the active fluid, with small values of o
corresponding to negative compressibilities that favor asters
and large values corresponding to positive compressibilities
that favor polar flocks. These behaviors are evident in the phase
diagram of the uncontrolled system (Fig. 1a). For the value of
the particle interaction coefficient l = 0.8, the uncontrolled
system steady-state transitions from asters to ‘blobs’ to polar
flocks at about o = 0.2 and o = 0.25. Thus, we might expect the
system to at least locally undergo a transition out of the aster
state above a threshold advection speed and corresponding local
activity. However, due to the significant spatial variations of
omega in the control solution, we cannot quantitatively connect
the trajectory transition to the phase diagram. In particular,
we observe maximum activity values (taken over space and time)
of omax = 0.9 and 1.6 for the slow and fast advection trajectories
respectively, meaning that the maximum local activity value is
well above the phase transition threshold even for the aster-like
trajectory.

B. Changing the direction of propagating stripes

Next, starting at a parameter set for which stripes are stable, we
obtain an activity profile to change the stripe propagation
direction, with initial direction along +x̂ and a target direction
diagonally oriented along 451. Note that we obtain similar
results for any target orientation, including reversing the stripe
direction by 1801. Fig. 4a and b show the system configurations
and corresponding control solutions at several time points.
At t = 0, the applied activity is strongest at the leading edge of
the stripe, and decays over the width of the leading boundary

layer (i.e., the region where the polarization changes from
isotropic to uniform). These gradients in activity lead to both
melting (reduction of the magnitude of polarization) and turn-
ing (reorientation of polarization toward the target direction).
At the next two time-points (t = 100, 200) the activity has
decreased in magnitude, but continues to turn the polarization.
By t = 500 the activity is nearly uniform in space and approach-
ing its steady-state value of 0.4. However, some curvature
remains near the leading edge of the stripe. The stripe has
completely reformed by the last time point (t = 1400). Notably,
the timescale for dissolving and reorienting the stripes at this
periodic box size 256 � 256 (ESI,† Movie S4) was about 500 in
our dimensionless units, which is 2 orders of magnitude lower
than obtaining stripes from a random homogenous initial
condition in the absence of control.

While a straightforward route to reorienting a strip would be
to melt the stripe to an isotropic domain and then have it
reform in the new direction, this is not the optimal solution
given by the control theory. Starting with the density equation,
eqn (3), we investigate the primary forces influencing density
evolution during the stripe reorientation process. For this we
choose a subdomain 0 o x r 50, 0 o y r 100 within the
simulation box of size 256 � 256. We integrate each of the three
terms in eqn (3) over the specified subdomain as a function of
time (Fig. 4c): �or�s, which governs the convection of active
particles at convection speed o; �s�ro, which determines the
local density dynamics due to gradients in activity; and r2r,
which determines the diffusion due to density gradients. We
find that, at all times, the dominant contribution arises from
self-propulsion, �or�s; contributions from gradients in activ-
ity and density have negligible contributions. Thus, we con-
clude that activity gradients are not the driving force for the
density dynamics, but rather lead to the torques that reorient the
polarization field, as described in our analysis in Section IV A.
To quantify the effect of active torque in this case, we illustrate in
Fig. 4c that as the difference in orientation between the initial
state and target state increases, the active torque also increases,
and as the system settles into the target orientation, the active
torque goes to 0.

This result can be qualitatively understood as follows.
A trajectory which proceeds through an isotropic intermediate
state would require large magnitudes and gradients of activity
to melt the stripe and then reform it in a new direction. Instead,
the optimal solution takes advantage of the fact that a stripe
arises through a spontaneous breaking of rotational symmetry,
and thus requires only small torques (and correspondingly
small orientational biases in gradients of activity) to reorient
its direction.

C. Remodeling stripe to aster

So far, we have considered cases where the initial and target
states are both steady states of the uncontrolled forward
dynamics of our system at specified parameters. To demon-
strate the power of the control theory, we start in a parameter
regime in which propagating stripes are stable, and obtain
an activity profile that drives the system into a stationary aster
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(not a steady state at these parameters). For the initial condi-
tion, we run to steady-state under parameters that lead to
propagating stripes, l = 0.6 and o = 0.4. To obtain a configu-
ration to specify the target state, we perform an independent
simulation in which we obtain a stationary aster steady-state
with l = 0.6 and o = 0.04. Fig. 5 shows the trajectory and
corresponding control solution. We see that at early times the
applied activity is strongest at the top- and bottom-edges of the
leading boundary layer of the stripe, which bends the polariza-
tion vectors toward the core of the target aster. The magnitude
of the activity field decreases quickly in time, but the spatial
profile remains similar, thus continuing to steer polarization
toward the core, and decreasing the net momentum in the
+x̂ direction. Due to the coupling between r and s (see eqn (3)),
the resulting gradients and polarization lead to convection
of density toward the core. By t = 1500, there is a density

maximum at the core and the system has achieved a radially
symmetric state, which leads to a balance of propulsion forces
and thus a stationary state.

We note that this control problem also differs from the
previous one (reorienting stripes) in that the initial and
final state have different symmetries. However, the optimal
solution still avoids isotropic intermediate states, since these
would require significantly larger magnitudes and gradients of
activity.

D. Robustness of the optimal control solution to noise and
parameter variations

Since models are never completely accurate and noise is
inevitable in any experimental system, we investigated the
robustness of our control solution to noise and parameter
variations. Because our implementation uses deterministic

Fig. 4 Changing the propagation direction of stripes. (a) and (b) Snapshots of (a) the density (color map) and polarization (arrows) profiles and (b) the
activity field o (color map). The system is initialized in an unperturbed stripe steady-state traveling in the +x̂ direction, with parameters {o, l} = {0.4, 0.0}.
The control solution begins at t = 0 and the system state is shown at indicated times. (c) Contribution of each term of the density dynamics, (3), evaluated
by integration across the defined sub-domain: Od: 0 o x r 50 and 0 o y r 100 (see Section IV B). The terms are:

Ð
Od
@tr (density change), which is driven

by �o=�s (self-propulsion), �s�=o (density flow due to activity gradients) and =2r (diffusion due to density gradients). (d) The active torque =o � s
integrated over the entire domain with time for different target orientations. The objective function parameters are {A, B, C, D, K, o0} = {0.1, 1.0, 7.0, 7.0,
0, 0.4}; l = 0.0, and the simulation box size is 256 � 256. Videos S4 and S6 (ESI†) respectively show this trajectory and an independent run in which the
stripe is forced to re-orient by 901.
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PDEs, we tested the effects of noise by perturbing the initial
condition for the aster translocation problem presented in
Fig. 2. Specifically, we added Gaussian noise with a relative

magnitude En to the values of r, tx, and ty at each pixel, and
then integrated the dynamics with the control protocol com-
puted in the absence of noise. Fig. 6 shows the performance of
the control solution. We plot the deviation from the trajectory
integrated with zero noise and l = 0.8 (see Fig. 2a):

J TðtÞ ¼
1

O

ð
O
dr
1

2
rðr; tÞ � r�ðr; tÞð Þ2þ sðr; tÞ � s�ðr; tÞð Þ2

h i
;

(10)

where (r*(r,t), s*(r,t)) is the trajectory in Fig. 2a and the error is
normalized by the spatial extent O. The inset shows the devia-
tion of the final state from the target J T tFð Þ, as a function of En.
We see that noise has a relatively small effect on the perfor-
mance up to a magnitude of about En ¼ 20%, after which
deviations in the objective function rise dramatically. However,
even with En ¼ 35% and a relatively large value of J 	 0:021

at tF, the final state is remarkably close to the target in
all qualitative aspects (see Fig. 6c), with a well-formed aster
close to the target position. Thus, we conclude that the optimal
control solution is robust to noise, at least in the initial
condition.

To investigate the effect of model parameter errors on the
optimal control solution, we performed trials for the aster
advection problem shown in Fig. 2 with varying l. That is, we
used the same initial condition and the optimal protocol
computed with l = 0.8 (i.e. the activity sequence shown in
Fig. 2b), but we integrated the equations of motion with
different values of l. As shown in Fig. 7, we see small errors
for variations in l smaller than 10%, beyond which the errors
rise significantly. However, similar to the noise results, we
observe well-formed asters even for cases with large variations,
although their final positions deviate from the target state
(Fig. 7c).

Fig. 5 Remodelling a propagating stripe to a stationary aster. The system
is initialized in an unperturbed stripe steady-state traveling in the +x̂
direction, with parameters {o, l} = {0.4, 0.6} seeded at (x0 = 60,
y0 = 60). The target state is obtained from a simulation of an aster steady
state with parameters {o, l} = {0.04, 0.6}. (a) and (b) Snapshots of (a) the
density (color map) and polarization (arrows) profiles and (b) the activity
field (color map). The final activity is equal to the activity of the steady state
aster, o = 0.04 everywhere except near the defect core, where it
approaches zero. The baseline activity o0 = 0.4 was set to the value
corresponding to the stripe steady state. (c) The active torque =o � s
integrated over time for each of the two subdomains 0 o x r Lx, 0 o y r
Ly/2 and Ly/2 o y r Ly. The objective function parameters are {A, B, C, D, K,
o0} = {0.1, 1.0, 5.5, 5.5, 0, 0.4}; l = 0.6; and the simulation box size is 128 �
128. A video of this trajectory is in ESI† Movie S5.

Fig. 6 Robustness of the control solution to adding noise to the initial condition. (a) Deviation as a function of time between the trajectories integrated
computed with and without noise (J T, eqn (10)). We added Gaussian noise to the initial condition with indicated magnitude En, and integrated the
dynamics using the control protocol computed in the absence of noise En ¼ 0ð Þ that is shown in Fig. 2. The inset shows the deviation of the final state
J T tFð Þ as a function of noise magnitude En. (b) and (c) The initial and final states for (b) small En ¼ 0:05ð Þ and (c) large En ¼ 0:35ð Þ noise. We see robust aster
structures even when the error is large in the end state for 35% noise. Parameter values are as in Fig. 2.
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V. Discussion and conclusions

We demonstrate an optimal control theory framework that can
prescribe activity patterns to guide an active material into
desired emergent behaviors, focusing on an active polar fluid
as a model system. The capabilities include programmed
switching among dynamical attractors with very different dyna-
mics and distinct broken symmetry patterns, and reprogram-
ming the dynamics of existing attractor states. As an example of
the former, we identify a spatiotemporal activity pattern that
converts a propagating stripes state into a stationary aster.
As an example of the latter, we show that a stationary aster
can be programmed to self-advect to a new target configuration,
either via an arbitrary trajectory or along a prescribed path.
Similarly, propagating stripes can be forced to reorient in
arbitrary directions. Depending on the choice of terms and
weights in the objective function, the spatiotemporal variations
of the control inputs can be regulated to limit experimental cost
or ensure smooth trajectories.

Further, we show that the optimal control solutions are
robust to noise. In particular, perturbing the initial condition
by up to 20% leads to minimal quantitative deviations from the
target behavior, and the solution remains qualitatively accurate
for significantly larger perturbations. Also, we note that addi-
tional strategies can be employed for experimental systems
where larger noise sources or systematic errors are unavoid-
able. This includes integrating closed-loop control compo-
nents. For example, one can observe the current state of the
system at regular intervals along a trajectory, and recompute
the optimal control solution using the current state as the
initial condition. Alternatively, one can add linear feedback
terms that analyze deviations from the pre-computed optimal
control trajectory.78

In addition to directly applying the computed activity proto-
cols, examination of their forms provides both fundamental and
practical insights into controlling active materials. In particular,

we show how the spatial gradients in the applied activity field lead
to localized torques which rotate polarization directions, leading
to the programmed reformulation of the pattern of interest (e.g.
aster or stripe). Unsurprisingly, the form of the trajectory is
different depending on the task being encoded for – changing
the broken symmetry state of the system (e.g. stripe-to-aster,
Fig. 5) requires very different spatial arrangements of active
torques then advection (Fig. 2 and 3) or reorientation (Fig. 4).
Notably however, the applied activity field and corresponding
trajectory also depend strongly on the time allowed for the
transformation. In the example of advecting the aster over a
distance many times its size (Fig. 3), the aster mostly retains its
form throughout the course of the trajectory when moving at
moderate speed, but when forced to complete the journey 4�
faster, the applied activity field reshapes the aster into a localized
flock or swarm, which reformulates into an aster upon reaching
the target position.

The states we seek to control are realizable in experiments.
Propagating concentration waves of aligned self-propelled par-
ticles have been observed in dense actin motility assays79–82

and in self-chemotactic bacterial systems.83–91 Asters are ubi-
quitous in cell biology in processes such as the formation of the
mitotic spindle, oogenesis, and plant cell cytokinesis.92–99 They
can be reliably obtained in in vitro suspensions of cytoskeletal
filaments and motor proteins.6,46,95,100–110 In such systems,
activity can be controlled in space and time by constructing
active materials with optogenetic molecular motors. For exam-
ple, the closely related microtubule-based active nematic sys-
tem has been modified to contain light-activated kinesins
clusters, so that the activity is proportional to the local light
intensity.43–46 The researchers then used a digital light projec-
tor to shine programmed spatiotemporal sequences of light on
the sample.43–46 Our optimal control protocol can be used to
determine the spatiotemporal light sequence that will drive
such a system into a desired state. Due to inevitable accuracies

Fig. 7 Robustness of the control solution to variations in the model parameter l. (a) The deviation J T between the trajectory integrated with the optimal
control protocol from Fig. 2b but with the indicated value of l, compared to the one with l = 0.8 shown in Fig. 2b. (b) and (c) Snapshots showing the initial
and final states for (b) relatively small (l = 0.78) and (c) large (l = 0.9) parameter variations. We observe well-formed aster structures even though the error
is relatively large at the end state for l = 0.9, although the aster position deviates from the target. Parameter values are as in Fig. 2.
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in hydrodynamic descriptions of active matter systems and
experimental noise, it is important that we found our optimal
control solutions to be robust against noise and parameter
inaccuracies (Fig. 6 and 7). Further, optimal control solutions
can be corrected by periodically observing the state of the
system and applying feedback control. For example, feedback
can be implemented by adding linear restoring forces that drive
the system toward the computed trajectory, or by recomputing
the optimal control solution based on the current state of the
system.

The optimal control framework presented here is highly
generalizable, and can be readily applied to any system pro-
vided there is a means to externally actuate the system and
there is a reasonably accurate continuum model. Importantly,
the control variable need not be limited to the activity field,
since the objective function can be extended to include any
property of the material that can be actuated. With the recent
success of automated PDE learning tools in discovering
continuum models for active systems (e.g. ref. 111–113), appli-
cations need not be limited to systems with accurate models
already available. Furthermore, since model discovery tools
work better when provided with a variety of data, including
from non-steady-state observations, we anticipate that com-
bining model discovery tools with optimal control could be a
powerful approach to both discover more accurate models and
enhance the reliability of the control solutions.

Data availability

The code and data associated with this work are provided in:
https://github.com/ghoshsap/optimal-control-activepolarfluid/
tree/main.
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