
7246 |  Soft Matter, 2024, 20, 7246–7257 This journal is © The Royal Society of Chemistry 2024

Cite this: Soft Matter, 2024,

20, 7246

Deep-learning optical flow for measuring velocity
fields from experimental data†‡

Phu N. Tran, a Sattvic Ray,c Linnea Lemma,ac Yunrui Li, b Reef Sweeney,c

Aparna Baskaran, a Zvonimir Dogic, acd Pengyu Hong *b and
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Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep

convolutional neural networks. It uses those features to estimate the inter-frame motions of objects. We

evaluate the ability of optical flow to quantify the spontaneous flows of microtubule (MT)-based active

nematics under different labeling conditions, and compare its performance to particle image velocimetry

(PIV). We obtain flow velocity ground truths either by performing semi-automated particle tracking on

samples with sparsely labeled filaments, or from passive tracer beads. DLOF produces more accurate

velocity fields than PIV for densely labeled samples. PIV cannot reliably distinguish contrast variations at

high densities, particularly along the nematic director. DLOF overcomes this limitation. For sparsely

labeled samples, DLOF and PIV produce comparable results, but DLOF gives higher-resolution fields.

Our work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft,

and biophysical systems.

1 Introduction

Accurate measurement of flow fields is a cornerstone for
modeling diverse phenomena ranging from fluid dynamics1

and active matter2 to biology.3 A conventional approach to
estimating flow fields is particle image velocimetry (PIV), where
flow velocities are computed by correlating features of two
consequent images.4–6 However, PIV has limitations. One arises
from the dependence of the interrogation window size on
seeding particle speed. Consequently, PIV cannot estimate
turbulent flows smaller than the interrogation window, leading
to potential errors in the velocity field.7 Furthermore, signifi-
cant Brownian motion can introduce uncertainty into PIV
measurements.8 Another limitation is that tracer particles must
be within an optimal range of density and size.7 This require-
ment can be impractical in biological systems using fluorescent
proteins as markers, preventing the use of smaller window sizes

as a workaround for issues related to Brownian motion or
smaller turbulent flows.9 To overcome these limitations we
explore a deep learning-based optical flow (DLOF) algorithm
for the estimation of the flow fields.

In computer vision, optical flow describes the apparent
motions of objects in a sequence of images.10 Various rule-
based techniques for optical flow estimation have been developed,
including differential methods,11–14 variational methods,15–18 and
feature-based methods.19–22 Implementations of rule-based optical
flow algorithms can be advantageous over PIV for applications in
biological images.23–28 Rapid advancements in machine learning
resulted in deep learning optical flow (DLOF) algorithms, where
the automatic feature extraction offered by deep convolutional
neural networks has significantly improved the algorithm
accuracy.29–55

Although recent efforts used DLOF to estimate velocity fields
in applications that would otherwise rely on PIV,56–61 these
works trained and evaluated DLOF with synthetic data from
fluid dynamics simulations or computer-generated and aug-
mented PIV datasets that mimic noisy data in real-world
experiments. Obtaining ground-truth velocities required for
training machine learning models has been challenging with
real-world data. We overcome this limitation by investigating
the performance of DLOF on experimental data from exten-
sively studied active nematic liquid crystals.62–72 We image
microtubule (MT)-based active nematics under conditions that
are beyond the limitations of PIV and present a significant
challenge to its performance. We then develop a computational
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framework to apply DLOF to quantify the microtubule velocity
fields. We test the framework with ground truth velocity fields
obtained by particle tracking methods. We compare the velocity
fields obtained by PIV and DLOF against this ground-truth
data. Importantly, this data is characteristic of flow fields from
diverse soft matter and biophysical systems, suggesting that
our conclusions are broadly applicable.

Microtubule (MT)-based active nematics are powered by
ATP-consuming kinesin molecular motors. In such materials
the extensile MT bundles generate internal active stresses,
which in turn give rise to motile topological defects and
associated autonomous flows.64 Active nematics are described
by two continuous fields, the director field, which describes the
average orientation of the anisotropic MT filaments, and the
velocity field, which describes their motions. Accurate measure-
ment of the director field requires samples in which all the
filaments are labeled. However, such samples yield low varia-
tions in spatial intensity, which makes application of PIV
techniques challenging.73 In fully labeled active nematics PIV
underestimates the velocity component along the nematic
director,68,74–76 which can be attributed to the nematic aniso-
tropy; the intensity of MT bundles is fairly uniform along the
nematic directors, which presents challenges for implementa-
tion of PIV. Alternatively, obtaining accurate PIV fields requires
samples with a low volume fraction of labeled MTs, which
creates highly speckled patterns suitable for PIV application,
but from which the director field cannot be extracted. Over-
coming these competing challenges requires active nematics
containing high-concentration MTs in one color and dilute
tracer MTs in a different wavelength.76 The former are suitable
for director field measurement while the latter allow for accu-
rate application of PIV techniques. However, these samples are
cumbersome to prepare, and sequential imaging can introduce
a time lag between the measurement of the two fields.

We show that DLOF produces an accurate measurement of the
flow field irrespective of the fraction of labeled filaments. Thus,
DLOF techniques can fully characterize the instantaneous state of
an active nematic from one set of images. Furthermore, the DLOF
results are higher resolution and less noisy than those from PIV.
Importantly, while we use the MT-based active nematic system to
test optical flow, the implications of our results are more general.
The velocity fields from the MT-based active nematic system
closely resemble the chaotic flow fields that arise in different soft
matter and biophysical systems, such as unstable elastic polymer
solutions,77 bacterial suspensions,78 interface dynamics of con-
fined active droplets,79 tissues dynamics driving biological mor-
phogenesis,80,81 and flows generated by biological swimmers.82

Thus, our results suggest that DLOF models can be used for more
accurate and robust measurements of the velocity fields across this
wide range of active, soft, and biological systems.

2 Deep learning optical flow (DLOF)

DLOF uses convolutional neural networks for the automatic
extraction of relevant features from two adjacent frames in a

video and uses the extracted features to estimate the move-
ments of objects between the two video frames.29,32,38,83,84

DLOF models are typically trained using supervised learning
algorithms, in which training data are synthetic videos that
include the true motions of all the objects in the videos across
the video frames.85–91 Synthetic data are required by this
approach because obtaining the true displacements of objects
in real-world videos is highly challenging. Thus, the ability of
the models to properly adapt to unseen data from a different
domain becomes crucial for the trained models to be useful in
real-world scenarios. A recent study suggested that a model
called RAFT (Recurrent all-pairs field transforms for optical
flow), which was originally trained using synthetic data, could
generalize well to unseen fluid dynamics videos.58,84 However,
this study evaluated the model’s performance on simulation-
generated videos and did not evaluate the performance on
challenging videos obtained in experiments, such as the active
nematics described above.

2.1 Architecture of the RAFT model

RAFT estimates the optical flow from a pair of images (I1, I2) in
three main stages: (1) extract features of the input images using
a convolutional neural network, (2) use those extracted features
to construct a correlation volume that computes the visual
similarity of the images, and (3) compute the final flow through
an iterative process.

2.1.1 Feature map extraction. The model uses an encoder
gy, which is a convolutional neural network, to extract features
from the two input images. In particular, gy extracts features at

1/8 resolution; i.e., gy: RH0�W0�C 7!RH0=8�W0=8�D, where H0 and
W0 are the height and width of the images, C the number of
color channels (C = 3 for RGB and C = 1 for grayscale images),
and D the number of desired feature maps to be extracted. The
encoder gradually reduces the resolution of the output feature
maps; i.e., it successively outputs feature maps at 1/2, 1/4, and
finally 1/8 resolution. For each of these steps, the resolution
reduction is performed by convolutional residual neural net-
work blocks (Fig. 2A). In general, feature maps produced at
lower resolutions extract spatial correlations at higher levels
with a wider receptive field, and it has been shown empirically
that learning features at the aforementioned resolutions offers
a balance between the model’s performance and complexity.84

2.1.2 Construction of correlation feature map. Visual
similarity between the two input frames is required to find
the correspondences of moving objects between them. RAFT
computes the visual similarity by constructing a correlation
between all pairs of extracted features of first the image gy(I1) A
RH�W�D, and then that of the second image gy(I2) A RH�W�D

(right part of Fig. 2A). The elements of a correlation
volume C(gy(I1), gy(I2) A RH�W�H�W) are given by Cijkl ¼P
h

gyðI1Þijh � gyðI2Þklh. Correlations are further computed as a

4-layer pyramid {C1,C2,C3,C4}, where Ck has dimensions H �
W � H/2k � W/2k (Fig. 2B). Here, the reduction of the last two
dimensions of the correlation volume C by a factor of 2k is
achieved by pooling the last two dimensions of C with kernel
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size k and equivalent stride. Having correlations at multiple
levels through {C1,C2,C3,C4} allows the model to handle both
small and large displacements. The first two dimensions
(that belong to I1) are maintained to preserve high-resolution
information, enabling the model to detect motions of small
fast-moving objects.

The link between an object in I1 and its estimated corre-
spondence in I2 is determined through correlation lookup
using the correlation pyramid, as described in Fig. 2C. The
correspondence x0 A I2 of a pixel x = (u, v) A I1 is estimated by
x0 = (u + f1(u), v + f2(v)), where (f1, f2) is the current estimate of
DLOF between I1 and I2. A local grid around x0 is then defined
as Nðx0Þr ¼ fx0 þ dxjdx 2 Z; dxk k1� rg, a set of integer offsets
that are within a radius of r of x0 (using c1 distance). The local
neighborhood Nðx0Þr is used to index from all levels of the
correlation pyramid using bilinear sampling, such that the grid

Nðx0=2kÞr is used to index the correlations Ck. At a constant
searching radius r across all levels, a local neighborhood on a
lower level implies a larger context; for example, at k = 4, a
neighborhood of r = 4 effectively includes a range of 256 pixels
at the video’s resolution. The interpolated correlation scores at
all levels are concatenated to form a single feature map, which
serves as an input for iterative flow refinement described below.

2.1.3 Iterative flow refinement. The flow between the two
input images is determined through an iterative process, such
that the final flow fN is obtained from the sequence fk+1 = fk + Df
where 0 r k r N � 1, f0 = 0, N is the number of iterations, and
Df is being produced by the model at each of the iterations.

The flow updating is performed by a convolutional gated
recurrent unit (ConvGRU) cell,92 in which convolutions have
replaced fully connected layers:

zt = s(Conv3�3([ht�1,xt],Wz)) (1)

rt = s(Conv3�3([ht�1,xt],Wr)) (2)

h̃t = tanh(Conv3�3([rt } ht�1,xt],Wh)) (3)

ht = (1 � zt)} ht�1 + zt } h̃t (4)

where xt, zt, rt, h̃t, ht are the input, update gate, reset gate,
internal memory state, and hidden state at time t, respectively;
s(�) is the sigmoid function, tanh(�) the hyperbolic tangent, and
Conv3�3(�, W) the convolution operator with kernel size 3 � 3
and bias W. Here, the hidden state ht is further processed by
two convolutions to produce the flow update Df at time t.

In the above set of equations, at a current time t, the input
xt is the concatenation of the current flow estimate, correlation,
and context features. The update gate zt, which is calculated
using the last hidden state ht�1 and the current input xt,
controls how much past knowledge should be considered in
the computation of the current hidden state ht. The reset signal
rt is a function of the current input xt and the last hidden state
ht�1, and determines how much of the past knowledge to
forget. The internal memory h̃t of the GRU cell is calculated
using the current input xt and the last hidden state ht�1

weighted by the reset gate rt. Finally, the hidden state is
updated by the weighted sum of the last hidden state ht�1

Fig. 1 Microtubule (MT)-based active nematics. (A) Microscopic components of the active nematic liquid crystal. Kinesin motor clusters consume
energy to actively slide neighboring MTs against each other. (B) The active nematic exhibits the spontaneous flow that deforms the nematic texture over
time. All MTs are fluorescently labeled at 647 nm. Increased local intensity indicates a higher local filament concentration. The time step is 7.5 s.
(C) In Experiment 1, the fully labeled MTs (top panel) are mixed with a sparse population of MTs that fluoresce at 488 nm (bottom panel), which are used
to generate ground-truth velocity points. (D) In Experiment 2, the fully labeled MTs (top panel) are mixed with passivated microbeads, which are used to
generate the ground-truth velocities (bottom panel).
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and the current cell memory h̃t, with the update gate zt con-
trolling the weights distribution.

2.2 Training DLOF

Most DLOF models are trained by supervised learning using
synthetic data, where flow ground truths can be obtained
straightforwardly during data generation. The supervised loss
Ls used to optimize RAFT’s parameters compares the sequence
of predictions {f1,. . .,fN} with the flow ground truth fgt, with
exponentially increasing weights:

Ls ¼
XN
i¼1

gN�1 fgt � f i
�� ��

1
(5)

where g o 1. RAFT is trained using supervised learning, and it
has been shown to generalize well to data in other domains.58,84

When it is required, the model’s parameters can be further

fine-tuned using the real-world data in the target domain;
however, unsupervised learning is generally required because
ground truths of those data are often unavailable.

2.2.1 Unsupervised training. An approach to unsupervised
training is to generate realistic pseudo-flow ground truth data
using the current model, and then use that pseudo ground truth
data for further optimizing the model’s parameters. In this
approach, the current model is first used to warp the image I1 to
produce an estimate of the image I2, i.e., ~I2 = O(I1,f) where O is the
warping function that displaces the pixels in I1 according to the
current estimate f of the flow. ~I2 can be then used as a pseudo
ground truth to compute a simple unsupervised loss

Lu = wphoto�Lphoto + wsmooth�Lsmooth (6)

where Lphoto denotes the photometric loss between I2 and ~I2,
Lsmooth flow smoothness regularization, and wphoto, wsmooth

Fig. 2 Main components of the DLOF model. (A) Feature extraction and construction of feature-level correlations: a convolutional neural network
(CNN) is used to extract D feature maps of resolution of H �W for each of the input images. Taking the inner product of the features maps of two images
produces all-pair feature-level correlation volumes C1 of dimension H � W � H � W. (B) Correlation pyramid: multi-scale feature correlations are
constructed by pooling the last two dimensions of C1, such that those dimensions are reduced by 1/2, 1/4, and 1/8, resulting in C2, C3, and C4,
respectively. The first two dimensions preserve high-resolution information while multi-scale correlations enable the model to capture the motions of
small fast-moving objects. (C) Correlation lookup for a pixel x in I1: an estimate of the location of the correspondence x0 (in I2) is initialized by displacing x
using the current flow estimate f. The model then looks for the most correlated features in a neighborhood Nðx0Þr centered at x0 (r = 3 in the figure),

where all locations within Nðx0Þr are used to index from the correlation pyramid {C1,C2,C3,C4} to produce correlation features at all levels, which are

further concatenated to form a single correlation feature map for the pixel x in I1.
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are the weights. The photometric loss quantifies the structural
and visual differences between I2 and ~I2, being aware of
occluded regions in which pixels in I1 do not have their
correspondences in I2. A common metric used for photo-
metric loss is the occlusion-aware structural similarity index
(SSIM).25,93 A major challenge in unsupervised training
of DLOF models is to obtain an accurate estimate of
occlusions,83 which cannot be directly measured when dealing
with real-world data. The unsupervised loss above also has a
second term to encourage the smoothness of the resultant
velocity fields. For example, the k-th order smoothness is
defined as83

LsmoothðkÞ ¼
1

k

X
exp �rI

s

� �
� rðkÞV
�� �� (7)

where rI detects the edges in the current image, r(k)V is the
k-th order gradient of the corresponding velocity field, s
controls the strength of the regularization, and n is total
number of samples.

We obtained the results in the benchmarks of this work
using a RAFT model that was trained with the FlyingThings
synthetic datasets,91 which yielded the highest performance in
our investigation. During velocity computation, we empirically
set the number of iterations for flow refinement to 24.

3 Active nematics samples

We tested the performance of the DLOF framework using a
MT-based active nematic liquid crystal.64 An active nematic is a
quasi-2D liquid crystal comprised of locally aligned filamen-
tous MTs. When powered by kinesin molecular motors, exten-
sile MTs spontaneously generate a chaotic flow field that varies
over space and time, and in turn reorients the nematic texture
(Fig. 1A and B). Typically, the velocity field is computed by
performing PIV on images of active nematics comprised of
fluorescently labeled MTs. However, this method can be in-
accurate when all the MTs are labeled, as these samples have
poor contrast variations in fluorescence intensity, especially in
the direction of the MT alignment.73

We performed two distinct experiments, each containing a
different type of tracer that we used to estimate the ground
truth. In both experiments, a large fraction of MTs were labeled
with a fluorescent dye that emits 647 nm wavelength photons.
In Experiment 1, samples contained a very low concentration of
488 nm labeled MTs. They were dilute enough so that indivi-
dual filaments could be distinguished (Fig. 1C, bottom panel).
However, accurately linking the detected MTs into time trajec-
tories was only possible for a small fraction of the dilute
population. In Experiment 2, instead of relying on dilute
labeling, we mixed passivated 488 nm fluorescent microbeads
into the active nematic (Fig. 1D, bottom panel). Although not
directly incorporated into the quasi-2D active nematic, these
beads were located right above the nematic layer and followed
the same flow field. Compared to the sparsely-labeled MTs,
the beads could be reliably tracked across several frames with

an automated algorithm [ESI‡], thus providing a larger set of
velocity values that served as the ground truth.

4 Results and discussion
4.1 Experiment I: ground truth provided by sparsely labeled
MTs

We first studied active nematics containing both densely and
sparsely labeled MTs with different fluorophores. The sample
was imaged sequentially in the dense and sparse channel.
Using these samples we first performed PIV and DLOF on
densely labeled samples. This data was compared to particle
tracking of sparsely-labeled active nematics, which served as
ground truth (Fig. 3). The velocities estimated by PIV for
densely labeled systems are inaccurate. DLOF overcomes this
limitation providing more accurate estimates of both the
velocity magnitude and direction. We hypothesize that the
breakdown of the PIV for densely labeled systems arises
because the algorithm cannot reliably distinguish contrast
variations at high densities. As we show below, the breakdown
is strongest in directions parallel to the director field. PIV
significantly underestimates the velocity tangent to the MT
bundles because the contrast is more uniform in that direction,
as was previously reported.68,73–76

To quantify the above-described observations, we used PIV
and DLOF to estimate the velocity fields from the dense and
dilute channels. We compared these to the ground truth based
on single-particle tracking. PIV and DLOF estimate the flow
field everywhere while single particle tracking yields velocities
only at the location of tracked points. The velocity magnitude
error is calculated by |||v|| � ||v*|||/||v*|| where v* is the true
displacement vector obtained from particle tracking at a parti-
cular position and v is the velocity obtained at the same
position from either the PIV or DLOF. The orientation error y
is calculated using the cosine similarity, where cos(y) =
v�v*/(||v||�||v*||). By repeating the procedure for all tracked
particles we obtained the distribution of measurement errors
(Fig. 4). PIV and DLOF have comparable errors for sparse labels
(Fig. 4B). However, with dense labels, PIV results were more
unreliable. In contrast, the DLOF estimates are nearly as good
as those with sparse labels (Fig. 4A). Similarly, the mean
orientation errors of PIV and DLOF are also comparable when
using sparse labels, 14 and 17 degrees, respectively (Fig. 4D).
The discrepancy between orientation errors produced by PIV
and DLOF becomes significant when using dense labels, where
the mean orientation error of PIV increases to 44 degrees while
that of DLOF is 29 degrees (Fig. 4C).

Previous studies68,74–76 had shown that uniform contrast
along densely labeled MT bundles poses a major challenge to
PIV, resulting in significantly underestimated velocity compo-
nent tangent to the MT bundles. We therefore evaluated the
contribution of this effect to our observed breakdown of PIV as
follows. We extracted the director, i.e., the local orientation, of
the MT bundles using the dense labels and computed average
errors of velocities obtained by PIV and DLOF as functions of
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the angle between ground truth velocity and director (Fig. 5).
We find that when the MTs are moving in directions with
significant components along the director, PIV produces high
relative speed errors (Fig. 5A) and orientation errors (Fig. 5B).
DLOF strongly improves the estimation of velocities in these
directions. In particular, the improvement of DLOF over PIV
uniformly increases as the velocity direction approaches the
director field. When the velocities are parallel to the directors
(i.e., angles between velocity and director are less than
1 degree), the average relative speed error is reduced by 37%
with DLOF (compared to PIV), and average orientation error
reduced by 31%. This analysis shows that DLOF can resolve this
well-known limitation of PIV, and thus establishes DLOF as an
alternative method capable of obtaining accurate velocity fields
with dense labels.

4.1.1 Comparing PIV and DLOF spatial flow fields. Thus
far, our analysis has focused on the accuracy of the PIV and
DLOF methods in estimating the velocities of individual traced
labels. Next, we evaluate the quality of the two-dimensional
flow fields produced by each method. In this case, we do not
have ground truth to compare against, since the tracked dilute
MTs do not yield the spatial flow fields. Previous analysis

showed that PIV and DLOF are comparable for sparsely labeled
systems. Therefore, we use the flow fields determined by PIV
with sparse labels as the baseline. For a meaningful compar-
ison, we note that PIV produced the velocity fields on lower-
resolution spatial grids when compared to DLOF. Therefore, we
interpolate the DLOF results onto the lower-resolution grid of
the PIV results. PIV and DLOF produce consistent flow fields for
sparsely labeled samples (Fig. 6). However, the DLOF results are
significantly smoother. While the DLOF results are somewhat
noisier for the densely labeled system, the correct flow structure
is maintained. In comparison, PIV on densely labeled systems
produces an inaccurate flow structure. Importantly, the DLOF
model correctly estimates velocities across different regions
and different scales of the flow speed. For example, MT bundles
move faster in the vicinity of +1/2 topological defects and slower
near �1/2 defects.

We compared the flow speeds obtained from PIV and DLOF
averaged over the entire field (Fig. 7). Consistent with the
previous analysis above, the PIV and DLOF estimates are nearly
identical for sparsely labeled samples. The DLOF estimates for
dense labels fall within the 95% confidence interval. In contrast,
PIV significantly underestimates the velocities for dense labels.

Fig. 3 DLOF outperforms PIV for densely labeled samples. (left) The trajectory of an individual MT, which is imaged every 1.5 seconds. MT true velocities
(cyan arrows) are obtained by particle tracking. The velocity vectors estimated by PIV and DLOFs are indicated respectively with green and orange arrows.
The insets depict the densely labeled MTs in local neighborhoods of the tracked labels at the indicated times. The high densities of the labels in the
images pose a significant challenge to PIV, resulting in inaccurate velocity estimates. In contrast, DLOF produces highly accurate velocities. Particle
tracking was extracted from a simultaneously imaged sparsely labeled channel.
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Fig. 5 The improvement of DLOF over PIV increases as the velocity becomes parallel to the director field (for dense labels). Average relative speed error
(A) and average orientation error (B) of PIV and DLOF as a function of the angle between ground truth velocity and director. PIV particularly breaks when
the velocities are tangent to the MT bundles due to the uniform contrast of the dense labels along MT bundles. DLOF can handle the uniform contrast
along MT bundles and thus produces much more accurate velocities.

Fig. 4 Comparing PIV and DLOF to single-filament tracking. Distribution of errors when comparing PIV and DLOF velocity fields from sparsely and
densely labeled samples to single-filament tracking. The distributions of errors in the magnitude and orientation of the velocity (defined in the text) for PIV
and DLOF. Errors are computed by comparing different estimates with particle tracking results. The mean relative speed errors for PIV are 42% and 19%
for densely and sparsely labeled systems; errors for DLOF are 29% and 23%. The mean orientation errors for PIV are 44 degrees and 14 degrees for
densely and sparsely labeled systems; errors for DLOF are 29 degrees and 17 degrees. The distributions are obtained from 4738 traced labels across
44 frames in Experiment 1.
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For a final comparison, we define the normalized zero-lag
cross-correlation between an estimated velocity and the ground
truth as

C ¼

P
i

vi � v�iP
i

v�i � v�i
¼

P
i

vi � v�iP
i

v�i
�� ��2 ; (8)

where vi and v�i are the estimated and the ground truth
velocities of the traced label i, and

P
i

sums over all the traced

labels in the current frame. A perfect velocity estimation would
yield C ¼ 1, while C4 1 indicates that, on average, flow speeds
are overestimated and Co 1 underestimated. PIV and DLOF
perform similarly for sparse labels (Fig. 8). The performance
discrepancy between PIV and DLOF becomes significant for
dense labels, where velocities produced by DLOF are still highly
correlated with the ground truths. In contrast, velocities esti-
mated by PIV result in significantly lower correlations.

4.2 Experiment 2: ground truth provided by passive beads

We also compared DLOF and PIV against tracked passive beads,
which served as the ground truth. This measurement assumes

Fig. 6 Comparison of the velocity fields in the x-direction (top row) and y-direction (bottom row) produced by PIV and DLOF for sparse labels (blue and magenta
highlighted), and by PIV and DLOF for dense labels (green and orange highlighted). The velocity fields are calculated for the first frame obtained from Experiment 1.
DLOF always produces smoother fields, due to its capability to estimate displacements on a pixel-level. Remarkably, when dealing with dense labels, velocity fields
estimated by DLOF are significantly more accurate than those produced by PIV (by comparing green and orange boxes for each velocity component).

Fig. 7 Comparison of mean flow speeds as a function of time. The flow
speeds (mm s�1) averaged over the entire spatial domain are shown as a
function of time over the 44 frames of the benchmark video using the
dense labels. The frame interval is 1.5 seconds, and results are shown for
sparse and dense labels for PIV and optical flow. The shaded areas show
95% confidence levels of the mean speeds.

Fig. 8 Normalized zero-lag cross-correlation between velocity estimates
and ground truth. The normalized spatial correlation (eqn (8)) is shown for
optical flow on sparsely and densely labeled systems, as well as PIV on
densely labeled systems, as a function of time.
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that passive beads within active nematic samples provide good
estimates of MT velocities, as previously shown by Tayar et al.
(Fig. 12).73 We include it here for two reasons. First, it provides
an alternative means to compare the relative accuracy of DLOF
and PIV, without relying on the PIV measurement itself. Second,
the fact that (as shown next) we observe nearly identical results
from both methods is a significant observation. Active nematics
are hierarchical materials, and the velocity field can depend on
the length scale on which it is characterized. At the microscopic
scale, clusters of molecular motors induce relative extensile
sliding of adjacent MTs. In principle, tracking individual fila-
ments could at least partially include this microscopic dynamics,
whereas micron-sized beads will not. Hydrodynamic theories
coarse-grain over such jittery microscopic motions, suggesting
that micron-sized beads could be a better tracer for measuring
such coarse-grained velocity fields. The fact that we observe an
indistinguishable velocity field between the two approaches
means that both methods provide a good description of the
coarse-grained velocity field.

In each frame, we compared the instantaneous velocity
of each bead to the velocities at the same position generated
by PIV and DLOF. Since we computed PIV on a sparse grid,

we interpolated its values as necessary to correspond to bead
positions. As in Experiment 1, the comparison shows that
DLOF is more accurate than PIV (Fig. 9). In particular, the
difference in speeds between the beads and the DLOF velocities
was significantly smaller than that between the beads and PIV
(Fig. 9A). Similarly, the angular orientations of DLOF velocities
were also closer to the bead velocities (Fig. 9B). At each time
point, the spatially averaged mean speed of the DLOF field was
closer to that of the beads, while the mean speed of PIV was
systematically lower (Fig. 9C). This result is consistent with the
notion that PIV systematically underestimates the motion of
MTs when their motion is locally parallel, rather than perpendi-
cular, to intensity gradients in the image on a length scale
larger than the size of PIV’s interrogation region.6,7 Lastly, the
zero-lag cross-correlation eqn (8) between the DLOF and bead
velocities was consistently higher than the correlation between
PIV and bead velocities (Fig. 9D).

Our benchmarks demonstrate the accuracy of DLOF for
extracting velocities from active nematics, surpassing the lim-
itations of traditional PIV methods. Although we have trained
and demonstrated the model on 2D active nematics samples
captured with a 60� magnification objective, we note that it
appears to generalize well to other magnifications and situa-
tions, such as 2D slices from a 3D isotropic active MT system64

captured at lower magnification (10�), provided that: there is
sufficient contrast between labeled MTs and the background,
the illumination of MTs does not change significantly between
the two input frames, and the movements between two input
frames are smaller than the algorithm’s search window and the
scale of the moving textures in the images.

5 Conclusions

We compared DLOF and PIV for estimating the velocity fields of
active nematics, by generating ground truth velocity fields that
enabled quantitative comparison of the two techniques. DLOF
produces spatially smoother velocity fields. It also generates
more accurate flows than PIV for high densities of fluorescent
filaments. The high performance of DLOF arises because it
determines displacements between frames by finding maxi-
mum cross-correlations in the rich feature space extracted
by deep neural networks across multiple scales of spatial
resolution. Furthermore, unlike PIV, DLOF eliminates the need
to manually tune and readjust the model’s parameters when
working with data that have high contrast variances across the
entire data. This is essential for analyzing large amounts of
data, or for real-time control applications where it is imprac-
tical to manually tune parameters of algorithms such as PIV.

Importantly, these results have implications that extend
beyond the field of active nematics. Active nematics velocity
fields resemble those of a wide variety of soft matter and
biophysical systems,77–79 suggesting that DLOF might be more
accurate than PIV in these systems as well. In particular,
it is likely that DLOF will significantly outperform PIV in
other systems with anisotropic constituents, based on our

Fig. 9 Comparison of PIV and DLOF where passive tracer beads generate
the ground-truth velocities. (A) Histograms of speed differences between
PIV and bead velocities, and between optical flow and bead velocities. (B)
Histograms of angular orientation differences between PIV and bead
velocities, and between optical flow and bead velocities. (C) Mean speed
of the beads, PIV, and optical flow over time. The speed is averaged over all
available points for the given field (note that there are far more optical flow
points than PIV points, and far more PIV points than beads, in each frame).
Error bars indicate the standard deviation. (D) Zero-lag cross-correlation
between PIV and bead velocities, and between PIV and optical flow
velocities over time (eqn (8)).
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observation that PIV is especially inaccurate in estimating
velocities along the long direction of particles. However, as
noted above, PIV may be more accurate than DLOF when there
is highly nonuniform illumination on the sample or the resolu-
tion is insufficient to visually represent the moving textures in
the data between successive frames.

There is growing interest in applying data-driven and
machine-learning approaches to physics and materials
discovery,94–102 but these approaches are limited by the avail-
ability of training data. The ability of DLOF to autonomously
generate high-quality velocity fields is a crucial step for advan-
cing these applications.
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