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Entangled nematic disclinations using
multi-particle collision dynamics

Louise C. Head, *ab Yair A. G. Fosado, a Davide Marenduzzo a and
Tyler N. Shendruk *a

Colloids dispersed in nematic liquid crystals form topological composites in which colloid-associated

defects mediate interactions while adhering to fundamental topological constraints. Better realising

the promise of such materials requires numerical methods that model nematic inclusions in dynamic

and complex scenarios. We employ a mesoscale approach for simulating colloids as mobile surfaces

embedded in a fluctuating nematohydrodynamic medium to study the kinetics of colloidal entanglement. In

addition to reproducing far-field interactions, topological properties of disclination loops are resolved to

reveal their metastable states and topological transitions during relaxation towards ground state. The intrinsic

hydrodynamic fluctuations distinguish formerly unexplored far-from-equilibrium disclination states, including

configurations with localised positive winding profiles. The adaptability and precision of this numerical

approach offers promising avenues for studying the dynamics of colloids and topological defects in

designed and out-of-equilibrium situations.

1 Introduction

Dispersions of colloidal particles in liquid crystals1 are of
interest to physicists because they provide a pathway to realise
soft materials with interesting target properties, such as photo-
nic crystals,2 cloaks and metamaterials,3 or self-quenched
glasses.4 This versatility is due to the fact that topology and
elastic distortions in the liquid crystalline host lead to long-
range interactions which can be tuned by varying particle size,
shape and liquid crystalline properties, even in a simple
nematic. When combined with a suitable kinetic protocol,
these interactions can be harnessed to self-assemble different
types of materials.5

To understand the physical mechanisms underlying the
self-assembly of different structures, a useful and popular
starting point is that of two colloidal particles in a nematic,
with normal anchoring at the colloidal surface. On the one
hand, analysing this geometry leads to an estimate of the
effective pair potential between particles, which includes elas-
ticity and defect-mediated interactions, and which is important
for self-assembly in many-particle systems.6–8 On the other
hand, the problem of a colloidal dimer in a liquid crystal is
interesting from a fundamental point of view, due to the central
role played by topology.9 Indeed, the liquid crystalline pattern

needs to be topologically trivial overall,6,7 but this can be
realised in a number of possible ways. For instance, each
colloid can be surrounded by a topologically charged Saturn
ring,10,11 as the total topological charge in the system only
needs to equal 0 modulo 2 in three dimensions.6,12 However,
another topologically allowed configuration is one where a
single writhed disclination loop wraps around both colloids.
Configurations such as these are referred to as entangled
disclinations, and the writhe in the loop cancels the topological
charge which would otherwise be present.7 The relation
between writhe and topological charge can be understood by
introducing the self-linking number,6,13 which describes the
topology of a disclination loop, in the case where the local
director field profile (in the plane perpendicular to the loop
tangent) is topologically equivalent to that of a planar defect
with winding number �1/2, or a triradius. In such cases, the
loop possesses the same topology as a ribbon.7 In this way,
colloids dispersed in liquid crystals can act as probes for
fundamental questions of topology.

Colloidal dispersions in nematics have mainly been studied
with continuum models, either via free energy minimisation
techniques,4,7 or by means of hybrid lattice Boltzmann
simulations.14 In this work, we employ a different methodology
to study a single colloid or a pair of colloids in a nematic host,
based on multi-particle collision dynamics (MPCD). Though it was
traditionally applied to moderate-Péclet number situations within
isotropic fluids, the MPCD algorithm has recently been extended to
simulate fluctuating, linear nematohydrodynamics15,16 or to be
hybridised with continuum descriptions of the nematic.17–20
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Importantly, this nematic algorithm (N-MPCD) captures the com-
peting influences of thermal fluctuations, elastic interactions, and
hydrodynamics, and hence can be used to study the topological
evolution of defect structures over time. The natural inclusion of
noise makes it possible to consider the case of small particles,
where the free energy profile of the system is rid of large barriers,
which otherwise dominate the colloidal kinetics.3 The fact that N-
MPCD provides a particle-based description of the nematic fluid
also simplifies the treatment of boundary conditions, and hence
makes it easier to extend this algorithm to complex surface
geometries, such as rodlike particles21 or wavy channels.22 Addi-
tionally, MPCD can be readily extended to study active nematics23,24

and systems with many colloids, thereby providing a powerful
package to study the hydrodynamics of topological composite
materials.25

Here, the N-MPCD algorithm is validated by computing the
elastic force between a colloid and a wall, or between two
colloids. These follow scaling laws in agreement with previous
theoretical predictions and numerical estimates. The topologi-
cal patterns are studied, both over time and in steady state with
a single colloidal particle or a colloidal dimer. The steady-state
patterns broadly confirm the set of structures predicted in the
literature by elastic energy minimisation.26 Thus, a pair of
Boojums for colloids with tangential anchoring are found. With
normal anchoring, a Saturn ring and a dipolar halo are found. A
colloidal dimer with normal anchoring results in either two
topologically charged loops or an uncharged but writhed loop
with non-trivial self-linking numbers. However, thermal fluc-
tuations and boundary influences can lead to tilted and non-
ideal versions of these entangled structures. Although disclina-
tion loops are always associated with local director field pat-
terns with �1/2 profiles in steady state, a wider variety of states
are observed en route to equilibrium. These are found to differ
substantially in their geometric features. Examples of transient
patterns include longer loops with twist and even +1/2 local
director profiles, as well as skewed rings.

2 Methods

Multi-particle collision dynamics is a coarse-grained meso-
scopic particle-based hydrodynamic solver that is versatile for
simulating a wide variety of Newtonian,27 complex28 and active
fluids.23,24 It has found particular utility simulating suspen-
sions of polymers,29 colloids30,31 and bacteria,32,33 because its
intrinsic thermal noise makes it ideal for moderate Péclet
numbers. Since N-MPCD can support elastic and hydrodynamic
interactions, combined with thermal diffusivity, this offers a
promising avenue for studying topological microfluidics,34,35

design principles for self assembly kinetics, defect interactions
with active fields,23,24 and microfluidic transport through har-
nessing energy landscapes.22,36

2.1 Bulk nematohydrodynamic evolution

Nematic multi-particle collision dynamics discretises con-
tinuous hydrodynamic fields for mass, momentum and

orientational order into N point particles, indexed by i, with
mass mi, position xi, velocity vi and orientation ui in d dimen-
sions. N-MPCD is a two-step algorithm, in which particles
evolve through (i) streaming and (ii) collision steps, dictating
how the particles move and interact with their local
environment.27

The streaming step controls the spatial evolution of each
particle position, defined as ballistic streaming over the time
interval dt

xi(t + dt) = xi(t) + vi(t)dt. (1)

The collision step represents inter-particle interactions that
have been coarse-grained into a lattice of cells, indexed by c,
each containing Nc particles. Particles interact only with their
local cell environment via collision operators, which avoid the
demanding computational cost of explicitly calculating all pair–
wise interactions, and are shown to reproduce hydrodynamic
fields over sufficiently long length– and timescales. Hydro-
dynamic-scale fields are extracted through cell-based averaging,

fcðtÞ ¼ fih ic¼
PNc

i

fiðtÞ=Nc. The evolution equations for vi and ui

have contributions from cell-based momentum-conserving col-
lision operators. First considering the translational momentum
collision

vi(t + dt) = vc(t) + Nvel
i,c (t). (2)

The collision operator Nvel
i,c (t) = Nvel,iso

i,c + Nvel,nem
i,c has two con-

tributions: an isotropic part Nvel,iso
i,c , and a nematic backflow

contribution Nvel,nem
i,c , the latter of which will be discussed after

the orientation contributions. The isotropic collision uses the
Andersen locally thermostatted collision operator37,38

N
vel;iso
i;c ¼ ni � nc þ I�1 � dLvel

� �
� x

0
i ; (3)

where ni are randomly generated from a Gaussian distribution
with variance kBT/m, and nc = hniic is a residual term, designed
to conserve the net linear momentum from the noise. The third
term is a correction to conserve angular momentum, for particles
located about the center of mass x

0
i ¼ xi � xc with a moment of

inertia tensor I and angular momentum Lvel about xc. Since the

collision operator is applied to lattice-based cells, a random grid
shift is included to preserve Galilean invariance.39,40

A cell-based collision operation is also applied to orientations

ui(t + dt) = nc(t) + Nori
i,c (t). (4)

about the cell’s local director nc(t). Constructing a cell-based

nematic tensor order parameter, Q
c
¼ 1

d � 1
duiui � 1
D E

c
; allows

the local scalar order parameter Sc and director nc to be found
as the largest eigenvalue and corresponding eigenvector. Treat-
ing the cell’s orientational order parameters as a mean field,
the orientation collision Nori

i,c stochastically draws orientations
from a local Maier–Saupe distribution fori = f0 exp(USc(ui�nc)2/
kBT), centered about nc with a normalisation constant f0 and a
mean field interaction constant U. The interaction constant is
linearly proportional to the one-constant approximation of
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Frank elasticity K.15 For large U, the particle orientations are
deep in the nematic phase, aligning close to the free energy
minimum, with small thermal fluctuations.

Nematohydrodynamics requires coupling terms in eqn (2)
and (4) to account for velocity gradients rotating orientations
and orientational motion generating nematic backflows. This
can be cast in terms of an overdamped bulk-fluid torque
equation for each particle i

Ccol
i + CHI

i + Cdiss
i = 0. (5)

The torques from the orientational collision (Ccol) and hydro-
dynamic flows (CHI) can be written as Ccol

i + CHI
i = gRui �

(ducol
i /dt + duHI

i /dt), where gR is a rotational friction coefficient.
From eqn (4), the collisional contribution is ducol

i /dt = (nc(t) +
Xori

i,c (t))/dt. The hydrodynamic contribution applies Jeffery cou-
pling between the orientation and velocity gradient, duHI

�
dt ¼

X ui �W þ l ui � E � uiuiui:E
� �h i

; where X is a shear coupling

coefficient that influences the relaxation time of alignment
relative to dt, l is the flow tumbling parameter, and E and W

are the symmetric and skew-symmetric components of the
velocity gradient tensor. The remaining contribution is the
dissipative torque Cdiss, which is converted into backflow in
the velocity evolution equation through an angular momentum

correction Xvel;nem
i;c ¼ �I�1 � dLori � x

0
i ; where dLori ¼

PNc

i

Cdiss
i dt;

which goes into eqn (2). By including Xvel,nem
i,c in the transla-

tional collision operation (eqn (2)), the effect of reorientation-
induced flow (backflow) is accounted for. Backflow is small
when gRX { 1.16

This orientation collision operator approach has been
demonstrated to simulate linearised Qian–Sheng nemato-
hydrodynamics,41,42 with a one elastic constant approxi-
mation15 and isotropic viscosity with backflow effects.16 For
this study of entangled nematic disclinations, this approach is
preferred over hybrid MPCD/continuum approaches17–20

because of the advantages of particle-based methods over
mesh-based approaches to mobile boundaries and its track-
record simulating molecular-dynamics-based colloidal liquid
crystals.21,30,43–45

2.2 Boundary conditions

The bulk fluid domain is maintained by (i) defining surface
equations representing boundaries, and (ii) setting rules on N-
MPCD particles that violate the surface equation. Each bound-
ary, with index b, has a surface equation with an implicit form
Sb(x) = 0, where x satisfy the set of points on the surface.
Particles violate a surface equation if

Sb(xi) r 0, (6)

corresponding to particles streaming inside. Particles are ray-
traced back to the surface boundary at position x�i ; at time t* o
dt (found where particle path and Sb(xi) = 0 intersect). Boundary
rules are then applied, and the particle resumes streaming for
remaining time dt � t*.

Boundary rules operate on the particle’s generalised coordi-
nates, xi, vi and ui. For periodic boundary conditions, xi - xi +
Dnb
nb where Dnb

is a scalar shift in the surface normal direction
nb of boundary b. Operators on the velocity are required for
solid impermeable walls, vi - Mnb

proj(vi;nb) + Mtb
proj(vi;tb),

where Mnb
and Mtb

are scalar multipliers on the projection of vi

in the surface normal nb and tangent tb directions. The surface
normal projections have the form proj(f;n) = (n�f)n and surface
tangent projections, proj(f;t) = f � (n�f)n. No-slip boundary
conditions require bounce-back multipliers Mnb

= Mtb
= �1.

Additionally ghost particles are required to ensure that vc extra-
polates to zero in cells that are intersected by boundaries.29,46

Anchoring conditions operate on the particle’s orientation through
ui !Mmbproj ui; mbð Þ þMtbproj ui; tbð Þ; with the constraint that ui

maintains unit magnitude (ui�ui = 1). Homeotropic (normal)
anchoring is achieved with Mmb ¼ 1 and Mtb ¼ 0; and planar
(tangential) anchoring with Mmb ¼ 0 and Mtb ¼ 1.

Despite Mmb and Mtb setting the orientation of any particles
that violate eqn (6), the anchoring is not infinitely strong. This
is because, of the Nc particles in any cell that intersects Sb only
some fraction N�c

�
Nc would have collided with the surface.

Although those N�c particles have their orientation set, the
collision operation (eqn (4)) stochastically exchanges orienta-
tions between all Nc particles, effectively weakening the anchor-
ing condition. To strengthen the anchoring, the orientational
boundary condition is applied to all Nc particles within cells
that are intersected by the surface Sb (Section 5.1).

2.3 Mobile colloids

One way to incorporate colloids is to include them as embedded
molecular dynamics particles, with radial interaction poten-
tials.21,30 In contrast, the present work treats each colloid as a
mobile surface that interacts with the hydrodynamic fields via
conserving the linear and angular impulse generated by each of
the incremental particle transformations. The surface equation

Sb(x) = [x � qb(t)]2 � R2 = 0, (7)

defines spherical colloids featuring a temporally-varying centre
coordinate qb(t) and constant radius R.

Analogous to the particle streaming eqn (1), the colloid
coordinate translates assuming ballistic streaming qb(t + dt) =
qb(t) + vb(t)dt, where vb(t) is the colloid’s centre of mass velocity,
which is sufficient under the viscously overdamped assump-
tion. Since spheres have inherent rotational symmetry, eqn (7)
is invariant under colloid rotation with angular velocity wb,
defined relative to qb. Each colloidal vb(t) and wb(t) are deter-
mined by the incremental sum over all N�b particles that violate
eqn (6) in the current timestep

vbðtþ dtÞ ¼ vbðtÞ þ
XN�b
i

dvvelb;i þ
XNc

i

dvorib;i (8)

wbðtþ dtÞ ¼ wbðtÞ þ
XN�b
i

dwvel
b;i þ

XNc

i

dwori
b;i ; (9)
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where ‘vel’ superscript corresponds to changes from the velo-
city boundary conditions, and ‘ori’, from the orientation rules.
The orientation contributions sum over all Nc particles within
cells that intersect a colloid boundary (Section 5.1). The con-
tributions from velocity rules, enter as an impulse created by
the change in momentum of the particle’s velocity Ji = mivi(t +
dt) � mivi(t).

31 Balancing by an impulse on the colloid Jb = �Ji

leads to

dvvel
b,i = proj(Jb;nb)/mb (10)

dwvel
b;i ¼ I

b

�1 � rb;i � proj Jb; tbð Þ
� �

; (11)

where mb is the mass of the colloid, I
b

is the moment of inertia
and rb,i is the vector from the centre of the colloid to the
collision point on the boundary. The contributions from orien-
tation rules are calculated from conserving a torque balance
due to anchoring

Canch
i + Canch

b,i = 0, (12)

where Canch
i corresponds to the particle reorientation to pre-

scribed anchoring condition and Canch
b,i is the torque felt by the

boundary to balance the particle reorientation event. The
anchoring torque to align either with homeotropic or planar
anchoring can be written in terms of the initial orientation and
surface normal

Canch
i ¼ gR

dt
Mb ui � mbð Þ ui � mbð Þ; (13)

where Mb ¼ Mmb �Mtb

� �
Mmb

2 þMtb
2

� ��1=2¼ þ1 for homeo-
tropic, and Mb ¼ �1 for planar anchoring (Section 5.2). The
denominator ensures that the final particle orientation has unit
magnitude. By defining the angle cos ai = ui�nb, the torque
magnitude can be written in terms of a single variable

Canch
i ¼ gR

2dt
Mb sin 2ai. The odd nature of Canch

i with respect to

ai, means that the torque balance can be satisfied by introdu-
cing a virtual particle, oriented initially at �ai to nb (with
orientation unit vector ub,i). Over the time dt, the virtual particle
reorients to align with nb through application of the torque
�Canch

i . The initial orientation of the virtual particle ub,i is related to
the N-MPCD particle ui by a mirror reflection about nb.

Torque is converted to a force acting on the boundary via

Fanch
b;i ¼

Canch
b;i � ub;i

‘u=2
; (14)

neglecting the colinear terms (Section 5.3). In determining the
rotation effect, cu is required to represent the lengthscale of the
MPCD nematogens and control the rotational susceptibility.
The head–tail symmetry of the particle orientation ub,i provides
ambiguity on the sign of Fanch

b,i , which is chosen to be oriented
towards the boundary as Fanch

b,i �nb o 0. For spherical colloids,
the force at the boundary can be converted into linear and
angular velocity contributions, through projecting Fanch

b,i in the
surface normal and tangential directions

dvori
b,i = proj(Fanch

b,i ;nb)dt/mb (15)

dwori
b;i ¼ I

b

�1 � rb;i � proj Fanch
b;i ; tb

� �
dt

� �
: (16)

It will be seen (Sections 3.1 and 5.1) that these boundary
conditions allow N-MPCD to reproduce the dimensionless
anchoring observed in experimental systems.

2.4 Units and parameters

Values are given in MPCD units of cell size a = 1, particle mass
m = 1 and thermal energy kBT = 1. This results in units of time

t ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
¼ 1. Simulation time iterates with time-step size

dt = 0.1. Simulations are performed in two (d = 2) and three (d =
3) dimensions with system sizes [Lx, Ly] and [Lx, Ly, Lz] respec-
tively, aligned with a Cartesian basis ex, ey, ez. The average
particle density per cell is hNci = 20. The nematic mean field
potential is set to U = 20, corresponding to deep in the nematic
phase,15 which is an idealisation that ensures variations in the
scalar order parameter are localised to defect cores and the
strength of elastic interactions is large. Other nematohydrody-
namic parameters include the rotational friction gR = 0.01,
shear susceptibility X = 0.5 and tumbling parameter set to be
in the shear aligning regime with l = 2. Unless otherwise stated,
colloids with radii R = 6 are used in three-dimensions, and R =
10 in two-dimensions. The effective particle rod-length cu =
0.006, tunes the strength of the interaction between nematic
bulk elasticity and colloid mobility. In all simulations, MPCD
particles start with randomly generated positions and veloci-
ties. While the bulk fluid properties remain constant between
simulations, the boundary conditions and initial conditions
vary between studies. Additional system specific parameters are
given in the Appendix.

Simulation parameters can be given in dimensionless num-
bers or mapped experimental units by fixing three base units.
First, we choose thermal energy at room temperature kBT =
4.1� 10�21 J. Units of length a B 1 mm are found by relating the
5CB Frank elasticity K B 10�11 N47 to the N-MPCD elasticity of
K = 2200kBT/a.15 Finally, time units t B 10 ns are found by
comparing the kinematic viscosity n = 4 � 10�5 m2 s�1 47 to the
numerical value of n E 10kBTt/a3 at a density of r = 20m/a3.22

These scales suggest that the 3D colloidal particles considered
here are microscopic (R E 6 mm), while the extrapolation length
is nanoscopic xK E 150 nm, which is consistent with
expectations.48 The longest simulations explored in this study
run for TS = 0.3 ms.

3 Results
3.1 Defects around a single colloid

To examine the defect structures around isolated nematic
colloids, a single sphere is initialised within a nematic field
that is initialised with randomised orientations (a thermal
quench) in an Lx = Ly = Lz = 40 domain with periodic boundary
conditions on all walls. The simulations are run for a duration
of TS = 1400, with data recorded for t Z 400. After long times
(t B 600), the nematic field approaches its equilibrium state,
which includes static defects that accompany the colloidal
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particle (Fig. 1a–c). For the case of planar anchoring (Fig. 1a),
the inability for a tangential vector field to continuously coat a
sphere necessitates two surface defects at the colloidal anti-
podes, known as Boojums.49,50 Their two opposite surface
defects give the colloid/Boojums complex a quadrupolar struc-
ture. For spherical surfaces, these can either be hyperbolic
point defects split in half by the mirror plane of the colloid,
or separated into handle-shaped semi-loops that connect two
+1/2 closely separated surface defects,50 with the latter case
being observed for simulations from a quench (Fig. 1a). The
handle-shaped structures are consistent with Landau–de Gen-
nes simulations on a fine mesh with strong anchoring.50,51

Colloids with homeotropic anchoring supply the bulk fluid
with a hedgehog charge (point charge) of p = 1 (Fig. 1b and c).
This nucleates one of two configurations, each of which has an
odd point charge to conserve topological charge. The first
configuration is a Saturn ring–a closed �1/2 disclination loop
surrounding the equatorial axis10,11 (Fig. 1b). The Saturn ring
results in a quadrupolar far-field character. The second
configuration is a hyperbolic hedgehog, forming a topological
dipole with the colloid,52 which in N-MPCD manifests as a
dipolar halo (Fig. 1c). Of the 20 independent simulations
initialised with random director field, 17 ended with a Saturn
ring, and 3 with a dipolar halo. The configuration is primarily
controlled by the dimensionless number R/xK, which is the
ratio of colloid radius to Kleman–de Gennes extrapolation
length xK.53,54 However, initial configuration can also effect

the likelihood of the system becoming stuck in a metastable
state: when the director field is uniformly initalised, we find
100% of simulations result in Saturn rings. In experiments,
topological dipoles are the stable state when the ratio of colloid
radius to Kleman–de Gennes extrapolation length R/xK is large
(see Section 5.1), while Saturn rings are preferred in confine-
ment and for smaller colloids with weaker anchoring (larger
extrapolation length).1,48 Generally, simulations predominantly
reproduce Saturn rings55,56 and this is shown to be true in N-
MPCD as well. For the three dimensional colloids considered
here, R/xK E 40 (Section 5.1).

As a fluctuating nematohydrodynamic solver, N-MPCD can
also simulate the coarsening dynamics of the disclination loops
(Fig. 1d). Soon after the quench, the nematic field far from the
colloid has ordered, but a single, large loop remains, relaxing
into a Saturn ring configuration. The loop is free to sample
disclination profiles outside of purely trefoil-like �1/2. This is
demonstrated by colouring the disclinations with cos b = X�T
where X is the rotation vector57 and T is the tangent vector of
the line. Where cos b = 1, X is parallel to T and the disclination
line has a local +1/2 wedge profile. On the other hand, where
cos b = �1, X is antiparallel to T and the disclination locally
has a �1/2 wedge profile. The director can also rotate out of
this plane passing through cosb = 0, which represent twist-
type profiles. Visualising disclinations in this way has been
particularly insightful for interpreting disclination behaviours
during phase transitions58 and in three-dimensional active

Fig. 1 Steady-state defect configurations associated with a single colloid in N-MPCD. (a) Boojum defects. (b) Saturn ring. (c) Hyperbolic hedgehog
opened into a halo-like ring. (d) Dynamics of a near-colloid disclination loop relaxing into a Saturn ring. The disclination rotation vector X and tangent
vector T are shown as red and navy blue arrows. Each frame is shown with the corresponding simulation time t. In (a)–(d), each defect is visualised as an
isosurface of s = 0.9 (Section 5.6). The disclinations are coloured by cos b = X�T. Purple represents a �1/2 wedge profile, yellow a +1/2 wedge profile and
green twist type.
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nematics.59–61 The loop in Fig. 1d is charged, requiring X to
make a full revolution. However, the rotation is not homoge-
neous and X remains largely uniform for large segments of the
disclination that are distant from the colloid. Conversely, the
segments of the disclination closest to the colloidal surface
support nearly the entire variation of X. At later times (t B 600),
the loop reduces in size and the anchoring constraint on the
colloid enforces X to rotate into the expected anti-parallel
configuration X�T = �1, forming the Saturn ring.

3.2 Elastic interactions

Colloid-defect complexes with homeotropic anchoring can have
a quadrupolar (Saturn ring; Fig. 1b) or dipolar (dipolar halo;
Fig. 1c) nature.62 These configurations correspond directly to
the form of far-field elastic interactions between pairs of
nematic colloids. N-MPCD reproduces elastic forces that are
long ranged, with power laws dictated by the dominant multi-
pole moment (Section 3.2.1), as well as anisotropic, with
attraction and repulsion zones with angular variation between
interacting colloids (Section 3.2.2).

3.2.1 Power-law forces. To quantify the power-law nature of
nematic interactions in N-MPCD, a colloid interacting with a
wall with strong homeotropic anchoring is considered. This
setup is preferred over a pair of mobile colloids because it
removes additional complexities arising from the relative orien-
tation of a pair of nematic colloids. In the proximity of the wall,
the colloid experiences a strong elastic repulsive force, Fwall,
that decays with distance h.63,64 This can be represented as a
quadrupole–quadrupole interaction between the colloid and its
mirror image on the other side of the wall8,63,65,66

Fwall ¼ CK
R2d

hdþ3
mwall; (17)

in d dimensions, nwall is oriented normal to the wall and C is a
dimensionless constant. The variation of K with MPCD density
hNci has been considered in previous work15 and here we focus

on the force on the colloid as a function of position h. For
determining the repulsive elastic force between a homeotropic-
anchored colloid and a homeotropic-anchored wall, measure-
ments are performed in both two and three dimensions. The
director is initialised along n = eG, where eG = ey in 2D and eG =
ez in 3D. A constant (gravitational-like) force FG is applied to the
colloid, pushing it towards the anchored wall. This acts as a
probe of the strength of the elastic force via the resulting
equilibrium height heq that results from the balance with
elastic repulsion (simulation details provided in Section 5.4).
Since the equilibrium height heq is measured, the MPCD time
step and its affect on viscosity are inconsequential.

Elastic forces are largest at smaller colloid separations from
the wall, with magnitudes Fwall E 10 for heq/R E 1.5 in 2D
(Fig. 2a) and Fwall E 50 for heq/R E 1.6 in 3D (Fig. 2b).
At increasing separations, these forces rapidly decay. Compar-
ing with predictions (eqn (17); black slope), N-MPCD elastic
forces decay with the expected power laws. In two-dimensions,
Fwall B h�5 holds well for all sampled colloid radii. In three-
dimensions, the repulsion matches Fwall B h�6 for R = 6, but
experiences a smaller power law for R = 4. The elastic force also
scales with R2d for sufficiently large colloid radii (R 4 6 in 2D
and R 4 4 in 3D), as shown by the collapsed curves (inset of
Fig. 2). These force scalings identify a lower bound R \ 6 for
accurately resolving the elastic stresses on the colloidal surface.
Since Fwall p R2d/hd+3 is satisfied, N-MPCD is utilised to
calculate the strength of the elastic interaction. Fits to the data
(black curves in the inset of Fig. 2) obtain C = 0.138� 0.001 (2D)
and C = 0.64 � 0.02 (3D). In three-dimensions, quadrupolar
interactions with a homeotropic wall predict C = 15pb2/2, where
b quantifies the strength of the elastic quadrupole moment
associated with the colloid-defect complex.63 N-MPCD finds b =
0.37 � 0.06, which is in good agreement with experimentally
reported values of b in the range b = 0.2 � 0.167 to b = 0.52 �
0.12.68 These force measurements demonstrate that N-MPCD
accurately simulates long-range quadrupolar deformation in

Fig. 2 Elastic interaction forces between quadrupolar colloids of radius R and a homeotropic anchored wall. (a) Two-dimensional elastic repulsion force
Fwall measured at equilibrium colloid–wall separation distances heq. Distances are scaled by the colloid radius R. (b) Same as (a) but for three-dimensions.
The black lines, shown for comparison with the expected scaling (eqn (17)), represent decaying power laws of �5 (2D) and �6 (3D). Errorbars represent
the standard error between independent runs.
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the bulk nematic order and that the colloids dynamically
respond to elastic stresses on their surface.

3.2.2 Force anisotropy. While the interactions between
quadrupolar colloid-defect complexes and walls are purely
repulsive, the long-range interactions between pairs of quad-
rupolar colloids are more complicated and can alternate
between repulsive and attractive depending on relative quadru-
pole orientation.63,69 Since the colloid-defects complex is
composed of a distribution of topological charge, repulsion is
expected whenever similarly charged regions are brought
together, such as when the equators defined by the defects
are brought together (Fig. 11; y E 0) or when the positively
charged colloid surfaces approach (y E �p/2). Attraction is
possible when negatively charged defects approach positively
charged colloidal surfaces. To explore this, a 2D colloid is
fixed in place (Fig. 10a) while a second mobile colloid is allowed
to explore different relative configurations. The director is

initialised to be uniformly n = ey, which leads to two �1/2
defects beside each colloid and establishes the quadrupole
orientations. Various initial separations and angles are consid-
ered (Section 5.5 for system and measurement details) and the
early time dynamics of mobile colloids are measured.

The N-MPCD mobile colloid does indeed exhibit regions of
both repulsion and attraction. The repulsive regions are clear-
est for pole-to-pole orientations and exist in the far-field limit of
small-angle defect-to-defect orientations (Fig. 3). Configura-
tions with intermediate relative angles exhibit attractive inter-
actions. Far-field interactions between two quadrupolar
colloids separated by a distance h with a relative angle y are
predicted to have the form

Fpair � K
R4

h5
cos 4yð Þ; (18)

in 2D.65,66 While the scaling with K, R and h has not changed
compared to the interaction with a wall, the factor of cos(4y)
allows attractive interactions for 22.51 r y r 67.51. The sign of
the expected interaction force from eqn (18) show agreement to
the simulations, especially in the far-field (Fig. 3).

The expectation breaks down at small angles and distances
(Fig. 3). The N-MPCD algorithm produces attraction at these
sampled points, in contrast with the idealised prediction
(eqn (18)). This is partly because the far-field assumptions are
less valid but, more importantly, is related to the mechanics of
self-assembly: the dimer pair quickly self-assembles into a
linear chain,8,70 causing the colloids to become attractively
bound (Fig. 11c). Unlike 3D,71 two-dimensional nematic col-
loids have a pair of �1/2 point defects (Fig. 10c), which can be
freely shared between colloids (Fig. 11c). While this section has
demonstrated the far-field elastic interactions and a self-
assembled 2D chain within N-MPCD, the next section will
explore disclination line entanglements between colloidal
pairs in 3D.

3.3 Entangled defect lines around colloidal dimers

Extending into systems with two or more colloids in 3D brings a
rich topological interplay between point defects and disclina-
tion loops,9,72 resulting in a range of defect structures including

Fig. 3 Attraction-repulsion zones between two-dimensional interacting
quadrupolar colloids with radius R = 10. One colloid is fixed at the origin
(navy blue quarter circle) and a second mobile colloid probes the inter-
action at surrounding points. The colour of each point represents attrac-
tive (orange), repulsive (blue) or neutral (black) interactions. Background
shading shows the far-field expectation for interacting quadrupoles
(eqn (18)).

Fig. 4 Defect states accompanying colloidal dimers. (a) Saturn rings. (b) Dipolar halos. (c) Figure-of-theta. (d) Tilted-figure-of-theta. (e) Figure-of-
omega. (f) Tilted-figure-of-omega. (g) Figure-of-eight. (h) Tilted-figure-of-eight. Disclinations are visualised as in Fig. 1, confirming each configuration is
associated with �1/2 disclination loops.
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disclination lines that surround multiple colloids.73,74

Entangled states are metastable, and can be induced by a
thermal quench,26 laser manipulation,75 chiral ordering,76 or
high colloidal volume fractions.4 In this study, the entangled
states are reached by randomly initialising the director field
from a thermal quench. Two mobile colloids are initialised at
q1 = [20, 20, 13] and q2 = [20, 20, 27], each with homeotropic
anchoring in a Lx = Ly = Lz = 40 domain with periodic boundary
conditions on all walls. A warmup phase is applied (TW = 200)
where nematic order forms and no data is collected. Simula-
tions are then run for the duration TS = 1000. Loops are
identified via the disclination density tensor (Section 5.677).
Eight disclination states are observed from the N-MPCD simu-
lations with either one or two �1/2 disclination loops (Fig. 4).

Of these, the two states that are not considered entangled are
extensions of the single colloid case, with either two Saturn
rings or two dipolar halos that assemble into a chain. The
others are entangled with at least one loop (n Z 1) that wraps
around the colloidal dimers. These states derive their names
from the shape of their disclinations. In the case of the figure-
of-theta (Fig. 4c), two loops exist (n = 2): one large ring that
encircles both colloids, and another smaller ring positioned
between them. The figure-of-omega (Fig. 4e) and figure-
of-eight (Fig. 4g) are single loop entanglements (n = 1). Each
of these states have been well-documented in experiments and
simulations.26,75,78

Additionally, the N-MPCD algorithm reveals the existence of
tilted analogues of the figure-of-theta (Fig. 4d), figure-of-omega
(Fig. 4f) and figure-of-eight (Fig. 4h). These are tilted with
respect to the axis the colloids reside in. While rare, these
tilted entangled dimer states emerge when the director field
does not form a uniform alignment axis away from the colloids
(see Fig. 12). This generates modulated order that cannot relax
to the ground state. In these simulations, the combination of
colloids, periodic boundary conditions and quenched disorder
are able to trap these tilted entangled states.

With the disclination states identified, we next characterise
their topological and geometric properties. To obtain these, the
framework by Čopar and Žumer is followed.6,7 Since colloidal
anchoring enforces a geometric constraint for the local director
to lie in a plane perpendicular to T (cos b = �1, in this case),
the disclination loop can be assigned a framing vector w
that is everywhere perpendicular to the tangent (Fig. 5a; see
Section 5.7). A convenient choice of w is one of the three radially
pointing director orientations of the �1/2 disclination (Fig. 5a).
The framing vector allows the topological properties of the �1/2
disclination loop to be found via the self-linking number Sl, which
counts the number of times the framing turns around the tangent
on traversing the loop. The self-linking number can be calculated
from geometric properties of the disclination through the
Călugăreanu–White–Fuller theorem

Sl = Wr + Tw, (19)

where Wr is the writhe and Tw is the twist (Section 5.8). Due to
the three-fold symmetry of �1/2 disclinations, Sl takes frac-
tional, third-integer values. The self-linking number is related

Fig. 5 Minus-half disclination loops as ribbons with self-linking numbers
Sl. (a) Figure-of-eight presented as ribbons constructed through identify-
ing the disclination line tangent T (navy blue arrows) and local framing
vector w (orange arrows). Disclination loops are as in Fig. 1. (b) Figure-of-
eight from (a) as viewed from second perspective. (c) Tilted-figure-of-
eight. (d) Figure-of-theta. (e) Tilted-figure-of-theta. In each of (b)–(e), the
orange framing curve smoothly connects the �1/2 wedge orientations
denoted by orange cylinders. Silver cylinders illustrate the other two
radially outward pointing orientations. In (b) and (c), the end points do
not meet the starting points of the orange framing curve, which indicates a
net rotation and implies Sl a 0. On the other hand, the orange framing
curve is continuous and Sl = 0 in (d) and (e).

Table 1 Classification of the eight identified nematic disclination states in terms of topological and geometric information. Disclination properties
include the writhe (Wr) and twist (Tw), which combine to give the topologically-protected self-linking number Sl = Wr + Tw. Topological point charge p
associated with colloidal dimers combine to give a trivial nematic texture (even), allowing even contributions from each n = 1 or two odd contributions for
states with n = 2 loops. The properties are calculated directly from the frames shown in Fig. 4

n Wr Tw Sl p

Saturn rings 2 0.014 0.001 0.029 0.053 0.044 0.054 Odd Odd
Dipolar halos 2 0.009 0.003 0.048 0.003 0.057 0.005 Odd Odd
Figure-of-theta 2 0.035 0.002 0.025 �0.011 0.060 �0.008 Odd Odd
Figure-of-eight 1 0.699 �0.027 0.673 Even
Figure-of-omega 1 0.652 0.009 0.661 Even
Tilted-figure-of-theta 2 0.005 0.005 �0.008 0.013 �0.003 0.018 Odd Odd
Tilted-figure-of-eight 1 �0.705 0.051 �0.654 Even
Tilted-figure-of-omega 1 0.618 0.065 0.683 Even
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to the topological classification of �1/2 disclination loops
through79

n = 3Sl + 2 (mod 4), (20)

where n is the topological index of a disclination loop.80 Index
values of n = 0 correspond to unlinked and charge neutral (p =
even), n = 2 unlinked and charged (p = odd) and n = 1,3 are
linked loops. In this way, the relationship between Wr, Tw, Sl
and point charge p can be understood for the N-MPCD �1/2
disclination states in Fig. 4.

First, the properties for the entangled single loop (n = 1)
states are examined. For the figure-of-eight, figure-of-omega
and their tilted analogues, the self-linking number is found to
be Sl E �2/3 (Table 1). Additionally, the Sl E �2/3 can be
visualised for the two figure-of-eight states by tracking the
orientation of the �1/2 profile (Fig. 5b and c). In choosing a

reference and tracking the profile rotations along the loop
(orange ribbon curve), the orientation is rotated by �2p/3 over
the entire contour of the loop. For each n = 1 state, the Sl is
composed entirely from writhe, while the twist remains essen-
tially zero in each state (Table 1). Self-linkings composed
entirely of writhe were previously observed for the figure-of-
eight and figure-of-omega,6 since the strong radial constraint
on the disclination profile penalises twisting of the orientation.
We show the same writhe/twist balance also hold when
the disclinations are in tilted conformations. The � sign on
the Sl relates only to the chirality of the conformation and
does not influence the topological classification of the
loop. Indeed, mapping to the disclination loop index reveals
that all four states are topologically trivial n = 0 (uncharged with
p = even). The n = 1 disclination line balances the two point
charges provided by the colloids by forming a state with net
writhe Wr.

Fig. 6 Relaxation pathways for dimer-associated disclination loops following a thermal quench, as measured via the disclination contour lengths l

scaled by colloid radius R = 6. (a) Figure-of-theta transitioning to Saturn rings. (b) Figure-of-omega transitioning to Saturn rings. (c) Tilted figure-of-theta
transitioning to dipolar-halo pair, passing briefly through a tilted figure-of-omega state. (d) Tilted figure-of-omega transitioning to tilted figure-of-eight.
Topological transitions via loop reconnection or splitting events are indicated by vertical dashed lines. In each panel, the time t = 0 corresponds to the
first recorded timestep for which the largest disclination loop is entirely contained within the periodic system. Circles denote a single loop (n = 1) and two
loops (n = 2) are shown as square markers, while the total contour length is shown as the navy blue line. Example snapshots are shown directly below
each panel.
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Next, the disclination states with n = 2 are examined. Each
state has a self-linking of Sl E 0 (Table 1). This is the case for
the individual rings (Saturn rings and dipolar halos) and the
entangled figure-of-theta structures, each presenting Wr E 0
and Tw E 0. We visualise the ribbon (orange curve) for the two
figure-of-theta states in Fig. 5d and e, which confirm the
calculated properties. The reference orientation smoothly con-
nects to the final orientation, with no local (or global) twisting
or coiling over the circuit. The Sl = 0 properties finds that each
loop carries a hedgehog charge p = odd (n = 2), balancing the
global charge neutrality between the two loops (modulo 2).
These results show that each n = 2 state is topologically
equivalent with identical geometric decomposition into Wr = 0
and Tw = 0. Therefore, the tilted states are simply smooth
transformations of their non-tilted counterparts.

3.4 Entanglement kinetics

With each of the disclination states identified and charac-
terised, we study the relaxation pathways that lead to the
formation of these states. As already demonstrated for a single
colloid (Fig. 1d), disclinations contour lengths generally
decrease as the system relaxes from the thermal quench. For
dimers, the temporal evolution of the disclination contour
lengths eventually leads to the long-time configurations from
Fig. 4. Since N-MPCD simulates fluctuating nematohydrody-
namics, the simulations stochastically sample states as they
relax towards accessible lower free energy configurations.16,41

Four instances of the stochastic relaxation of the entangled
dimers are shown in Fig. 6. An example of the relaxation
passing through a figure-of-theta is shown in Fig. 6a. At early
times (Fig. 6a.1), a small loop exists sandwiched between the
colloids with a contour length L comparable-to-but-less-than
the circumference of the colloids. Simultaneously, a large
disclination loop rapidly collapses around the colloids, forming
the figure-of-theta state (Fig. 6a.2). The number of loops is n = 2
throughout. In N-MPCD, the figure-of-theta is only sampled
transiently, passing rapidly through loop-reconnections to form
two Saturn ring colloids (Fig. 6a.3). Despite sharp transitions in
the individual loop lengths (Fig. 6a), the total contour length
has a negligible change between the two states—with two
equal-sized Saturn rings that sum to the total disclination
length of the two figure-of-theta loops.

Another kinetic trajectory observed in N-MPCD is a single
(n = 1) quenched disclination loop (Fig. 6b.1) that collapses to
form a figure-of-omega state (Fig. 6b.2). The figure-of-omega
entangled state is found to be metastable with a constant
contour length for t E 100, after which time the entangled
loop transitions to two Saturn rings (Fig. 6b.3). Unlike the
transition from the figure-of-theta state in Fig. 6a, the transi-
tion from the figure-of-omega state involves a topological
conversion from Sl E 2/3 to two rings with Sl E 0 (Table 1).
Equivalently, this corresponds to a transition from a single
uncharged loop, to two charged loops.

The tilted entanglements can show somewhat different
trajectories because of their non-uniform global director align-
ment (Fig. 6c). The tilted state arises because the disclination

collapses at an off-set to the colloidal axis (Fig. 6c.1), passing
into the tilted-figure-of-theta (Fig. 6c.2). The tilted figure-of-
theta state endures for an extended time (100 r t r 200) with
minimal changes to the conformation, until a segment of the
disclination line reconnects into a fleetingly brief tilted-figure-
of-omega state (Fig. 6c.3). Finally, the disclination divides into
two dipolar halos with orientations tilted with respect to each
other (Fig. 6c.4).

An n = 1 tilted relaxation trajectory can also occur, starting
with a larger loop (Fig. 6d.1) that encloses the colloid pair to
form the tilted-figure-of-omega state (Fig. 6d.2). As in Fig. 6c,
this tilted-figure-of-omega state is short lived and, in this case,
transitions to the tilted-figure-of-eight without transitioning
through n = 2 (Fig. 6d.3). Interestingly, the tilted-figure-of-
eight is observed to be the most stable of any of the entangled
states observed in N-MPCD simulations, remaining in the same
configuration for the entire simulation, with minimal variation
in contour length. This parallels experimental observations,81

albeit for different states and surrounding order, where chir-
ality or modulated order can offer protection from reaching the

Fig. 7 Quenched disorder can sample out-of-equilibrium disclination
configurations. (a) Early-time snapshot of a charge-neutral disclination
with a localised +1/2 profile (yellow segment), visualised as in Fig. 1. (b)
Relaxation trajectory of the normalised contour length l/R with time t.
Markers, lines and colouring the same as Fig. 6. Example snapshots are
shown directly below the panel.
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global free energy minimum.82 In addition, figure-of-eights
have been associated with the greatest stability of all entangled
structures.75 Despite the intrinsic stochasticity of the numerical
approach, the tilted-figure-of-eight was not observed to relax
into states with n = 2 rings.

Infrequently, less conventional entangled-dimer relaxation
dynamics are revealed by N-MPCD, such as the situation shown
in Fig. 7. Similar to the tilted structures, this trajectory even-
tually relaxes into a modulated global director field (Fig. 12).
However, at early times, an unexpected entangled state emerges
in which the disclination loop has a localised segment with a
+1/2 wedge profile (Fig. 7a). The +1/2 profile is smoothly
connected by fleeting twist to a majority �1/2 loop. This
wedge-twist state necessarily contains p = even to balance the
charge of the dimers. Generally, such +1/2 wedge profiles are
discouraged since the global director alignment cannot coexist
with the low-symmetry of the +1/2 wedge and out-of-plane twist
is penalised by the radial colloidal anchoring. In this case, the
penalty against twist is resolved by a rapid reorientation of the
rotation vector X, which rotates by p relative to the global basis
over a small disclination segment (Fig. 7a). The +1/2 segment of
the disclination gradually approaches the colloids (Fig. 7b.2)
until it combines with a �1/2 profile, facilitating a topological
transition from a single loop (n = 1) to a state with a pair of �1/2
dipolar halos (Fig. 7b.3).

4 Conclusions

This work has utilised Nematic Multi-Particle Collision
Dynamics (N-MPCD) to simulate nematic colloids as mobile
surfaces that can resolve stresses at the interfaces. In three-
dimensions, N-MPCD reproduces the experimentally observed
and theoretically predicted colloid-disclination complexes for
solitary colloids. These include (i) Boojums with handle-shaped
semi-loops, (ii) Saturn rings and (iii) dipolar halos. Further-
more, N-MPCD mediates elastic interactions between colloidal
inclusions. The elastic forces in N-MPCD are seen to decay with
the expected power-laws in two- and three-dimensions. Like-
wise, the anisotropy of quadrupoles interacting in the far-field-
limit has been demonstrated for colloids and their accompany-
ing pairs of free point defects in 2D. If the colloids are too near
to each other, the far-field approximation breaks down and N-
MPCD predicts that dimer structures are formed through
shared point defects. For nearby colloidal dimers subjected to
a 3D thermal quench, N-MPCD reproduces expected defect
structures, including disclination loops that entangle both
colloids. In addition to the expected defect structures, pre-
viously unobserved analogous tilted entanglements are
revealed by N-MPCD in systems with periodic boundary condi-
tions. The periodic boundaries allow the director to rotate by p
along one axis of the system and the tilted state then becomes
topologically protected. Although nematic systems in which the
far-field director is fixed would not allow tilted entangled
structures, they could feasibly be created via micropatterning
or by colloids in twisted nematic cells that could imposed a

rotation by p. In these tilted states, the far-field directors are
not uniform compared to the previously observed states.

Despite being a noisily fluctuating algorithm, N-MPCD not
only respects topological constraints but also resolves details of
defect topology and disclination structure, such as self-linking
numbers or localised wedge/twist profiles. Furthermore, as a
linearised nematohydrodynamic approach, N-MPCD simulates
the entanglement kinetics. This allows the algorithm to explore
relaxation from a quench—revealing that topological point
charge is not evenly distributed around the loop, but instead
carried by segments of the disclination loop closest to the
colloidal surface. This illustrates that N-MPCD is ideal for
accessing and exploring metastable states, owing to the intrin-
sic thermal fluctuations and dynamics beyond overdamped
free-energy steepest descent which allows the system to sto-
chastically hop free-energy barriers. In particular, the simula-
tions produced an early-time charge-neutral disclination state
that does not conform to an entirely �1/2 disclination loop.

This study demonstrates that the N-MPCD algorithm is well-
suited for studies on topological kinetics, field-driven assembly
and colloidal self-assembly. The versatility of combining
complex embedded21 or confining geometries,22 fluctuating
nematohydrodynamic flows and out-of-equilibrium dynamics23

makes N-MPCD highly suitable coarse-grained approach for
studying dynamics of topological phenomena. Further work could
apply the N-MPCD algorithm to study the interactions and defect
structures surrounding nematic colloids in active nematic sys-
tems, or topological features of the percolated �1/2 disclination
loops in colloid nematic gels.4 The control over complex surfaces
could be used to explore colloids in complex geometries, includ-
ing the possibility of kinetics and fluctuations in non-trivial
knotted fields.83 This work contributes to a numerical approach
to study the relationship between topology and rheological
properties.

Data availability

All data that support the findings of this study are available
from the corresponding author upon reasonable request.
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Appendices
Kleman-de Gennes extrapolation length

The extrapolation length is a length scale that measures the
competing influence of elasticity against anchoring strength
xK = K/W, where K is the elastic constant under the one constant
approximation, and W is the anchoring strength.84 To compare
the influence of anchoring applied only to proportion of
particles N�c

�
Nc against the stronger anchoring method

described in Section 2.2, applied to all Nc particles in cells that
intersect the surface, the extrapolation length is measured in a
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two-dimensional hybrid-aligned-nematic cell with homeotropic
anchoring on the top boundary y = L and planar anchoring on
the bottom boundary y = 0 (Fig. 8a). In the ex direction, periodic
boundary conditions are applied. The system size is Lx = Ly = L =
50, with 20 simulation runs of 104 timesteps, outputted every
100 timesteps to establish an average for the orientation angle
f(y) (defined from the positive ex axis) over all runs and
timesteps.

Assuming that the anchoring condition begins a small
distance xK beyond each boundary, so that the nematic orienta-
tion f(�xK) = 01 and f(L + xK) = 901, the extrapolation length
can be found from

xK ¼
1

2

90

mg
� L

� 	
; (21)

where mg is the gradient of the linear fit in degrees per unit
length. This gives xK = 0.147 � 0.0002 for the Nc case, and xK =
1.700 � 0.001 for the N�c case (Fig. 8b). For a colloid with radius
R, the strength of the anchoring is given by the dimensionless
ratio of the surface free energy WR2 cost against elastic energy
KR, which produces a reduced colloid size, RW/K = R/xK. All

simulations use the strong anchoring method (Nc case). Three-
dimensional colloids in this paper have a radius of R = 6 in
simulation units, giving R/xK = 40.8. In two-dimensions, R = 10
gives R/xK = 68.0.

This has a substantial effect on the topological impact of the
suspended colloid (Fig. 9). When only the N�c � Nc particles
that directly violate eqn (6) have the anchoring conditions
applied, the anchoring condition is weak and the colloid does
not significantly perturb the surrounding director field
(Fig. 9a). In this case, the colloid does not induce �1/2
companion defects in the surrounding nematic. However, when
all Nc particles in cells overlapping with the surface have the
anchoring applied, the anchoring is strong (Fig. 9b). Such
strong anchoring does induce two �1/2 defects on opposite
sides of the colloid to negate the +1 topological charge created
by the strong anchoring conditions on the circular inclusion.

Anchoring torque

The particle orientation transformations described in Section
2.3 are implemented as hard anchoring conditions that align
MPCD particle i. The initial orientation of the particle prior to
colliding with the surface is ui. The change in nematogen
orientation due to the collision is dui. This orientational change
must be converted into a force on the colloid. We infer the

torque Canch
i ¼ gRui �

dui
dt

as the rotation through the fluid with

rotational friction coefficient gR. The final particle orientation,
post anchoring, can be written in terms of the scalar multipliers

as ufinal ¼ Mmbmb þMtb tb
� �

Mmb
2 þMtb

2
� ��1=2

. Taking the cross
product gives eqn (13). One caveat to inferring the torque in
this manner, is that the periodicity of (ui�nb)(ui � nb) only infers
the correct torque magnitude for angles �p/4 r ar p/4. In the
N-MPCD simulations presented here, reorientations greater
than p/4 are rare.

Torque to force

The elastic force exerted on a colloid (mobile boundary), due to
the anchoring transformation of a single N-MPCD particle, is

Fig. 8 Extrapolation length xK. (a) A hybrid-aligned nematic cell of size L =
50 with planar anchoring on the bottom surface and homeotropic on the
top, and periodic boundaries on the sides. The director field is shown as
the white line field over the instantaneous scalar order parameter field S.
For finite strength anchoring, the anchoring starts an effective distance xK

behind each surface. (b) Director orientation hf(y)i with vertical height y,
averaged over horizontal position x, time t, and N = 20 simulation runs.
Red squares present orientation when only the N�c � Nc particles that
directly violate eqn (6) have the anchoring conditions applied. Dark blue
circles are for transformations applied to all particles within a cell Nc.

Fig. 9 Snapshots of the director field around colloids of radius R = 10 with
(a) weak anchoring and (b) strong anchoring. (a) Weak anchoring occurs
when only the N�c � Nc particles that directly violate eqn (6) have the
anchoring conditions applied. This results in R/xK = 5.9 and the director
field is not sufficiently perturbed to exhibit �1/2 defects in the fluid. (b)
Strong anchoring occurs when all Nc particles in cells overlapping with the
surface have the anchoring applied. In this case, R/xK = 68.0 and the
colloid induces a pair of �1/2 defects in the fluid.
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determined by the torque on a virtual N-MPCD particle (Section
2.3). This torque conserves angular impulse (eqn (12)). Since
the torque is a pseudovector, converting a torque into a force is
not generally possible—there can be colinear contributions
between the force F and radial vector r that return the same
value of torque C. The non-unique nature of the force is
demonstrated by the identity

F ¼ r r � Fð Þ � r� C

r2
: (22)

Since the anchoring torque is a purely rotational effect, we
assume that the colinear contribution of the force is zero
(r�F = 0). Under this assumption of orthogonality between r,
F, C, the first term in the numerator of eqn (22) vanishes and so
force can be inferred from torque. In eqn (14), the force is F =
Fb,i, the torque is C = Cb,i and the radial vector is r = (cu/2)ub,i

which corresponds to half of the nematogen rod length.

Methods for colloid–wall repulsion

Systems in two-dimensions have Lx = Ly = L with periodic
boundary conditions in ex, and solid walls in ey, i.e. periodic
boundary conditions to the sides and solid walls above and
below. Both upper and lower solid walls have impermeable, no-
slip boundary conditions, but only the lower boundary has
anchoring conditions applied, with strong homeotropic align-
ment (Section 5.1). Since the distant top wall has no imposed
anchoring, it does not produce any long-range elastic forces.
Though the strong anchoring on the nearby bottom wall should
screen the majority of nematoelastic self-interactions through
the periodic boundaries, any remaining image effects will be in
the ex direction and are not expected to influence the equili-
brium distance heq. Four colloid radii are sampled R A [6, 8, 10,
12] with system sizes L A [50, 55, 60, 80] respectively, to adjust
for system-size effects. The director field is initialised vertically
as n(t = 0) = ey, which produces a pair of near-surface point
defects with �1/2 charge in 2D. After being initialised along ey,
the simulation is allowed to warmup for a time of TW = 1000,

during which the colloid is held fixed and the director relaxes to
the equilibrium configuration. Simulations are then performed
for TS = 30 000, with the colloid mobile and responsive to the
nematic environment. A total of 40 independent simulation
runs are performed for each R.

In three-dimensions, two colloid radii are used. The first is
R = 4 with Lx = Ly = Lz = 30, and the second is R = 6 with Lx = Ly =
30, Lz = 35. Simulations have periodic boundary conditions in ex

and ey, and impermeable no-slip walls in ez. Similar to two-
dimensions, only the lower plate has homeotropic anchoring
conditions. The director field is intialised along n(t = 0) = ez,
leading to a quadrupolar Saturn ring. The simulations run for
TS = 4000 following a warmup period of TW = 1000, where the
colloid is held static. Statistics are generated from 30 indepen-
dent measurements for each R.

The decaying power-law nature of the elastic forces are
determined by measuring the interaction forces of a nematic
colloid with a centre of mass distance h away from a homeo-
tropic anchored wall. In the proximity of the wall, the colloid
experiences a strong elastic repulsive force, Fwall, that decays
with distance. This can be represented as a quadrupole–quad-
rupole elastic interaction between the colloid and its mirror
image on the other side of the wall (eqn (17)). In addition, the
motion of the colloid through the fluid experiences a drag force
due to viscosity Fdrag and a fluctuating force Ffluc that enters
due to the stochasticity of the collision operators. To measure
Fwall, we apply an external gravitational-like body force to the
colloid

FG = McG, (23)

where Mc ¼
4

3
pR3 Nch i is the mass of the colloid in 3D or Mc =

pR2hNci in 2D. The constant acceleration G = �Gnwall is directed
towards the homeotropic wall with surface normal nwall and
magnitude G. The applied body force (eqn (23)) probes the
elastic force by introducing an equilibrium distance heq at
which Fwall + FG = 0 (Fig. 10a). When the elastic and applied

Fig. 10 Measurements for determining the force–distance relation (Fig. 2). (a) Schematic of colloid (navy circle) with radius R, initialised within the far-
field director n, forming equatorial �1/2 defects (blue trefoil symbols). The colloid experiences an elastic repulsion force due to the wall Fwall, which is
probed by a gravitational-like external force FG = �McGnwall. The distance h between the colloids centre of mass and the wall is heq when FG = hFwalli.
(b) An example of 30 colloidal trajectories (grey) for a two-dimensional colloid with radius R = 10. The time-dependent ensemble mean is shown by the
dark blue curve, which fluctuates about the time-averaged mean (red horizontal line). The red shading is the standard error about the time-averaged
mean. (c) An example snapshot of a colloid interacting with the homeotropic anchored wall (black horizontal line). The white line field is the director and
background colouring is the scalar order parameter S.
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forces balance, the colloid only fluctuates about heq (grey
trajectories in Fig. 10b). Therefore, the fluctuating and drag
forces can be neglected in the force measurements provided
there is statistical certainty on heq. For this reason, the simula-
tions are iteratively re-initialised from new start positions h E
heq (example director configuration in Fig. 10c), so that when
data collection begins, the mean of all runs at time t 4 TW (blue
solid line) has unbiased fluctuations about the time-averaged
mean (red solid line). The equilibrium position heq is taken as
the time-independent mean, with the standard error as the
statistical uncertainty (red shading). Here, we have chosen an
ensemble in which the force is fixed and the position fluctu-
ates, though one could alternatively choose a fixed-position/
fluctuating-force ensemble.

Methods for attraction and repulsion zones

The force anisotropy measurements are obtained in two-
dimensions for simplicity. The angular dependence of the
interaction between two colloids is determined by fixing one
colloid, placing a mobile probe colloid in its vicinity and
measuring the response of the probe colloid (Fig. 11a). The
director alignment is initialised along ey, which preferentially
positions two �1/2 defects on either side of the colloids,
establishing consistent initial quadrupole orientations. A short
warmup period of TW = 5 allows the defects to form but not
reorient away from alignment in ey. The two colloids are placed,
one fixed at (40,40) and the other mobile initialised from (40 +
Dx, 40 + Dy), where Dx = rs cos ys and Dy = rs sin ys with
separation magnitude rs A [40, 50, 55, 60] and orientation
angle, relative to ex, of ys A [01, 61, 111, 171, 221, 331, 451, 561,
681, 791, 901]. Simulations have periodic boundary conditions
on all walls, with system size Lx = 80 + 40 cos ys and Ly = 80 +
40 sin ys. The simulation time is TS = 3000.

Two vectors are measured to determine the attractive or
repulsive behaviour of the mobile colloidal probe placed at
varying separations rs and angular positions ys relative to a
fixed colloid (Fig. 11a). The first is the initial separation vector

between the colloids r0
s = r0

2 � r0
1 (blue arrow). This establishes a

constant reference to measure the response of the mobile
colloid. The second rt

mob = rt
2 � r0

2 is a temporally varying
separation vector, which records the displacement of the
mobile colloid at time t from the start position (red arrow).
Individual mobile colloids are regarded to have repulsive or
attractive behaviour if the projection of rt

mob on r0
s is positive or

negative respectively. The individual trajectories are noisy (grey
trajectories in Fig. 11b) and, after some time, the �1/2 defects
reorient to aid self-assembly into chains (Fig. 11c). This reor-
ientation misaligns the relative quadrupole orientations. There-
fore, N = 15 simulation runs are performed for each
combination of rs and ys, and the response behaviours are
measured from the early time dynamics chosen to be 200 r t r
500. The minimum time of t = 200 is chosen to establish
sufficient statistical certainty on the attraction–repulsion tra-
jectories. Ensemble averages of the projection magnitude
r0

s�rt
mob are performed, extracting the mean m and standard

error sM ¼ s
� ffiffiffiffi

N
p

. The nature of each colloidal site (rs cos ys,
rs sin ys) is calculated as attractive if m r �sM, repulsive if m Z

sM and neutral otherwise.

Defect analysis

Disclination loops are identified using the disclination density
tensor, proposed by Schimmings and Vinals.77 Using Einstein-
index summation convention for clarity, the tensor is conveni-
ently constructed from derivatives of the nematic Q-tensor

Dij = eimnejlkqlQmaqkQna, (24)

where i, j, k, a, m, n are tensor indices corresponding to x, y, z.
The disclination density tensor D can be directly interpreted as
the dyad

D ¼ sðxÞX	 T; (25)

composed of the tangent vector T of the disclination line and
the rotation vector X, which defines the winding plane of the

Fig. 11 Measurements for determining the two-dimensional attraction–repulsion between a fixed and mobile colloid. (a) Schematic with colloids (navy
circles) initially separated by r0

s with polar angle ys relative to ex. The far-field director is initialised along n, which, at short times, fixes the orientation of the
�1/2 defects (blue trefoil symbols) to the colloids’ equators. At time t, the mobile colloid moves to a new position with displacement vector rt

mob.
(b) Example trajectories for 15 simulations (grey) at a starting separation r0

s = 50 and angle ys = 451. The trajectories are measured as the projection
magnitude of the mobile displacement onto the axis of the initial separation r0

s �rt
mob. The attraction–repulsion behaviour is measured over the time

interval t = 200 to t = 500, as indicated by the red shaded region. The mean is shown as the solid dark blue line, and standard error as blue shading.
(c) Snapshot of self-assembly into a chain. Defects are shared between the colloidal disks, influencing an attractive response at small angles and
separations.
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director in the vicinity of the disclination.57 The relative angle
between them cos b = X�T illustrates if the local disclination
has a wedge profile (with cos b = +1 for +1/2 defect profiles
and cosb = �1 for �1/2 defect profiles) or a twist profile (with
cos b E 0).

The scalar field s(x) is non-negative, and is maximum at the
core of the disclination – therefore providing a useful quantity
for identifying disclinations, with an appropriately defined
lower bound. Throughout this study, disclinations are identi-
fied as s(x) Z 0.9, which was found to produce smoother
disclinations than using isosurfaces of the nematic scalar order
parameter S(x). Extracting s(x), X and T from eqn (25) utilises
the methods outlined in ref. 77. The vectors X and T are
ensured to be continuous and have the correct relative sign
by: (1) applying a clustering algorithm that groups disclination
cells into disclination lines, (2) ensuring the tangent vector
smoothly varies along the line and (3) fixing the sign using

sgn X � T½ 
 ¼ sgn tr D
h ih i

.

A second clustering algorithm groups disclination cells into
an ordered sequence of larger points, that combines together a
group of nearest neighbours, without reusing cells from other
groups. The start and end point of the sequence connect
together to form a loop. The T and X of composite cells are

averaged over to return a single dyad per point. This construc-
tion into points enables geometric properties of the loop to be
established, particularly those required to calculate the ribbon
properties of the disclination line.

Through this approach to defect analysis, N-MPCD is able to
resolve defect structures with the correct winding. This remains
true even as the nematic background phase approaches the
isotropic–nematic transition (Fig. 13). With consistent scalar
isosurface s = 0.9, the Saturn ring is resolved for all U until just
above the isotropic to nematic transition, including correctly
identifying the �1/2 profiles (purple). The smoothness of the
loop does reduce for lower U, although this can be remedied by
choosing a smaller s value.

Ribbon framing

To construct the ribbon, a framing vector w perpendicular to T
is required that varies continuously along the disclination loop.
In the proximity of the disclination, n is oriented in a plane
with normal vector X, which is anti-parallel to T as confirmed
by the colouring X�T = cos b = �1. We therefore make an
arbitrary choice to track one of the three radially pointing
orientations of the �1/2 profile along the disclination. To
extract the three radial orientations, w1, w2, w3, we construct

Fig. 13 Saturn ring disclination loop for different mean field interaction strengths U. In each, the isosurfaces shown are s = 0.9 (eqn (25)).

Fig. 12 Director field slices around standard and tilted figure-of-eight colloidal-dimer states. (a) Standard figure-of-eight structures are associated with
a uniaxial far-field director field. (b) Tilted-figure-of-eight entanglements have a director field that modulates away from the dimer. The director is shown
in grey. Disclinations are visualised as in Fig. 1.
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a small cube of 5 � 5 � 5 lattice cells centred on each of the
ordered points. For each of these cubes, a rotation matrix R is
constructed and applied to the director field within the cube,
which aligns the local disclination tangent T with ez. This
enables the director radial orientation to be identified on the
transformed exey plane, on which we construct a test vector
rtest = (cos ytest, sin ytest) oriented radially outwards from the
core. On a circuit of points xl surrounding the core, rtest is
compared with the local director n(xl). Determined over all
points xl and test orientations ytest, w1 is chosen as the rtest that
maximises the absolute value |rtest�n(xl)|. The inverse rotation
transform R�1 is applied to w1 to revert back to the original
basis, and w2, w3 are determined as orientations 2p/3 rotated
relative to each other about T. The framing vector is initialised
as w = w1 for the first point along the loop, and subsequent
points choose from one of the three w1, w2, w3 orientations that
minimise the rotation angle compared with w from the pre-
vious point in the sequence.

Calculating the self-linking number

The self-linking number is calculated through the geometric
writhe Wr and twist Tw properties of the disclination via
eqn (19). Twisting is the local winding of the framing vector
around the tangent curve, which gives Tw when integrated.
Writhe is a non-local geometric property that describes the
coiling of the curve, through tracking the relative rotation of
locally parallel tangent bundles along the loop.7 Writhe and
twist are calculated as

Wr ¼ 1

4p

þ
C

ds

þ
C

ds0TðsÞ � Tðs0Þ � RðsÞ � Rðs0Þ
jRðsÞ � Rðs0Þj3 (26)

Tw ¼ 1

2p

þ
C

dsTðsÞ � wðsÞ � dwðsÞ
ds

� 	
; (27)

where R(s) are position vectors for points along the loop, TðsÞ ¼
dRðsÞ
ds

is the local tangent vector,85 and C is a closed curve

composing the disclination loop. The framing vector w(s) is
everywhere perpendicular to T(s) and sets up the local framing
direction (Section 5.7).
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5 I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik and S. Žumer,
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Nonlinear, Soft Matter Phys., 2008, 77, 031705.

72 G. P. Alexander and R. D. Kamien, Liq. Cryst. Rev., 2022, 10,
91–97.

73 O. Guzmán, E. B. Kim, S. Grollau, N. L. Abbott and J. J. de
Pablo, Phys. Rev. Lett., 2003, 91, 235507.

74 T. Araki and H. Tanaka, Phys. Rev. Lett., 2006, 97, 127801.
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