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The fluid dynamics of a viscoelastic fluid dripping
onto a substrate†

Konstantinos Zinelis, *ab Thomas Abadie, c Gareth H. McKinley b and
Omar K. Matar a

Extensional flows of complex fluids play an important role in many industrial applications, such as

spraying and atomisation, as well as microfluidic-based drop deposition. The dripping-on-substrate

(DoS) technique is a conceptually-simple, but dynamically-complex, probe of the extensional rheology

of low-viscosity, non-Newtonian fluids. It incorporates the capillary-driven thinning of a liquid bridge,

produced by a single drop as it is slowly dispensed from a syringe pump onto a solid partially-wetting

substrate. By following the filament thinning and pinch-off process the extensional viscosity and

relaxation time of the sample can be determined. Importantly, DoS allows experimentalists to measure

the extensional properties of lower viscosity solutions than is possible with commercially available

capillary break-up extensional rheometers. Understanding the fluid mechanics behind the operation of

DoS will enable users to optimise and extend the performance of this protocol. To achieve this

understanding, we employ a computational rheology approach, using adaptively-refined time-

dependent axisymmetric numerical simulations with the open-source Eulerian code, Basilisk. The

volume-of-fluid technique is used to capture the moving interface, and the log-conformation

transformation enables a stable and accurate solution of the viscoelastic constitutive equation. Here, we

focus on understanding the roles of surface tension, elasticity and finite chain extensibility in controlling

the elasto-capillary (EC) regime, as well as the perturbative effects that gravity and substrate wettability

play in setting the evolution of the self-similar thinning and pinch-off dynamics. To illustrate the

interplay of these different forces, we construct a simple one-dimensional model that captures the initial

rate of thinning when the dynamics are dominated by a balance between inertia and capillarity. This

model also captures the structure of the transition region to the nonlinear EC regime in which the

rapidly growing elastic stresses in the thread balance the capillary pressure as the filament thins towards

breakup. Finally, we propose a fitting methodology based on the analytical solution for FENE-P fluids to

improve the accuracy in determining the effective relaxation time of an unknown fluid.

1 Introduction

The formation of liquid droplets results from flows featuring
complex topological changes of a deformable fluid via the
creation and breakup of filaments. Thread formation and
droplet pinch-off are of central importance to atomisation and
sprays,1–3 inkjet printing,4–6 dripping,7–9 agrochemicals,10,11

coatings,12 and also features in physiological flows such as
sneezing and coughing.13 In a complex fluid, the extensional

kinematics in the filaments arise from the streamwise velocity
gradients and shear-free boundary conditions in the neck
region as the breakup is approached. The extensional viscosity,
ZE, which resists the thinning process is larger than its shear
counterpart, Zs, (ZE = 3Zs for a Newtonian fluid14), and the
dynamics of the drop formation process are determined by
the combined effects of capillary, inertial, and viscous forces.
The addition of a high molecular weight flexible polymer such
as poly(ethylene oxide) (PEO) to a Newtonian solvent like water
or water–glycerol mixtures, has been observed experimentally
to strongly influence the neck evolution and thinning
dynamics, delaying the final pinch-off.7,15–17 For dilute polymer
solutions, the fluid viscoelasticity can lead to a large increase of
the extensional viscosity (in comparison to the shear viscosity)
by a factor of 102–103. It is therefore important to measure
accurately parameters such as ZE and the polymer relaxation
time t, which characterise the extensional rheology of the
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solution as they influence the filament thinning process and the
timescales controlling droplet formation in complex fluids.18

Various bespoke extensional rheometers have been devel-
oped based on a variety of configurations such as jetting, e.g.
the Rayleigh Ohnesorge jetting extensional rheometer (ROJER)
device,19,20 spinning,21 flow through T-junctions22 and cross-
slot configurations (e.g. OSCER),23 as well as boundary separa-
tion techniques such as the filament stretching extensional
rheometer (FiSER) and the capillary breakup extensional rheo-
meter (CaBER).14,19,24–26 The CaBER rheometer design exploits the
capillarity-driven thinning of a stretched fluid bridge in the
absence of imposed external forces and is suitable for studying
a range of mobile complex fluid samples (i.e. low and moderate
viscosity) over a range of Hencky strains. However, as the viscosity
of the test fluid is lowered towards that of water, inertial effects
become increasingly important and limit successful operation.27

The recently developed dripping-onto-substrate (DoS)
protocol,28–30 which involves the slow dripping of a single drop
through a narrow needle (needle radius R0 B 1 mm) onto a
partially-wetting substrate, as illustrated in Fig. 1(a), is suitable
for extensional rheology measurements of O(mL) volumes of
complex fluids, enabling tests on expensive/scarce material
samples, such as protein solutions31 whilst mitigating undesir-
able shear and inertial effects. The DoS rheometry technique
also facilitates the measurement of the extensional properties
of lower-surface tension and lower-viscosity fluids at higher
attainable extension rates than commercially available capillary
breakup instrumentation (e.g. the CaBER device).14

Effective DoS measurements have been reported in studies
of the extensional rheology for various polymer solutions,
suspensions, inks, viscoelastic surfactant fluids, cosmetics
and food materials, as well as protein solutions and associative
polysaccharide systems.5,14,29,31–38 DoS protocols have helped
to elucidate the non-Newtonian response to extensional

deformations for fluids which do not exhibit any measurable
viscoelastic behaviour in conventional shear rheometer or
extensional rheometer experiments. By understanding the
sequence of local balances among the capillary, inertial, vis-
cous, and elastic forces acting on the thinning thread that is
attached to the drop as it spreads laterally on the substrate,14

the DoS process can be shown to be characterised by the
sequential emergence of a number of distinguished regimes
and distinct neck shapes.

At early thinning times, and for low-viscosity Newtonian
samples, an inertio-capillary (IC) response described by
power-law dynamics dominates the thinning process leading
to a conically-shaped neck, close to Rmin(t), as indicated in
Fig. 1(b). In contrast, in fluids of higher viscosity, a distinct
visco-capillary (VC) regime is established in which the neck is
slender and almost cylindrical in shape and the radius Rmin(t)
decreases linearly in time. For viscoelastic fluids, an additional
elasto-capillary (EC) thinning regime is observed as thread
pinch-off is approached. This is characterised by an exponen-
tial decrease in Rmin(t) with time and the formation of a thin
and axially uniform cylindrical thread connecting the deposited
drop to the residual fluid that is pinned by the nozzle. In the
final stages of the breakup process, this EC regime gives way
to a terminal visco-elasto-capillary (TVEC) region in which
the radius once again decreases to zero linearly in time. This
terminal regime is controlled by the finite extensibility of the
polymer chains that are dissolved in the low-viscosity solvent.

In this work, we use time-dependent, free-surface numerical
simulations of a canonical constitutive model for polymer
solutions (the FENE-P model39) to study filament deformation
and the breakup dynamics that underpin DoS rheometry. We
extend previous experimental work examining the role of sub-
strate wetting and gravitational forces for wormlike micellar
solutions40 and inertio-capillary dynamics31 to account for the

Fig. 1 Simulation setup and interface evolution during two distinct stages: (a) initially, gravity-driven axial drop elongation followed by, (b) spreading over
the solid substrate of prescribed wettability set by the equilibrium contact angle yE. The simulation domain is indicated in red.
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effects of nonlinear viscoelasticity and finite chain extensibility
that are captured by the FENE-P constitutive equation. The
thinning fluid thread and the substrate wettability are para-
meterised by the Ohnesorge, Deborah, and Bond numbers, as
well as a macroscopic contact angle, respectively. Our computa-
tional rheology experiments help identify the existence of
optimal parameter ranges in which experimental inaccuracies
for these small-scale, high-speed rheological measurements are
minimised.

The rest of this article is organised as follows. In Section 2,
the problem formulation and the numerical framework used
for performing the simulations are presented. We then inves-
tigate how the dynamics of DoS rheometry are affected by
substrate wettability and gravitational forces, and representa-
tive results are discussed in Section 3. In Section 4, we use a
simple one-dimensional model to capture the main dynamical
features identified by our full numerical simulations and
explore how the data obtained from systematic parametric
variations of the DoS rheometry protocol can improve the
analysis of extensional rheology measurements with unknown
samples. Finally, recommendations for better practices in DoS
rheometry and concluding remarks are presented in Sections 4
and 5, respectively.

2 Formulation and methodology
2.1 Flow configuration

Fig. 1 shows the configuration of a typical DoS experiment. We
use an axisymmetric description of the filament shape R(z, t) as
a prolate pendant drop of length c0 is brought into contact with
a partially-wetting substrate. The fluid is an incompressible,
viscoelastic solution containing polymer chains of finite exten-
sibility L2 which issues from a nozzle of length cnozzle and initial
radius R0. The fluid of density rl and dynamic viscosity Zl = Zp +
Zs is surrounded by a gas of density rg and dynamic viscosity Zg;
here, Zp and Zs denote the polymer and solvent contributions to
the total viscosity, respectively. Additionally, we use b = Zs/Zl

to express the relative contribution of the solvent viscosity Zs to
the total dynamic viscosity of the polymer solution Zl. The
droplet issuing from the nozzle is brought into contact with a
solid substrate located at a distance c0 below the nozzle exit
resulting in a characteristic aspect ratio of c0/2R0. The substrate
wettability is parameterised by a macroscopic equilibrium
contact angle yE.

The initial volume of the droplet Vdrop is ensured to be larger
than the corresponding volume of a fluid column of radius R0

and length c0 for stability considerations.15 As shown schema-
tically in Fig. 1(a), the pendant drop develops a prolate
amphora shape whose subsequent spreading across the sub-
strate is influenced by gravitational forces, wettability effects, as
well as its rheological response. The lateral spreading of the
droplet foot and conservation of volume leads to the develop-
ment of a thin polymeric thread of characteristic radius Rmin(t),
which connects the two hemispherical droplets that are
attached to the nozzle and spreading across the substrate,

respectively, as illustrated in Fig. 1(b). The thinning and
eventual break up of this thread is influenced by a delicate
balance of capillary, inertial, viscous, and elastic forces, as will
be discussed below. Understanding this evolving balance is
what enables the DoS configuration to be employed in exten-
sional rheometry.

2.2 Governing equations and numerical method

In what follows we non-dimensionalise the governing equa-
tions by scaling with the characteristic length R0, an inertio-

capillary velocity UR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g= rlR0ð Þ

p
; and the Rayleigh time

tR ¼ R0=UR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rlR0

3=g
p

. All stresses and the isotropic pressure
thus can be made dimensionless using a pressure scale rlUR

2 =
g/R0. The filament thinning dynamics are then governed by the
following dimensionless continuity and momentum conserva-
tion equations:41,42

~r � ~u ¼ 0; (1)

~r
@~u

@~t
þ ~u � ~r~u

� �
¼ � ~r~pþOh b ~r � ~rs þ

1� bð Þ
De

~r � ~rp

� �

þ ~k~dnþ Bo~g; (2)

where the tildes designate dimensionless variables; t̃, ~r, ũ, p̃, ~rs,

~rp, ~k, ~d, n, and g̃ correspond to dimensionless time, density,
velocity, pressure, solvent and polymeric stress components,
interfacial curvature, the Dirac delta function, the outward-
pointing unit normal vector to the interface, and the gravita-
tional acceleration, respectively. A one-fluid volume-of-fluid
(VOF) approach43 is used, where the volume fraction c of the
liquid phase is advected in every computational cell as

@c=@~tþ ~u � ~rc ¼ 0. Additionally, the local density ~r and viscosity
~Z are determined by:

~r ¼ cþ ð1� cÞ
rg
rl
; (3)

~Z ¼ cþ ð1� cÞ
Zg
Zl
: (4)

In eqn (2), De = t/(R0/UR) = t/tR represents an intrinsic Deborah
number, which captures the ratio of the relaxation time of the

polymer t to the Rayleigh flow time scale tR; Oh ¼ Zl
� ffiffiffiffiffiffiffiffiffiffiffiffi

rlgR0

p
is

the Ohnesorge number that represents the relevant contribution
of capillary and viscous forces, and Bo = rlgR0c0/g is a Bond
number that characterises the balance between gravity and
capillarity in the initial pendant drop as it touches the substrate.

The dimensional viscous stress tensor arising from the
solvent is given by rs = Zs(=u + (=u)T), and rp is the dimensional
polymeric stress contribution to the total stress given here by
the FENE-P constitutive equation:

rp ¼
Zp
t

A

1� trðAÞ
L2

� I

0
B@

1
CA; (5)

where L2 is the polymer chain finite extensibility, and A is the
dimensionless chain conformation tensor whose transport is
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governed by the following dimensionless equation:

@A

@~t
þ ~u � ~rA� ~r~u � Aþ A � ~r~uT

� �

¼ � 1

De

A

1� trðAÞ
L2

� I

0
B@

1
CA:

(6)

We avoid numerical instabilities due to rapid growth of
elastic stresses during the formation of the elastic thread (High-
Weissenberg Number Problem44) via the log-conformation
transformation.45 The local time-varying Weissenberg number Wi
is the local strain rate normalised by the polymer relaxation time:46

Wi ¼ t_emin ¼ �2t
d log Rminð Þð Þ

dt

¼ � 2De
d log ~Rmin

� �� �
d~t

:

(7)

We use this dimensionless strain rate to assess the thinning rate of
the viscoelastic filament. The tildes, which designate dimensionless
variables, are suppressed henceforth.

2.3 Numerical set up

The simulations are performed with the open-source code
Basilisk.42,47–50 The interface is reconstructed with a piecewise
linear interface calculation (PLIC) technique,42,43 and the
height-function method is used to calculate the geometrical
properties of the interface; this ensures accurate modelling of
the capillarity-driven thinning of the polymeric solution.41,43

The simulation domain is a square of dimensions 1.67pR0 �
1.67pR0, which results in an aspect ratio E3. The left boundary
is the axial symmetry axis, while no-penetration Dirichlet con-
ditions are considered for all the velocity components at the
upper and lower boundaries, where a nozzle and solid substrate
are considered, respectively. In addition, we follow the imple-
mentation by Herrera et al.42 for the boundary conditions for all
the polymeric stress tensor components.

The contact line at the upper plane is pinned at r = R0 to
account for the nozzle exit, following the approach applied by
Sakakeeny and Ling51 so that drop oscillations can be effec-
tively handled. The wetting of the solid substrate at the lower
plane is modelled with a macroscopic contact angle boundary
condition in combination with the height-function method.52

Although a no-slip boundary condition is imposed on the
substrate, the velocity field for the interface advection is located
at the centre of the cell faces and therefore results in an implicit
slip condition at the contact line with a slip length which scales
with the minimum grid size Drminimum/2.52,53 Therefore, it is
critical to specify small enough grid cell sizes to ensure that the
macroscopic dynamics remain unaffected by the microscopic
contact line dynamics (further details of the mesh convergence
study are provided in the ESI†). Additionally, for the initial
conditions of the DoS process at t = 0, which is set when the
polymeric droplet first touches the solid substrate, we consider
that r = R0 corresponds to the nozzle radius in the upper panel,
and the polymeric chains are considered to be fully relaxed

which corresponds to Azz = Arr = 1 everywhere within the liquid
phase. The initial shape of an elongated polymeric droplet
between the nozzle exit and the solid substrate is given by an
elliptical equation:

z� 2:45

2:83

� �2

þ r

2

� 	2
�1 ¼ 0: (8)

The grid cells in the simulation domain are refined accord-
ing to a quadtree adaptive mesh refinement (AMR) scheme
available in Basilisk43 based on the location of the interface,
as well as on the regions where the gradients of the axial
elastic stress are large. This allows for sufficient resolution of
the extremely thin polymeric thread, which is formed between
the two primary hemispherical beads (as also observed in
experiments28). The adaptive mesh refinement enables accu-
rate simulation of the thinning dynamics as breakup of the
filament (Rmin(t) - 0) is approached. Starting from a base grid
resolution of 512 � 512 square cells for the whole domain, the
adaptive scheme refines the cells down to a minimum square
cell of size Drminimum = 0.0026.

3 Results and discussion

In this section, we provide a discussion of our results obtained
from the numerical simulations of dripping-onto-substrate
(DoS) rheometry. Specifically, the effects of the parameters
De, L2, Bo, and yE on the thinning dynamics are analysed,
and connections with the effectiveness of DoS rheometers are
also established.

3.1 Numerical results

Fig. 2 shows the simulation results for a weakly viscoelastic
fluid characterised by De = 1 and large finite polymer chain
extensibility L2 = 10 000, with additional material properties as
defined in Table 1, where the density and viscosity ratios are
the same as those utilized by Turkoz et al.47,48 and Zinelis
et al.50 We select a value for the density ratio (rg/rl = 0.01) which
is larger than the actual value of 10�3 typical for a real liquid–
gas system, but still considerably smaller than unity. This
approach is widely adopted in numerical simulations as an
optimal compromise between accuracy and computational cost
(which is significantly increased when the true value rg/rl =
0.001 is simulated). Fig. 2(a)–(c) presents the evolution of the
interfacial shape along with contour plots of the volume–
fraction, axial velocity component, and axial polymeric stress,
respectively, coloured by the corresponding magnitude of each
quantity. These figures demonstrate the evolution of a DoS
experiment from the time when the droplet first touches the
solid substrate (t = 0) until the establishment of a fully-
developed viscoelastic thread (t = 14.8) when Rmin reaches the
minimum resolvable value in our simulation (Rmin E 0.05). The
snapshots are taken at times which correspond to the initiali-
sation of the numerical simulation (t = 0), to the subsequent
establishment of the inertio-capillary (IC) (t = 9) and elasto-
capillary (EC) (t = 12) regimes, and finally to the ultimate
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thinning regime when the finite extensibility limit of the
polymeric chains is reached (t = 14.8).

The contours of axial velocity presented in Fig. 2(b) show the
initial slow drainage of the filament which eventually leads to
the final rapid breakup of the viscoelastic thread and the
subsequent formation of two hemispherical beads (of different
volumes) attached to the nozzle and the lower substrate. The
contour plots of the axial polymeric component in Fig. 2(c) reveal
the importance of elastic stresses during the formation of the
polymeric thread. In particular, at early times, the axial poly-
meric stresses are weak, and inertial and capillary forces drive
the filament thinning process. However, at intermediate times
(t Z 12), the axial polymeric stress increases rapidly as the
filament radius continues to thin. This large elastic stress acts
to stabilise the thinning thread and retard its eventual breakup.

The IC, EC, and TVEC regimes are all indicated in Fig. 2(d),
which uses a semi-log representation of the evolution in the
minimum filament radius Rmin(t); here, the dimensionless time
scale on the abscissa has been shifted by an initial offset, ti

which denotes the time at which the residual effects of the
initial spreading process become negligible, i.e., when Rmin r 1
and the initial prolate drop has established a concave necked
configuration. For these specific parameter conditions, we
determine ti = 7.46. In Fig. 2(d), the development of the
exponential elasto-capillary thinning process is also evident, as
expected,28 until the finite extensibility of the polymer chain
(set by the magnitude of the parameter L2) has been reached.

To examine the accuracy with which the simulation
describes the thinning of the polymeric filament, we also
monitor the temporal evolution of the local Weissenberg num-
ber Wi in Fig. 2(e) which evolves in a non-monotonic way.9,46

Inspection of this profile confirms the fact that the simulations
capture accurately the IC regime during the early times of the
thinning process along with the subsequent exponential
decrease of the filament radius in the EC regime. This is
characterised by the expected dimensionless thinning rate of
�2

:
Rmin/Rmin = 2/(3De) which corresponds to a constant local

Weissenberg number of Wi = 2/3. The final steep increase of Wi

Fig. 2 Contour plots of (a) the volume fraction, (b) the axial velocity component, and (c) the axial polymeric stress at different times which correspond to
the initialisation, inertio-capillary thinning regime, the onset of the elasto-capillary regime, and the terminal thinning regime of the viscoelastic filament
(which is controlled by the polymer finite extensibility). The formation of the characteristic thin viscoelastic thread between two beads is highlighted at t =
14.8. (d) Representation of the evolution of the minimum filament Rmin in time, shifted by ti which is the time when the influence of the initial condition
ceases (here ti = 7.46); The simulations capture the three main characteristic regimes of filament thinning in DoS rheometry: i.e. inertio-capillary (IC),
elasto-capillary (EC), and terminal visco-elasto-capillary (TVEC) regimes. The vertical dashed lines indicate the end of the IC regime and the subsequent
transition to the exponential thinning, the onset of the EC regime, and finally the beginning of the TVEC thinning regime, respectively. (e) Temporal
evolution of the local dimensionless strain rate, Wi, which shows good agreement between the numerical simulations and the theoretical prediction for the
initial inertio-capillary dynamics (blue dashed line), the constant Wi plateau which corresponds to the expected thinning-rate (B�1/(3De)46,54–56), during the
exponential thinning, and the rapid terminal divergence in Wi when the polymer finite extensibility limit has been reached.15,56,57 Here, tmax � ti = 4.29 (with
tmax = 11.75 and ti = 7.46) corresponds to the time when the local Wi attains its maximum value; this, in turn, corresponds to the end of the IC regime and the
subsequent transition to the EC regime. The parameter values are listed in Table 1. For the corresponding movie please see the ESI.†

Table 1 Simulation parameters of DoS rheometry. Gravitational effects
are initially neglected (Bo = 0). The density and viscosity ratios rg/rl and Zg/
Zl are the same as those used by Turkoz et al.47,48 and Zinelis et al.50

De Oh b L2 Bo yE rg/rl Zg/Zl

1 0.2 0.85 10 000 0 301 0.01 0.01

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 8
/2

/2
02

5 
11

:3
8:

36
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00406j


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 8198–8214 |  8203

at the very end of the simulation indicates that the polymeric
chains become fully extended and the filament approaches the
‘‘pinch-off’’ interfacial singularity. Accurate resolution of this
TVEC regime requires very high levels of mesh refinement,50

but is not essential for successfully identifying and utilising the
exponential EC regime. We thus cease our simulations when
the minimum thread radius falls below Rmin r 0.05 and the
strain rate starts to rapidly increase again. We proceed now
with studying the competing roles of elasticity, finite extensi-
bility, gravity, and substrate wettability, in designing robust
and efficient DoS rheological measurements.

In Fig. 3 we explore the level of elasticity in the polymeric
solution above which elastic effects are detectable in DoS
rheometers. Specifically, in Fig. 3(a), we show contour plots
and interface profiles for De = 0, 0.2, 0.5, and 1, respectively. It
can be observed that for De = 0 and 0.2, an approximately

conical neck is formed, whilst, for De Z 0.5, the thread
becomes thin and of uniform thickness as also highlighted at
the right of panel (a). In Fig. 3(b), at the left we show the
exponential thinning of the filament radius Rmin(t) for De = 0,
0.2, 0.5 and 1. A shallower slope for the filament thinning is
observed with an increasing Deborah number, as expected
according to the Oldroyd-B predictions (B�1/(3De)46,54–56).
For this reason, according to eqn (7) the dimensionless strain
rate Wi(t) written as a function of dimensionless parameters
(Wi(t) = �2De d(log(Rmin(t)))/dt = 2De/(3De) = 2/3), is indepen-
dent of the Deborah number during the EC regime. Hence, we
expect a plateau in the dimensionless strain-rate at Wi E 2/3
when an EC regime is established. At the right of panel (b) this
is observed only for De = 0.5 and De = 1. However, at De =
0.2 the transition to an exponential thinning profile can barely
be detected. Thus, there appears to be a critical value of the

Fig. 3 (a) Contour plots of the axial elastic stress component for different Deborah numbers, De = 0, 0.2, 0.5 and 1, at dimensionless times that
characterise different minimum radii of the filament, Rmin = 0.55, 0.27, 0.15 and 0.05. Also shown are enlarged profiles of the viscoelastic stress
distribution in the thread at Rmin = 0.05 for De = 0.2 and 1, highlighting the effect of elasticity and the axially-uniform distribution of the polymeric stress
in the thread for De = 1. (b) Temporal profiles of the dimensionless minimum filament radius and the local dimensionless strain rate Wi = t _e for the same
range of Deborah numbers, highlighting the emergence of a distinct elasto-capillary (EC) thinning regime at De \ 0.5 in which a constant dimensionless
strain-rate Wi = 2/3 is expected. The rest of the parameters remain unchanged from Table 1. For the corresponding movie please see the ESI.†
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Deborah number in the range 0.2 o De r 0.5 beyond which an
EC regime is established. Careful inspection of Fig. 3(b) also
reveals that the presence of viscoelasticity, characterised by any
finite De, leads to a slightly accelerated initial thinning in the
IC regime in comparison to the Newtonian case (solid black
line) for which De = 0.

Having identified the threshold value of De above which
effective measurements of the elastic properties of polymeric
solutions are possible, we now examine the role of the chain
finite extensibility parameter L2. Fig. 4 shows that higher values
of L2 permit the development of larger axial polymeric stresses
during the EC regime. However, there are no apparent differ-
ences in the interface evolution and the thread thickness,
which is confirmed by inspection of Fig. 4(b). The temporal
evolution of the filament radius Rmin in Fig. 4(c) shows that for
small L2 values (L2 = 400 and 900), a much steeper (but still
approximately exponential) decrease of the filament radius is
observed. The profile of the corresponding local dimensionless
strain-rate Wi in Fig. 4(d) confirms the faster rate-of-thinning of
the filament radius for L2 = 400 and L2 = 900, which correspond
to higher Wi values (Wi Z 1). For these relatively small values of
the polymer finite extensibility, the stretching limit of the

polymeric chains in the thinning thread is approached rapidly
soon after the onset of the EC regime, which consequently
results in a very short exponential thinning period. In contrast,
the duration of the exponential filament thinning regime
increases with L2 and at sufficiently high extensibilities (here
L2 = 10 000) we regain the Oldroyd-B limit Wi = 2/3 for L2 =
10 000). These results demonstrate that a sufficiently large
chain extensibility is needed for accurate rheological measure-
ments in DoS rheometers.

We now study the effect of gravity on the interfacial
dynamics during dripping onto a substrate. Fig. 5(a) presents
contour plots of the axial polymeric stress component for
Bo = 0, 0.1, 0.4, and 0.8, respectively, with a constant fluid
contact angle yE = 301. Inspection of this figure reveals that the
development of the elastic stress is only weakly dependent on
gravity over the range of Bo values that we examine. Further-
more, a quantitative comparison of the filament profiles as
shown in Fig. 5(b) demonstrates that increasing Bo leads to
slightly longer filaments and an increase in the drop footprint
across the solid substrate. In addition, Fig. 5(c) and (d) show
that even though an increase in the gravitational body force
leads to faster thinning in the IC regime as well as a more rapid

Fig. 4 (a) Contour plots of the axial stress distribution in the viscoelastic thread at Rmin = 0.55, 0.27, 0.15, and 0.05, for four representative polymer finite
extensibility values L2 = 400, 1600, 2500, and 10 000 at fixed Deborah number (De = 1). (b) Profiles of the viscoelastic filament at time t* when its
minimum radius reaches a value of 5% of the nozzle radius. (c) Temporal evolution of the minimum filament radius Rmin(t), and (d) evolution in the local
strain rate within the neck for L2 = 400, 900, 1600, 2500, and 10 000. The rest of the parameters remain unchanged from Table 1.
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transition to the onset of the characteristic exponential thin-
ning regime, the dynamics in the EC regime are not influenced
by variations in the Bond number. These results demonstrate
that DoS rheological measurements of viscoelastic fluid proper-
ties, such as the relaxation time, remain unaffected by gravita-
tional perturbations in the range 0 r Bo r 1.

To better understand and quantify the influence of gravity
on the thinning dynamics, it is worth examining the depen-
dence of important features of the filament thinning profile,
such as the characteristic times ti (which indicates when initial
geometric effects become negligible), tmax (which corresponds
to the local maximum filament strain rate and the subsequent
onset of the EC regime), and t* (which represents the thinning
time, when the thread can be considered to be fully established
and is about to undergo breakup, here when Rmin = 0.05). The
dependence of ti, tmax, and t* on Bo is presented in Table 2.

In addition, in Fig. 6 we show the variation of these character-
istic times with Bond number. Specifically, we plot the scaled
quantities t̃i = ti(Bo)/ti(Bo = 0), t̃max = tmax(Bo)/tmax(Bo = 0), t̃* =
t*(Bo)/t*(Bo = 0) where we use the zero Bond number case as a
reference to determine the effect that gravitational forces exert on
the initial phase (ti) in DoS rheometry, the transition from the

inertio-capillary to elasto-capillary dynamics (tmax) and finally to
the time of the ‘‘pinch-off’’ singularity (t*). Fig. 6 confirms the
initial observation that gravity accelerates the filament thinning,
where the onset of the power-law and exponential filament
thinning regimes at larger Bond numbers (Bo E 1) are up to
40% and 20% faster, respectively.

The solid surface wettability, characterised by the macro-
scopic contact angle yE, influences the lateral spreading of the

Fig. 5 (a) Contour plots of the axial polymeric stress component at Rmin = 0.55, 0.27, 0.15 and 0.05 for different Bo = 0, 0.1, 0.4 and 0.8, highlighting the
influence of the gravitational forces in the initial and terminal thinning dynamics. (b) Filament shape at Rmin = 0.05 for the same set of Bond numbers.
Temporal profiles of (c) the dimensionless filament radius Rmin and (d) the local dimensionless strain rate Wi, highlighting the self-similar exponential
thinning during the elasto-capillary (EC) regime for a range of different Bond numbers (0 r Bo r 1). The rest of the parameters are the same as given in
Table 1. For the corresponding movie please see the ESI.†

Table 2 Dependence of the characteristic timescales ti, tmax and t*
timescales on the Bond number. These times correspond respectively to
the onset of the inertio-capillary (IC) regime, the onset of the elasto-
capillary dynamics, and the time when the minimum filament radius
decreases to 5% of its initial value (Rmin(t*) - 0.05)

Bo ti tmax t*

0 7.46 11.75 14.11
0.1 7.16 11.27 13.78
0.2 6.68 10.59 13.16
0.3 6.34 10.10 12.75
0.4 6.01 9.68 12.38
0.6 5.51 8.99 11.84
0.8 4.87 8.22 11.24
1 4.51 7.74 10.76
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drop that is deposited on the substrate which, in turn, can play
a role in driving the filament thinning dynamics. We study
partially wetting solid substrates with wettabilities

characterised by yE = 301, 451, 601, and 801, which correspond
to hydrophilic and partially hydrophobic substrates at the lower
and higher ends of the contact angle range, respectively. Here,
we have also set Bo = 0 to isolate the effects of wettability from
those associated with gravity. The contour plots in Fig. 7(a)
show that increasing substrate wettability (by decreasing yE)
leads to an enhancement in the degree of spreading along the
substrate, resulting in larger drop footprints and also longer
connecting filaments. In contrast, more hydrophobic sub-
strates lead to bead-like drops with smaller footprints and
shorter connecting filaments, as can also be seen in Fig. 7(b).
However, in contrast to the gravitational effects discussed
above, the increase in yE is seen to retard significantly the
onset of the EC regime for yE Z 601, as shown in Fig. 7(c) and
(d), although once established, the exponential EC thinning
regime retains the theoretically expected rate-of-thinning of
�1/(3De) for all yE values studied.

Similarly to our analysis of the gravitational effects, here we
also examine the impact of decreasing substrate wettability on
the characteristic timescales ti, tmax and t*. The results for these
three timescales as a function of the contact angle yE are
provided in Table 3. In addition, Fig. 8 shows the evolution of

Fig. 6 Variation of the scaled characteristic times t̃i, t̃max and t̃* with Bond
number. Here, we consider the zero gravity case (Bo = 0) as a reference to
quantify the effect of gravitational forces (finite Bond numbers) on the
onset of the inertio-capillary thinning (t̃i), the subsequent transition to the
Elasto-Capillary (EC) regime (t̃max) until the final filament breakup (t̃*).

Fig. 7 (a) Contour plots of the axial stress component at Rmin = 0.55, 0.27, 0.15 and 0.05 for four contact angles yE = 301, 451, 601 and 801, covering
different levels of substrate wettability. (b) The filament interface at times t* when Rmin = 0.05 for the same range of contact angles. (c) Evolution in the
minimum filament radius Rmin(t � ti) and (d) evolution in the local dimensionless strain rate Wi(t) for substrate wettabilities in the range of 301r yE r 801.
The rest of the parameters remain unchanged from Table 1. For the corresponding movie please see the ESI.†
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the scaled characteristic times t̃i = ti(yE)/ti(yE = 301), t̃max =
tmax(yE)/tmax(yE = 301), t̃* = t*(yE)/t*(yE = 301), selecting the
lowest contact angle (yE = 301) as the reference case for
quantifying the role of substrate wetting. Fig. 8 confirms the
observation of Fig. 7: the use of more hydrophobic substrates
causes significant retardation of the thinning dynamics, includ-
ing the duration of the initial geometric rearrangement, the
transition to the exponential EC region, and the final breakup
of the viscoelastic thread. The trends presented in Fig. 8 show
that increasing the contact angle yE results in an opposite trend
from the increase in Bond number. There is a significant delay
in the transition to the EC regime, of up to 23% for more
hydrophobic substrates.

These results demonstrate that the operating range in DoS
rheometry can be increased by tuning the substrate wettability.
Specifically, increasing the substrate wettability leads to a more
rapid initial necking during the IC regime. The capillarity-
driven drainage of fluid away from the thinning neck leads to
more rapid growth of the elastic stresses in the thinning thread
and an earlier onset of the EC regime (at slightly larger length
scales). This is the configuration we seek to establish in DoS
rheometry because it corresponds to a constant imposed strain
rate and facilitates determination of the (unknown) relaxation
time of a single fluid.

4 Extensional rheometry with DoS

In this section, we explore conditions for optimising the
operational range of DoS rheometry. We also present a simpli-
fied one-dimensional model of the thinning dynamics whose
predictions are compared to those from the full numerical
simulations. Finally, by comparing our results to the predic-
tions of the FENE-P model in a capillary thinning flow we
provide a methodology for improving the analysis of transient
extensional rheometry data obtained from DoS experiments
near the limit of finite time breakup.

4.1 One-dimensional thinning model

We begin with the development of a one-dimensional model for
describing the thinning dynamics in a DoS flow configuration.
This is inspired by the one-dimensional models developed by
Tirtaatmadja et al.46 and Wagner et al.,58 but we seek to extend
these descriptions to incorporate the perturbative roles of
gravitational body forces and substrate wettability. We first
consider the force balance for a slender viscoelastic thread
expressed in dimensionless form:46

1

RminðtÞ
¼ C1 � _RminðtÞ

� �2þOh 3b
�2 _RminðtÞ
RminðtÞ

� �
þ ð1� bÞ

De
DspðtÞ


 �
;

(9)

where the over-dot designates a total derivative with respect to
time. In eqn (9), the term on the left-hand side corresponds to
the (dimensionless) capillary pressure contribution driving the
thinning. On the right-hand-side, the first term describes
inertial acceleration in which C1 is a numerical pre-factor which
captures the effects of gravitational body forces and substrate
wettability on the initial inertio-capillary regime (as reported in
Section 3). Extensive experimentation, coupled with numerical
simulation, has shown46,59,60 that this pre-factor is not univer-
sal during inertio-capillary thinning processes, but also
depends (weakly) on perturbations from additional small, but
non-zero, terms arising from geometry, gravity, etc. The precise
numerical value of C1 depends on the relevant boundary
conditions describing the distinct flow regimes that emerge
during self-similar capillary-driven thinning of a slender fila-
ment. By retaining this adjustable pre-factor solely in front of
the inertial term of eqn (9), we can capture (in a single constant)
the critical role that small changes in the effective gravitational
body force and substrate wettability impose on the onset and
evolution of the thinning dynamics at early times. The second
term on the right-hand-side of eqn (9) expresses the contribu-
tion of viscous forces, where b = Zs/Zl is the relative contribution
of the Newtonian viscous solvent, and the last term, given by

Dsp(t) = [Azz � Arr]/(1 � tr(A)/L2), (10)

corresponds to the dimensionless polymeric normal stress
difference that develops in the thinning filament.

If the contribution of the viscous stresses is negligible
(Oh { 1) compared to the capillary and elasticity contributions,

Table 3 Dependence of the characteristic timescales ti, tmax and t* on the
substrate wettability (represented by yE)

yE[1] ti tmax t*

30 7.46 11.75 14.11
45 7.81 12.44 14.58
50 7.87 12.58 14.72
60 8.05 13.27 15.18
70 8.37 14.74 16.26
75 8.63 16.18 17.40
80 11.04 20.99 21.78

Fig. 8 Variation of the scaled characteristic times t̃i, t̃max and t̃* with the
static contact angle yE. Here, we consider the case of the fastest substrate
spreading (yE = 301) as a reference to quantify the effect of substrate
wettability on the initial onset of the inertio-capillary thinning (t̃i), the
subsequent transition to the elasto-capillary (EC) regime (t̃max) and the
approach to the final filament breakup (t̃*).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 8
/2

/2
02

5 
11

:3
8:

36
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00406j


8208 |  Soft Matter, 2024, 20, 8198–8214 This journal is © The Royal Society of Chemistry 2024

then eqn (9) can be re-written:

1

RminðtÞ
� C1 � _RminðtÞ

� �2þ 1� bð ÞOh

De

Azz � Arrð Þ

1� tr Að Þ
L2


 �: (11)

As the filament necks down, we have seen from our simulations
(cf. Fig. 3(a)) that the axial stress component eventually
becomes dominant, so that Azz c Arr. Furthermore, in the limit
of large polymer chain extensibility, before the effects of finite
extensibility become important, we can take 1/(1 � tr(A)/L2) E 1.
Thus, provided 1 r Azz { L2, eqn (6) combined with eqn (7)
reduces to a single evolution equation for Azz(t) and Rmin(t):

_Azz � � 4
_RminðtÞ
RminðtÞ

þ 1

De

� �
Azz: (12)

Separation of variables and integration of this equation yields an
expression for Azz in terms of Rmin(t) and De:56

AzzðtÞ ¼
A0

zz

Rmin
4ðtÞ exp �

t

De

� 	
; (13)

where A0
zz is an integration constant that can be set to unity

corresponding to an initially unstretched polymer chain. Sub-
stituting eqn (13) into eqn (11), leads to the following nonlinear
evolution equation for Rmin(t):

1

RminðtÞ
�C1 � _RminðtÞ

� �2þ 1�bð ÞOh

De

1

Rmin
4ðtÞexp �

t

De

� 	
: (14)

Eqn (14) incorporates the competing effects of fluid inertia,
capillarity, and nonlinear fluid elasticity on the dynamics of
filament thinning. At very short times, before elastic stresses
grow to enter the dominant balance, balancing just the capil-
lary and inertial terms in the IC regime, we have 1/Rmin(t) E
C1(� :Rmin(t))2. Integration of this equation from Rmin = 1 at t = 0
results in the expression:

Rmin(t) = a(tmax � t)2/3. (15)

The radius therefore initially decreases as a power law in
time. Here, a is a dimensionless pre-factor which determines the
rate-of-thinning during the inertio-capillary balance30,38,61,62 and
is related to the pre-factor C1 in the original force balance by the
expression C1 = 9/(4a3). In the absence of fluid elasticity tmax is
the time to breakup; however substituting eqn (15) into eqn (13)
it is clear that the polymer stretch grows extremely rapidly during
this inertio-capillary thinning phase until elastic stresses become
large enough to enter the dominant balance in eqn (11). At this
time (denoted tmax), the thinning rate drops dramatically, iner-
tial effects become progressively less important and the transi-
tion to the EC regime begins. In the EC regime, the dominant
balance between capillarity and elasticity in eqn (14) gives:

1

RminðtÞ
� ð1� bÞ Oh

De

1

Rmin
4ðtÞ

� �
expð�t=DeÞ; (16)

Rearranging we obtain the following expression for the evolution

of the filament radius in the EC regime:

RminðtÞ � ð1� bÞOh

De


 �1=3
expð�t=3DeÞ; (17)

which is consistent with the characteristic exponential rate-of-
thinning in the viscoelastic filament confirmed notably by Entov
and Hinch,56 Amarouchene et al.,63 Deblais et al.17 At very long
times, as the filament thins to very small scales, Azz(t) approaches
the finite extensibility limit L2 and the thread enters the TVEC
regime.38 In this regime, the radius once again decreases linearly
in time and the strain rate grows rapidly. The dynamics of this
regime have been considered by Wagner et al.58 but are very
challenging to resolve numerically and are beyond the scope of
the simulations in the present paper.

This simple one-dimensional model captures the overall
dynamics of the filament thinning process but is not complete
enough to describe the additional driving forces provided by
the perturbative effects of gravity or substrate wettability.
However, the contribution of these effects to the inertio-
capillary thinning process (observed in Fig. 5 and 7) can be
captured through the changes in the pre-factor a defined in
eqn (15).

To illustrate this, following the graphical approach sug-
gested by Day et al.61 we use a re-arranged form of eqn (15),
Rmin

3/2(t) = �a3/2t + a3/2tmax, and we plot in Fig. 9 the temporal
evolution of Rmin

3/2 on a semi-log scale; this allows us to
rapidly determine the value of the constant a for each simula-
tion and how it varies with the Bond number. It is clear
that for all Bo examined, there is a distinct range 0.1 r
Rmin

3/2 r 0.8, where Rmin
3/2 decreases linearly in time, consis-

tent with the IC regime. We indicate the onset of the IC
regime at a specified time, named tIC which corresponds to
Rmin E 0.85 (or equivalently Rmin

3/2 E 0.8), which is a value
that can be easily monitored in the experiments. Fitting of the
linear portions of the data in Fig. 9 accounting for the re-
arranged form of eqn (15), yields 0.355 r a r 0.425 for 0 r
Bo r 1.

We follow the same procedure for quantifying the effect of
the substrate wettability on the inertio-capillary thinning,
which yields 0.355 r a r 0.212 for 301 r yE r 801. We
provide the values of the pre-factor a as a function of the Bond
number and the contact angle yE in Tables 4 and 5,
respectively.

In addition, we also plot in Fig. 10(a) and (b) the variation of
this numerical pre-factor a as a function of the Bond number
and the cosine of the contact angle (cos(yE)), which provides a
measure of the force driving the lateral spreading of the fluid
across the solid substrate. The pre-factor a in eqn (15) follows a
power-law evolution with Bo, which can be approximated by
a(Bo) E a0(1 + 0.223Bo2/3), where a0 corresponds to the value of
a for Bo = 0. The inertio-capillary scaling of the initial thinning
regime is thus only weakly modified by gravity (for Bo r 1).
Inspection of Fig. 10(b) shows that as the wettability of the
substrate is reduced the rate of spreading is also reduced. The
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dependence of a on the contact angle can be closely approxi-
mated by a(yE) E 0.377 cos(yE)1/3.

Having determined the variation of a with the Bond number
and the macroscopic contact angle, we compare the predictions
of the one-dimensional model in eqn (14) with the results of
the numerical simulations, for 0 r Bo r 1 at a fixed contact
angle yE = 301. We show in Fig. 11(a) and (b) the results of the
comparison between the full numerical simulations and the
solution of eqn (14) (using the Matlab ODE23t package), for
both the temporal evolution of the filament radius Rmin(t) and
the corresponding evolution of the dimensionless strain rate
Wi(t), respectively. Here, the time t has been shifted by an
initial offset tIC which corresponds to the time when Rmin = 0.85
after the initial reconfiguration process (during which the
prolate drop first touches the substrate and rapidly spreads
laterally to form a necked droplet). Fig. 9 clearly shows that
below a radius Rmin E 0.85 (or Rmin

3/2 E 0.8) the initial phase
of filament thinning is well described by the inertio-capillary
scaling. Inspection of Fig. 11(a) and (b) reveals that the simpli-
fied one-dimensional model accurately captures both the IC
and the EC thinning regimes. However, the transition between

the two regimes is less abrupt in the full simulations as the
shape of the filament rearranges and transient two-dimensional
effects cannot be neglected. Similar observations have been
made regarding the effect of the substrate wettability.64

4.2 Improvement of thinning predictions with the FENE-P
analytical solution

We now revisit the role of the polymer finite extensibility L2 on
the dynamics in the EC thinning regime that is shown in Fig. 4.
Our simulations revealed that low values of the polymer exten-
sibility (L2 o 1600) resulted in more rapid thinning rates in the
EC regime and very short-lived periods of exponential thinning.
Similar observations are obtained in experimental measure-
ments by Gaillard et al.65 Directly fitting a simple exponential to
such data leads to significant bias in DoS rheometry measure-
ments of polymer solutions, such as an underestimation of the
polymer relaxation time. The resulting error can be as large as
approximately 40% for L2 = 400 if the analytical expression for
exponential filament thinning predicted by the Oldroyd-B
model, i.e., Rmin B exp(�t/(3De)),9,56,66 is used to extract the
thinning rate or the apparent relaxation time. To address this
bias, Lauser et al.31 and Jimenez et al.37 use a four-parameter
empirical model originally proposed by Anna and McKinley67

to more systematically regress experimental measurements
of filament thinning close to breakup. In this model, the

Fig. 9 Temporal variation of R1.5
min for 0 r Bo r 1 and the corresponding

linear fits (blue solid lines) allow determination of the pre-factor a,
according to the power-law associated with the inertio-capillary dynamics
given by eqn (15). The initial onset of the IC thinning regime can be
identified to be at R1.5

min E 0.8 (or equivalently Rmin E 0.85) (dashed line).

Table 4 Variation of the pre-factor a for the inertio-capillary (IC) regime
as a function of the Bond number (yE = 301)

Bo 0 0.1 0.2 0.3 0.4 0.6 0.8 1
a 0.355 0.369 0.381 0.392 0.401 0.412 0.424 0.425

Table 5 Dependence of the pre-factor a for the inertio-capillary (IC) regime
on the substrate wettability characterised by the contact angle yE (Bo = 0)

yE 301 451 501 601 701 751 801
a 0.355 0.338 0.329 0.304 0.266 0.241 0.212

Fig. 10 Variation of the pre-factor a with (a) the Bond number and (b) the
substrate wettability characterised by cos(yE), is characterised by a power
law fit of index 2/3 and 1/3, respectively.
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time-evolving neck radius is written in the form of a four-
parameter fit:

Rmin(t � t1) = A exp(�B(t � t1)) � C(t � t1) + D, (18)

where the dimensionless time t is shifted by the dimensionless value
t1 which corresponds to the time at which the EC regime begins.
The parameter B is the thinning rate (expected to be B = 1/3De) and
the transition to a linear dependence in the final TVEC region close
to the breakup is captured by the final terms ((C, D)). Lauser et al.31

and Jimenez et al.37 show that a close agreement can be obtained
between this functional form and experimental data. Here, we
explore how well this formulation can also characterise the dynamics
predicted by our numerical simulations (where the ‘‘ground truth’’ is
already known), as well as an alternative form motivated by the
(known) analytic form of the one-dimensional filament thinning
process for the FENE-P model.

Wagner et al.58 derived an implicit analytical expression
describing the filament thinning and breakup of FENE-P fluids.
Their expression accounts for the thinning dynamics in the EC

and the terminal (TVEC) regimes where finite extensibility
effects become important. In our notation this analytic solution
can be written in the form:

t� t1 ¼ �De
L2 þ 2
� �
L2 þ 3ð Þ2

1

1þ EcR1 L2 þ 3ð Þ �
1

1þ xEcR1 L2 þ 3ð Þ

�

þ3 ln
1þ xEcR1 L2 þ 3

� �
1þ EcR1 L2 þ 3ð Þ

� �
þ 4EcR1

L2 þ 3
� �
L2 þ 2ð Þ x� 1ð Þ



:

(19)

Here the time-evolving dimensionless filament radius Rmin(t) is
re-scaled with the dimensionless value R1 which represents the
minimum filament radius at the onset of the EC regime. Thus
at time t = t1 the re-scaled radius is Rmin/R1 = 1. This scaling
leads to a new dimensionless filament radius x = Rmin/R1 and
the dimensionless time (t � t1) characterises the entire evolu-
tion of the EC thinning regime. In addition, Ec = GR0/g is the
elasto-capillary number which provides the appropriate dimen-
sionless measure of the fluid elasticity (i.e. the elastic modulus
G of the polymer solution) scaled with the capillary pressure
g/R0. Eqn (19) includes three independent fitting parameters:
the relaxation time t or (equivalently the Deborah number De
in dimensionless form), the elasto-capillary number Ec and the
finite extensibility L2 of the dissolved polymer. In a DoS
rheometry experiment with an unknown sample, we ideally
seek to simultaneously determine all three fitting parameters.
Because we know in advance the ground truth values of De, Ec
and L2 (which act here as an input to our numerical simula-
tions), we can explore the suitability of using eqn (19) to
accurately retrieve these three material parameters from mea-
surements of the filament midpoint radius Rmin(t).

We provide in Table 6 the results of the fitting process for
each (Deinput, Ecinput, Linput

2) to explore how accurately we can
determine the (dimensionless) relaxation time by fitting the
neck evolution during the thinning process. We consider first
the well-known asymptotic Oldroyd-B result: Rmin B exp(�t/
3De),9,56,66 labelled ‘‘Oldroyd-B Fitting’’ here. Subsequently, we
fit the same data using the semi-empirical ‘‘Anna-McKinley’’
model described by eqn (18). These results are labelled by the
superscript [AM]. Finally, we also employ the FENE-P analytical
solution provided in eqn (19) to fit the different computational
datasets. This is labelled ‘‘FENE-P Fitting’’. Table 6 highlights
the high bias error obtained for low polymer extensibilities
(Linput

2 = 400 and 900) when the conventional ‘‘Oldroyd-B
Fitting’’ is performed. On the other hand, it is evident that
for Linput

2 = 400 the use of eqn (19) reduces considerably the
estimated error for Defit by approximately 10%. However, the
use of eqn (18) results in a slightly worse estimated error in the
value determined for Defit compared to the ‘‘Oldroyd-B Fitting’’.
For a moderate value of extensibility (Linput

2 = 900) the ‘‘Anna-
McKinley Fitting’’ and ‘‘FENE-P Fitting’’ both result in reduc-
tions in the error incurred in determining the fluid relaxation
time by 14% and 19%, respectively. Surprisingly, however,
these two methods of analysing dripping-onto-substrate thin-
ning data are both found to lead to marginally worse predic-
tions of Defit for Linput

2 = 1600 and 2500. We graphically

Fig. 11 One-dimensional model predictions (solid lines) and numerical simu-
lation results (symbols) for the temporal evolution of (a) the viscoelastic filament
radius Rmin and (b) the dimensionless strain rate Wi in the neck. Here Bo varies
as in Fig. 5 and the rest of the parameters remain unchanged. The exponential
filament thinning rate in the elasto-capillary (EC) regime is also shown in (a) and
the corresponding constant Wi = 2/3 plateau (dashed lines) is shown (b).
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summarise in Fig. 12 the estimated values of Defit using the
‘‘Oldroyd-B’’, ‘‘Anna-McKinley’’ and ‘‘FENE-P’’ methods of ana-
lysis. It is evident that using the ‘‘FENE-P’’ solution provides
more accurate results than the ‘‘Anna-McKinley’’ expression in
all cases. In particular, it is seen that for low extensibility fluids
(Linput

2 r 900) using eqn (19) provides the most accurate
determination of the characteristic fluid relaxation time.

We now focus in more detail on the ‘‘FENE-P Fitting’’
approach. Careful inspection of Table 6 shows that using this
fitting method leads to values of Ec[FENE]

fit and L2[FENE]
fit with

pronounced deviations from the corresponding input values.
We investigate this surprising result further by first plotting in
Fig. 13 the evolution of the dimensionless filament radius x(t �
t1) = Rmin(t � t1)/R1 with time t � t1 to focus on the thinning
during the elasto-capillary regime. Specifically, we plot (i) the
results of the numerical simulations (symbols) for the four
different values Linput

2 = {400, 900, 1600, 2500} at fixed Deinput =
1 and Ecinput = 0.03, (ii) the predictions of eqn (19) for Deinput,
Ecinput, Linput

2 (solid black lines), and (iii) the results of eqn (19)
for (De[FENE]

fit , Ec[FENE]
fit , L2[FENE]

fit ) (dashed red lines). Inspection of
Fig. 13 highlights the significant deviation from the simple
exponential Oldroyd-B asymptotic result (x E exp(�(t � t1)/
3De)) due to the effects of polymer finite extensibility. This
deviation is most pronounced for Linput

2 = 400, for which the
exponential region is very short and restricted to times t � t1 t 1.
As a consequence of this truncated exponential thinning, robust
estimation of the characteristic relaxation time for a dilute poly-
mer solution with molecules of limited extensibility is very
challenging. Moreover, we also observe that both the solid black
and red dashed lines overlap substantially and both accurately
capture the results of the numerical simulations (symbols), with
significant deviations only being observed for the lowest extensi-
bility case (Linput

2 = 400).
To understand in more detail the deviations observed in

Table 6 for the fitted values of (Ec[FENE]
fit , L2[FENE]

fit ) given the
known (input) values of (Ecinput, Linput

2), we also compute the
solution of eqn (19) with fixed De[FENE]

fit = 1 and for various
elasto-capillary number and finite extensibility combinations,
represented by Ectest and Ltest

2, respectively. To capture
the range of values studied by Wagner et al.58 as well as the
input values Ecinput, Linput

2 utilised in this work, we explore a

representative range of 10�2 r Ectest r 1 and 102 r Ltest
2 r

104. In Fig. 14 we show (in log scale) a contour plot of the log
mean squared error (log10 MSE) of the output of eqn (19) when
it is fitted to test data over this range as a function of Ec and L2.
We compute the error as

log10 MSE ¼
Xn
i¼1

xðt� t1Þi � x̂ðt� t1Þi
� 	2�

n; (20)

here, x(t � t1)i is the actual output of the FENE-P analytical
solution for the i-th moment in time when Ecinput = 0.03,
Linput

2 = 2500 are considered; (x̂(t � t1)i) is the predicted value
of eqn (19) for each test combination Ectest, Ltest

2 at time (t �
t1)i, and n is the number of available data points. We also
indicate in Fig. 14 the known input combination (Ecinput = 0.03,
Linput

2 = 2500) with a white circle symbol, and the ‘‘best’’’ fit
(minimum MSE) values (Ec[FENE]

fit = 0.58, L2[FENE]
fit = 115.7) with

white triangle symbol. This best fit value is obtained from fitting
eqn (19) with known De[FENE]

fit = 1 to the available simulation data
obtained with Linput

2 = 2500. Fig. 14 shows the existence of a
broad trough in Ec, L2 space, where the fitting algorithm
determines a local minimum in the mean square error.

Table 6 Determination of the three fitting parameters in eqn (19): Deborah number (De), elasto-capillary number (Ec), and polymeric finite extensibility
(L2); here, (Deinput, Ecinput, Linput

2) are the known (ground truth) values that are used as inputs to the numerical simulations; De[Oldroyd-B]
fit and De[AM]

fit are the
values of the dimensionless relaxation time obtained when we use the asymptotic Oldroyd-B result: Rmin(t) B exp(�t/(3De)) (labelled ‘‘Oldroyd-B Fitting’’)
and the ‘‘Anna-McKinley’’ model provided in eqn (18) (labelled ‘‘Anna-McKinley Fitting’’) to determine the dimensionless relaxation time of the dilute
polymer solution from the data in the EC regime (here, we consider the data generated by the numerical simulations). (De[FENE]

fit , Ec[FENE]
fit , L2[FENE]

fit ) are the
parameters obtained when eqn (19) is fitted to the available data for the filament radius (labelled ‘‘FENE-P Fitting’’). The errors e[Oldroyd-B], e[AM] and e[FENE]

are the discrepancies in the prediction of the dimensionless polymeric relaxation time Defit when either the Oldroyd-B result or eqn (18) or eqn (19),
respectively are used

Input Oldroyd-B fitting Anna-McKinley fitting FENE-P fitting Error for Defit

Deinput Ecinput Linput
2 De[Oldroyd-B]

fit De[AM]
fit De[FENE]

fit Ec[FENE]
fit L2[FENE]

fit e[Oldroyd-B] (%) e[AM] (%) e[FENE] (%)

1 0.03 400 0.60 0.56 � 0.006 0.70 � 0.006 0.003 104 �40 �44 �30
1 0.03 900 0.66 0.80 � 0.001 0.85 � 0.010 0.430 102 �34 �20 �15
1 0.03 1600 0.94 0.90 � 0.001 0.91 � 0.006 0.680 102 �6 �10 �9
1 0.03 2500 1.00 0.96 � 0.007 0.98 � 0.020 0.740 102 0 �4 �2

Fig. 12 Estimated Defit values from Table 6 for the range Linput
2 =

{400, 900, 1600, 2500} using the ‘‘Oldroyd-B’’ (blue circles), the ‘‘Anna-
McKinley’’ (red squares) and the ‘‘FENE-P’’ (green diamonds) fitting
approaches. The dashed black line shows the ground-truth value of
Deinput = 1.
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The strong (anti)-correlation between the values {Ectest, Ltest
2}

that minimise the MSE arises from the functional form of
eqn (19). Close inspection shows that the terms Ec and L2 appear
repeatedly as products. Regression can identify a locally-optimal
value of {Ec � L2} that minimises the error in fitting Rmin(t), but
uniquely determining optimal individual values of Ec and L2 is
more challenging. However, imprecise determination of the
best-fit values of Ec and L2 does not corrupt the (enhanced)
robustness in the determination of the fluid relaxation time t
(or equivalently the dimensionless value of De) from experi-
mental observations of the filament neck Rmin(t). This is further
confirmed from additional computations presented in the ESI,†

for a different Bond number, substrate wettability and Deborah
number. The improved values of Defit obtained by regressing
eqn (19) to experimental test data obtained in DoS as compared
to fitting the (asymptotic) Oldroyd-B result, or using the empiri-
cal Anna-McKinley form (eqn (18)), provide a promising
direction for ensuring more robust extensional rheological mea-
surements of dilute polymeric solutions with dripping-onto-
substrate rheometry.

5 Conclusions

We have studied the thinning and breakup of a liquid droplet
that is dripping onto a partially wetting substrate through
axisymmetric numerical simulations, using a FENE-P constitu-
tive relation which accounts for finite polymer chain extensi-
bility. We have used the open-source code Basilisk, which is
based on a volume-of-fluid interface-capturing methodology,
and utilises adaptive mesh refinement for accurate and effi-
cient free surface flow solutions. The simulation begins as a
prolate drop of fluid is brought into contact with the solid
substrate at its base, establishing a macroscopic contact angle
as the boundary condition that parameterizes the substrate
wettability. The numerical simulations account for capillary,
gravitational, inertial, and viscous forces as well as substrate
wettability effects and capture successfully the two main
regimes that drive the filament thinning in dripping-onto-
substrate (DoS) rheometry: (1) the dominance of inertial and
capillary forces at early times, which result in the radius of the
neck decreasing as a 2/3 power-law in time and, (2) at later
times, the establishment of a characteristic elasto-capillary
balance which leads to a period of exponential filament thin-
ning, in which nonlinear fluid elasticity stabilises the thinning
process, resulting in thin long-lived viscoelastic ligaments.

Successful DoS experiments require that the fluid
under study exhibits sufficiently large viscoelasticity (i.e.

De ¼ t
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rR0
3=g

p
� 0:5) and possess a large enough extensi-

bility of the polymeric chains (i.e. L2
Z 1600) for a clear elasto-

capillary balance to be established. Moreover, for the first time,
the role of gravity (parameterised by a dimensionless Bond
number, Bo = rgR0c0/g), and the wettability of the substrate
(parameterised by the macroscopic contact angle yE) have both
been investigated systematically. Increasing the Bond number
and the substrate wettability both are seen to accelerate the
initial rate of inertio-capillary necking and the transition to the
elasto-capillary balance, without affecting the subsequent evo-
lution of the exponential decrease in filament radius during the
elasto-capillary thinning regime. Our computations show that
robust measurements of the polymer relaxation time can be
determined in DoS rheometry over a range of conditions, but
that operational limits of DoS measurements can be optimised
by tuning the relative magnitudes of the Bond number and the
substrate wettability. For example; one incremental benefit that
can be discerned from the numerical simulations shown in
Fig. 7(d) is that the small inertio-capillary undershoot observed
at intermediate times (between the inertio-capillary and the

Fig. 13 Simulation data denoted by diamond symbols for different values
of polymer finite extensibility Linput

2 = {400, 900, 1600, 2500} and fixed
Deinput = 1, Ecinput = 0.03. The solution of eqn (19) for the same values
(Deinput, Ecinput) and range Linput

2 = {400, 900, 1600, 2500} as in the
numerical simulations are shown by solid black lines. Dashed red lines
correspond to the predictions of eqn (19) where the results of the
‘‘Improved fitting’’ columns in Table 6 for (De[FENE]

fit , Ec[FENE]
fit , L2[FENE]

fit ) are
considered. The prediction of the exponential Oldroyd-B decay during the
elasto-capillary (EC) regime9,56,66 is also indicated by the dashed black line.

Fig. 14 Contour plot of the logarithm of the mean squared error (log10

MSE) when we fit eqn (19) with fixed value De[FENE]
fit = 1 and for a range Ectest

and Ltest
2 values to the data generated by numerical simulations of the

FENE-P model for Linput
2 = 2500. The colorbar corresponds to the

magnitude of log10 MSE for each (Ectest, Ltest
2) combination. The white

circle and triangle symbols indicate respectively the known input values
(Ecinput = 0.03, Linput

2 = 2500), and the optimal fitted values as predicted by
eqn (19) (Ec[FENE]

fit = 0.58, L2[FENE]
fit = 115.7) for fixed De[FENE]

fit = 1.
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elasto-capillary regimes) is largely eliminated for contact angles
yE Z 601.

In addition, we have also developed a simple one-
dimensional thinning model which is shown to be capable of
capturing the initial inertio-capillary (IC) and the subsequent
characteristic elasto-capillary (EC) thinning regimes. With this
model, we can describe the weak but systematic dependence of
the inertio-capillary balance on both gravitational body force
and the macroscopic contact angle through the variation in the
pre-factor a of the inertio-capillary balance that results in
eqn (15). We also report simple power-law correlations of this
pre-factor with variations of Bo and wettability (as represented
by the factor cos(yE)). Finally, for fluids with limited extensi-
bilities that do not exhibit very clear exponential thinning
regimes, we have proposed a model-fitting framework which
is based on the analytical 1D solution for the thinning and
breakup of FENE-P filaments. This improves determination
of the true relaxation time of an unknown polymer solution
through DoS Rheometry (which can be challenging when poly-
meric solution samples with limited finite extensibilities
are involved).

By considering the critical ranges of key dimensionless
parameters (De, L2, Bo, yE) that govern the performance of
DoS rheometry using time-resolved free surface numerical
simulations, the design of optimal DoS experiments is now
possible. Computational Rheometry thus provides a useful
digital design tool for developing protocols that enhance our
ability to successfully measure the transient extensional
response of low-viscosity complex fluids.
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