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Modelling the effects of charge on antibiotic
diffusion and adsorption in liquid crystalline virus
suspensions†

Maria Tessel van Rossem, * Sandra Wilks, Malgosia Kaczmarek and
Giampaolo D’Alessandro

We develop a microscopic model of antibiotic diffusion in virus suspensions in a liquid crystalline state.

We then approximate this with an effective homogenised model that is more amenable to analytical

investigation, to understand the effect of charge on the antibiotic tolerance. We show that liquid

crystalline virus suspensions slow down antibiotics significantly, and that electric charge strongly

contributes to this by influencing the effective diameter and adsorptive capacity of the liquid crystalline

viruses so that charged antibiotics diffuse much slower than neutral ones; this can be directly and

efficiently derived from the homogenised model and is in good agreement with experiments in

microbiology. Charge is also found to affect the relationship between antibiotic diffusion and viral

packing density in a nontrivial way. The results elucidate the effect of charge on antibiotic tolerance in

liquid crystalline biofilms in a manner that is straightforwardly extendable to other soft matter systems.

1 Introduction

Electric charge effects are of critical importance in many soft
matter and biological systems such as polyelectrolyte gels,1 lipid
bilayers,2 soft interfaces3 and cell membranes,4 and mathematical
modelling plays an important role in the research on such systems
(see ref. 1–3 and 5 for examples). However, the mathematical
modelling of many charged soft matter and biological systems is
still underdeveloped; an important example is the modelling of
biofilms. These are complex structures consisting of bacteria
embedded in a mostly self-produced network consisting of various
polymeric substances, such as polysaccharides, proteins, and
extracellular DNA.6 This network, called the extracellular matrix
(ECM), enhances the survival of the bacteria by protecting them
against desiccation, antibiotics, and various other threats.

Charge effects are vital to biofilms in various contexts, for
instance electroactive biofilms and their applications, such as
energy production.5,7 Another example, of strong medical inter-
est, is that charged viruses form liquid crystals in Pseudomonas
aeruginosa biofilms;8 these liquid crystals impact antibiotic
efficacy and could be present in other clinically relevant species
as well. Mathematical modelling can be vital to understand
such systems, but the modelling of biofilms has generally been

limited to population dynamics and empirical fitting models.9–14

This is especially true for liquid crystalline biofilms, since these
systems have been discovered fairly recently: the first modelling of
such systems has been through numerical cell-level simulations15,16

and population dynamics.17 This has motivated us to develop
mathematical models to analyse their functionality and the impor-
tance of charge effects, in a manner that is straightforwardly
extendable to various other charged soft matter systems.

Hence, the charged biological process that is modelled in
this paper is the diffusion of antibiotics in a liquid crystalline
biofilm. This is formed by the filamentous virus Pf4 in the
presence of polymers due to depletion attraction, a concept first
developed by Asakura and Oosawa.18 Depletion attraction was
later applied specifically to the phase behaviour of mixtures of
filamentous viruses and polymers:19 the presence of the poly-
mers was found to induce an effective attraction between the
viruses, which increases the range of particle concentrations
over which a nematic and isotropic phase coexist. The virus Pf4
is a bacteriophage (henceforth phage), which is a virus that
replicates by infecting bacteria. Pf4 infects P. aeruginosa and
belongs to the family of Inoviridae, which are filamentous and
unlike most phages infect the bacteria without killing them.20

Between P. aeruginosa and the Pf4 phages a symbiotic relation-
ship develops, where the phages use the bacteria to replicate
them while offering them protection through the formation of
the liquid crystalline phase.8 Pf4 is negatively charged (a very
similar inovirus, Pf1, has a surface charge of approximately 0.5e
per nm2 21) and consists of a single strand of DNA in a protein
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capsule.22 The charge of the viruses has biological functions:
apart from a liquid crystalline phase, it can lead to various
ordered structures such as bundles or gels in the presence of
counterions,21 changing the structural properties of the ECM. It has
been found in general that filamentous molecules in the biofilm
matrix form such complex structures that function as a scaffold and
are important in biofilm organisation and formation.23 In vitro, the
liquid crystal phase formed by the phages is shaped like tactoids
encapsulating bacteria. A tactoid is a liquid crystalline droplet with a
rugby-ball shape, which, in the case of lyotropic liquid crystals,
nucleates on the isotropic fluid upon increase in particle concen-
tration. The liquid crystalline state leads to increased antibiotic
tolerance against cationic antibiotics, among other effects.8 The
increase in tolerance is conjectured to be due to inhibition of
antibiotic diffusion by the liquid crystalline layer, which forms a
protective barrier around the bacteria.8,22 Slowed diffusion of anti-
biotics has been shown to coincide with an increase in anti-
biotic tolerance of P. aeruginosa against tobramycin (a cationic
antibiotic of the aminoglycoside type), although it was demon-
strated that this is not the main cause of the increased toler-
ance; instead, it likely gives the bacteria more time to activate
other tolerance mechanisms.24 Recently, the research on this
antibiotic tolerance was expanded by Böhning et al.,25 who
found that Pf4 tactoids also protect E. coli bacteria against
antibiotics. Furthermore, they discovered that tactoids consist-
ing of a different filamentous phage, fd, also increase the
antibiotic tolerance of both types of bacteria, despite their shape
difference compared to Pf4 tactoids. This shows that the
increased antibiotic tolerance is not merely a phenomenon
particular to P. aeruginosa and the phages it produces.

In previous work, we developed a mathematical model of
this phenomenon, showing that the liquid crystalline phages
increase antibiotic tolerance by slowing down the antibiotic
diffusion.26 We neglected charge effects, assumed that the anti-
biotic adsorption by the phages was charge-independent, and
showed that its magnitude was the key limiting factor to anti-
biotic diffusion. However, the phages are anionic and increased
tolerance is only observed for cationic antibiotics,8 as is slowed
antibiotic diffusion.24 This suggests that antibiotic tolerance is a
charge-related phenomenon and motivated us to develop a more
advanced model which includes the electric field created by the
phages, the antibiotic charges, and solvent ionicity. Hence, here
we model how the electric field directly affects the diffusion of
the phages. As a second step, we consider the effect of charge on
the distribution of the phages as well.

Mathematical models of complex soft matter systems often
need to be solved numerically, which can involve long computa-
tion times and a limited understanding of the solutions. There-
fore, it is desirable to obtain effective models which are solvable
analytically. We use homogenisation to derive an effective, macro-
scopic equivalent of the microscopic model, demonstrating the
efficiency and general applicability of homogenisation in analysing
charged soft matter systems with local periodicity.

The structure of the paper is as follows. In Section 2, the
mathematical model is discussed and the homogenised model
is derived. The agreement with the microscopic model is

assessed. This model is a powerful analytical tool that can be
straightforwardly generalised to other soft matter systems, and
it is the main mathematical result of the paper. It leads to
many biological predictions that are experimentally testable;
Section 3 is devoted to the biological interpretation of the results
from the homogenised model. In Section 3.1, we discuss the
effect of antibiotic charge on the diffusion, finding that it is
approximately exponential, and in Section 3.2 we discuss how
the ionicity of the saline solution affects the phage packing
density. While the packing density in suspensions of phages and
polymers is often discussed from a depletion attraction perspec-
tive, we find that the solvent ionicity also has a strong effect. This
in turn affects the antibiotic diffusion in a nontrivial way. In
short, we consider both the direct effect of the electric field on
the antibiotic diffusion (in Section 3.1), and the indirect effect
through a variation in phage packing density (in Section 3.2).
This is the main biological result of the paper, and the various
predictions it yields are compared against existing experiments,
or are readily amenable to experimental testing. We apply the
homogenised model not only to antibiotic diffusion in a tactoid
in two dimensions, but also in a complete three-dimensional
tactoid and in a layer of nematic phages with embedded
bacteria. The conclusions are presented in Section 4.

2 Model derivation
2.1 The microscopic model

When mixed with depleting polymers and P. aeruginosa bacteria,
the phage Pf4 forms tactoids that encapsulate the bacteria,
forming a liquid crystalline layer around them.8,22 We model
the diffusion of antibiotics through a tactoid, assuming that the
liquid crystalline state of the phages has equilibrated. The domain
consists of a tactoid filled with phages, which are modelled as thin
nematic cylinders with a homogeneous surface charge density.
We do not consider the possible effect of ions in the solvent on the
distribution of the DNA inside the phage, because experimental
evidence indicates that the effect of the DNA on the slowed
diffusion of antibiotics is negligible.22 At the center of the tactoid
is an encapsulated bacterium; see Fig. 1.

The nematic order of the system was proposed in ref. 8 and
can be exploited to reduce the geometry to two dimensions. We
approximate the phage configuration as a regular hexagonal
lattice of locally identical unit cells; this choice is made for
modelling convenience, as it assures local periodicity, and while
the phages form no regular lattice in reality, this approximation
has no significant influence on the results. This was demon-
strated by Bruna and Chapman for diffusion in porous media,27

and we have confirmed this specifically for antibiotic diffusion in
nematic phage suspensions through modelling in ref. 28. As in
the earlier work, the alignment and high aspect ratio of the
phages allow us to separate diffusion along and across the
phages. Here we focus on the latter and extend it in the appendix
to include also longitudinal diffusion. In this way the model is
reduced from three to two dimensions; an illustration of the
tactoid and model domain is shown in Fig. 1. The high aspect
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ratio also allows us to neglect the possible curvature of the
macroscopic geometry, i.e. the curvature of the tactoid as well as
the phages, which are shown to be flexible in images by Tarafder
et al.22 Therefore, a sector of phages in the nematic phase with
the width of one unit cell and the length of the tactoid thickness
can be chosen as a domain representative of the entire system.

Thus far, excepting a choice of hexagonal instead of square
phage lattice, this corresponds to the system modelled in ref.
28. However, contrary to this previous work, here we also model
the diffusion of the ions in the solvent and the electric field
generated by the phages, antibiotics, and ions.

The system is described by the following equations:

@~u

@~t
¼ ~D~= � ~=~uþ ~q~u

~kB ~T
~=~f

� �
; ~x 2 ~D; (1a)

� ~Dn � ~=~uþ ~q~u
~kB ~T

~=~f
� �

¼ @~v

@~t
¼ ~kð~a~u� ~vÞ; ~x 2 ~Gj ; (1b)

� ~Dn � ~=~uþ ~q~u
~kB ~T

~=~f
� �

¼ 0; ~x 2 ~E; (1c)

@~p

@~t
¼ ~Di

~= � ~=~pþ ~e~p
~kB ~T

~=~f
� �

; ~x 2 ~D; (1d)

~Din � ~=~pþ ~p~=~f
� �

¼ 0; ~x 2 ~@ ~D; (1e)

@~n

@~t
¼ ~Di

~= � ~=~n� ~e~n
~kB ~T

~=~f
� �

; ~x 2 ~D; (1f)

~Din � ~=~n� ~n~=~f
� �

¼ 0; ~x 2 ~@ ~D; (1g)

� ~r2~f ¼ ~q~uþ ~e~p� ~e~n

~e
; ~x 2 ~D; (1h)

� ~r2~f ¼ 0; ~x 2 ~Pj ; (1i)

en � ~=~f
���
Gþ
�ePn � ~=~f

���
G�
¼ � ~Qþ ~q~v; ~x 2 ~Gj : (1j)

The fields governed by these equations are the free antibiotic
concentration ũ in m�3, the bound antibiotic concentration ṽ in
m�2, the positive and negative ion concentrations p̃ and ñ
in m�3 and the electric potential ~j in V. The first equation is a
Poisson–Nernst–Planck equation describing antibiotic diffusion
and drift with diffusion coefficient D̃, antibiotic charge q̃, and

temperature T̃ in the tactoid domain ~D. k̃B is Boltzmann’s
constant. Eqn (1b) describes the adsorption of antibiotics at the

surface ~Gj of the j-th phage, with adsorption rate ~k in s�1,
equilibrium adsorption coefficient ~a in m, and unit normal vector
n pointing into the phages. The next equation describes no-flux
boundary conditions at the union of the outer domain bound-

aries ~E with ~E ¼ ~@ ~D�[j ~Gj

� �
. The diffusion and drift of the ions

is given by the Poisson–Nernst–Planck eqn (1d) and (1f), with ion
diffusion coefficient D̃i in m2 s�1 and elementary charge ẽ in C.
The following equations are Gauss’ law (outside and inside the
phages) and its boundary condition at the phages, respectively,
with permittivity constants ~e and ~ep in phosphate buffered saline
(PBS) and phages, in F m�1, and Q̃ the phage surface charge
density in C m�2. The inside and outside of the phage surface are

Fig. 1 (a) A sketch of phages (green) forming a tactoid which encapsulates a bacterium. A two-dimensional cross-section of the tactoid is indicated by a
yellow rectangle. In (b), the structure of a phage fragment is shown, with blue and red colours indicating positive and negative surface charge,
respectively. The two-dimensional tactoid slice is used as the model domain shown in (c), with colour indicating the electric potential. In this, the phases
are assumed to be locally periodic so that the model domain is tiled with unit cells (d). The sketch of the phages encapsulating a bacterium was adapted
from an image by Tarafder et al.22
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denoted by G� and G+, respectively, and Pj is the domain inside
the j-th phage. All boundary conditions at the horizontal domain
boundaries in Fig. 1(c) are periodic.

2.2 Non-dimensionalisation

We now proceed to write eqn (1) in non-dimensional form. This
will elucidate the scale separation that occurs in the system, which
allows us to apply homogenisation in Section 2.3. We scale the
spatial dimensions with the macroscopic length scale L̃ such that

x ¼ ~x

~L
: (2)

Time is scaled with the macroscopic diffusion time as

t ¼
~t

~tðMÞD

; (3)

where

~tðMÞD ¼
~L2

~D
(4)

The adsorption time is given by

~tk ¼
1

~k
: (5)

It is of the same order of magnitude as the microscopic
diffusion time ~tD, which is defined as

~tD ¼
~a2

~D
: (6)

The microscopic length scale ã is defined as ã/L̃ = Z, where Z is a
small parameter. We choose L̃ to be the tactoid width and ã to
be the unit cell width.

We scale the negative ion density ñ with a scaling coefficient
ñ0 to be determined and we non-dimensionalise all other
concentrations and charge densities in terms of ñ0 as well.
We have made the following further scaling choices:

f ¼
~f
~f0

; ~f0 ¼
~kB ~T

~e
; (7a)

e ¼ ~e
~e0
; eP ¼

~eP
~e0
; (7b)

Di ¼
~Di

~D
; q ¼ ~q

~e
: (7c)

With this non-dimensionalisation, the energy of one unit
charge in the potential f is evaluated in units of thermal
energy. Furthermore, we make the following definitions:

g ¼ ~k ~L2

~D
� O

1

Z2

� �
; (8a)

m ¼ ~a~u0
~v0
� Oð1Þ; (8b)

lD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kB ~Te0
~e2~n0 ~L2

s
Z � OðZÞ; (8c)

where lD is closely related to the Debye length, which is lD
� ffiffiffi

2
p

and is assumed to be on the same length scale as a unit cell. The
requirement that the total bound antibiotic is finite in the limit
N -N imposes the condition that ~a = O(Z)28 and requiring that
the total amount of free and bound antibiotics are of the same

order of magnitude means that ~u0 ¼
~v0
~a

. Together, these scaling

choices lead to m = O(1).
We proceed to set the relative scales of the ion and antibiotic

concentrations, as well as the phage surface charge. The scaling
of lD implies that ñ = nñ0Z

�2, where ñ0 = O(1). We scale p̃ in the
same way: p̃ = ñ0pZ�2. We assume that the total phage charge is
of the same order as the total ion charge and require that Q̃Tot is
bounded as Z - 0, which implies

Q̃ = ẽñ0L̃Z�1Q = O(Z�1). (9)

In scaling ṽ, we impose ṽ = O(ZQ̃) so that the bound antibiotic
charge is small compared to the phage charge:

ṽ = ñ0L̃v = O(1). (10)

This amounts to assuming that the influence of the anti-
biotics on the electric field is negligible compared to that of the
ions; we discuss the impact of this assumption in Section 3.

Finally, the requirement that ~u0 ¼
~v0
~a

leads to

ũ = ñ0Z
�1u = O(Z�1). (11)

This yields the following non-dimensional equations:

@u

@t
¼ = � ð=uþ qu=fÞ; x 2 D; (12a)

@v

@t
¼ gðmu� vÞ; x 2 Gj ; (12b)

�n�(=u + qu=f) = Zg(mu � v), x A Gj, (12c)

n�(=u + qu=f) = 0, x A E, (12d)

@p

@t
¼ Di= � ð=pþ p=fÞ; x 2 D; (12e)

Din�(=p + p=f) = 0, x A qD, (12f)

@n

@t
¼ Di= � ð=n� n=fÞ; x 2 D; (12g)

Din�(=n � n=f) = 0, x A qD, (12h)

�r2f ¼ lD�2
p� nþ quZ

e
; x 2 D; (12i)

�r2f = 0, x A Pj, (12j)

en � =fjGþ�ePn � =fjG�¼ �lD
�2 QZþ qvZ2
	 


; x 2 Ê; (12k)

2.3 Homogenisation

To analyse the results of the microscopic model efficiently, we
derive an analytically solvable equivalent of the model. Homo-
genisation is a mathematical technique to accomplish this, that
is applicable to systems which involve a separation of scales,
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thus allowing for the physics at the macroscopic and microscopic
scales to be decoupled.29 A second requirement for the applic-
ability of homogenisation (using the approach adopted in this
paper) is that the microscopic scale exhibits periodicity. Homo-
genisation averages out the microscopic structure, yielding effec-
tive macroscopic equations where the microscopic information is
encoded in the effective parameter values. In the limit of an
infinitesimal microscopic scale, the results of the homogenised
model become exact.

In previous work, we demonstrated that homogenisation is
an effective and efficient method to analyse soft matter systems
with microscopic periodicity by applying it to liquid crystalline
biofilms,26,28 but without the inclusion of charge effects. Here we
demonstrate that the applicability of homogenisation can be
extended to charged soft matter systems by deriving an effective
mathematical model for the diffusion of charged antibiotics
through a suspension of viruses in a liquid crystalline state. This
system is a suitable example due to the periodicity of liquid
crystalline structures. In solving this problem, we demonstrate
the efficiency and general applicability of this effective field model
in analysing charged soft matter systems with local periodicity.

The use of homogenisation in this paper is inspired by the
homogenisation of reactive diffusion in porous media30 and
advection–diffusion equations.31 However, since the potential is
different inside and outside the tactoid due to the respective
presence and absence of phages, unlike31 we cannot assume that
the drift vector field is independent of the macroscopic coordi-
nate. We solve for the electric potential to the lowest order in Z
(see eqn (13) below) which amounts to decoupling the antibiotic
concentration u and the potential f. Consequently, we only have
to solve the electric potential as a function of n and p in the cell
problem. Apart from spatial scale separation, homogenisation
also allows us to separate a fast and slow timescale; however, we
assume that the entire system is at equilibrium at the fast
timescale, which we therefore neglect. We also assume that the
ions diffuse much faster than the antibiotics due to their
difference in size, so that the electric potential equilibrates
instantaneously on the antibiotic diffusion timescale. The results
in Section 3 justify these assumptions.

To apply homogenisation, we define the macroscopic and
microscopic coordinates x and y with y = x/Z. The allows us to
expand the equations for the antibiotic diffusion in an electric
potential in orders of Z; however, we first need to solve for the
electric potential f(x, y), which is simplified by discarding the
terms that are higher orders in Z as small perturbations. The
potential is then given by the following equations:

0 = Di=y�(=yp + p=yf), y A C, (13a)

�Din�(=yp + p=yf) = 0, y A G, (13b)

0 = Di=y�(=yn � n=yf), y A C, (13c)

�Din�(=yn � n=yf) = 0, y A G, (13d)

l12ry
2f ¼ ðp� nÞ

e
; y 2 C; (13e)

ePl1
2ry

2f = 0, y A P, (13f)

l1
2n�(e=yf|G+

� eP=yf|G�) = �Q, y A G, (13g)

where l1 = lDZ
�1 = O(1), C and G the non-dimensional free unit

cell domain and phage surface, and P is the non-dimensional
phage domain in a unit cell. All variables are periodic in the
small coordinate y inside and outside the tactoid, and all
coordinates depend on x through the absence of the phage
charge density Q outside the tactoid. At the outer boundary we
assume that n = p = nb.

The equations for n and p have the solutions n(x, y) =
nbef(x,y) and p(x, y) = nbe�f(x,y), which can be substituted into
eqn (13e) to yield

l1
2ry

2f = �2nb sinh(f). (14)

This equation, coupled to eqn (13f) and (13g) can be solved to
find f.

We note that applying the divergence theorem to these
equations gives

2nb

ð
C

sinhðfÞd3y ¼
ð
G
Qd2y; (15)

which means that the total charge is zero in a unit cell and fixes
the degree of freedom of f by imposing f = 0 outside the
tactoid, since Q = 0 there.

Having solved for f, we expand the antibiotic drift-diffusion
equations in orders of Z:

Zk
@uk
@t
¼ Zk

1

Z
=y þ =x

� �
� 1

Z
=y þ =x

� �
uk

�

þquk
1

Z
=y þ =x

� �
f
�
; y 2 C;

(16a)

�n � 1

Z
=y þ =x

� �
uk

Z
þ quk

Z
1

Z
=y þ =x

� �
f

� �
Zk

¼ Zk
@v

@t
¼ g2

Z2
muk � vkð ÞZk; y 2 G:

(16b)

We solve these equations order by order.
2.3.1 Leading order. At the leading order, the equations for

u and v are

=y�(=yu0 + qu0=yf) = 0, y A C, (17a)

�n�(=yu0 + qu0=yf) = g2(mu0 � v0) = 0, y A G. (17b)

These equations are solvable and have solution

u0 = hu0ie�q f, v0 = mu0. (18)

Angular brackets denote the average over the domain C.
2.3.2 First order. At the first order, the equations for u and

v are

=y�(=yu1 + =xu0 + qu0=xf + qu1=yf) + =x�(=yu0 + qu0=yf) = 0,
y A C, (19a)

n�(=yu1 + =xu0 + qu0=xf + qu1=yf) = g2(mu1 � v1) = 0, y AG.
(19b)
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These equations are solvable with

u1 = qhu0ie�q f + v�(=xhu0i)he�q fi, v1 = mu1. (20)

Substituting in eqn (19) yields

ry;i ry;iwj þ qwjry;if
	 


¼ ry; je
�qf

e�qfh i ; y 2 C; (21a)

ni � ry;iwj þ qwjry;ifþ dij
e�qf

e�qfh i

� �
¼ 0; y 2 G: (21b)

These equations form the cell problem and comply with the
solvability condition.

2.3.3 Second order. At this order, the equations are

@u0
@t
¼ =y � =yu2 þ =xu1 þ qu2=yfþ qu1=xf

	 

þ =x � =yu1 þ =xu0 þ qu1=yfþ qu0=xf

	 

; y 2 C;

(22a)

�n � =yu2 þ =xu1 þ qu2=yfþ qu1=xf
	 


¼ @v0
@t
¼ g2 mu2 � v2ð Þ;

y 2 G:

(22b)

The solvability condition yieldsð
C

@u0
@t

d3yþ
ð
Gj

@v0
@t

d2y

¼
ð
C

=x � =yu1 þrx
2u0 þ =x � qu1=yf

	 

þ =x � qu0=xfð Þd3y:

(23)

Substitution of the solutions for u0 and u1 gives the effective
homogenised equation

e�qf
� �

jCj þ e�qf
� �

GmjGj
	 
@ u0h i

@t
¼ e�qf
� �

jCjri Deff
ij rj u0h i

� �
;

x 2 DH

(24)

where h�iG denotes the average over G, DH is the homogenised
domain without microscopic structure, and

Deff
ij = dij + hry,iwji + qhry,ifwji. (25)

In dimensional form the effective equation becomes

e�qf
� �

jCjteff@~u

@~t
¼ e�qf
� �

jCj ~ri
~Deff
ij

~rj~u
� �

; ~x 2 ~DH (26)

with the dimensional homogenised domain ~DH, the effective
diffusion coefficient

D̃eff
ij = D̃Deff

ij . (27)

and the effective adsorption coefficient

teff ¼ 1þ
e�qf
� �

G

e�qfh i
~a
j~Gj
j~Cj
: (28)

Alternatively, the respective contributions of the diffusion
barrier and adsorption effects may be merged to get their total
effect on antibiotic adsorption:

@~u

@~t
¼ ~ri D̂ij

~rj~u
	 


; ~x 2 ~DH (29)

with D̂ ¼
~Deff

teff
.

2.4 Numerical implementation

The homogenised and microscopic models (eqn (1) and (26))
were compared by solving the drift-diffusion of antibiotics in a
tactoid encapsulating a bacterium. The equations were solved in
Comsol using the general PDE interface for the diffusion equa-
tions and the Poisson equation interface for Gauss’ law; the
parameter values adopted are listed in Table 1, unless specified
otherwise. The microscopic model was solved on a domain as
shown in Fig. 1(c) and the homogenised model was solved on a
rectangular domain of the same size. Instead of setting Neu-

mann conditions for the antibiotics at all the boundaries ~E, a
Dirichlet boundary condition was set at the outer edge of the
domain to represent a constant concentration of antibiotics
outside the tactoid. Likewise, Dirichlet boundary conditions
were set for the ion concentrations at this boundary. Periodic
boundary conditions were set at all other boundaries that did not
correspond to phage surfaces.

The ion concentration was initially set to be constant
throughout the entire domain and equal to the concentration
at the outer boundary: ñb. Initially, there are no antibiotics
inside the tactoid domain, except in a thin region at the
Dirichlet boundary to join the boundary condition and initial
condition inside the domain smoothly. The cell problem
(eqn (14) and (21)) was solved on the unit cell domain shown
in Fig. 1 with periodic boundary conditions on all boundaries
that do not correspond to phage surfaces: this reflects the local
periodicity required in homogenisation. In the same manner as
for the microscopic model, the general PDE interface was used
to solve for v and the Poisson equation interface was used to
solve for f. All initial conditions were set to zero.

The results, presented in Fig. 2, show the relative average
concentration at the bacterium boundary (with respect to the
concentration at the outer tactoid boundary) over time for each

Table 1 The parameter values used for solving the numerical models,
unless specified otherwise

Description Parameter Value

Antibiotic diffusion coefficient D̃ 15 mm s�2

Ion diffusion coefficient D̃i 1500 mm s�2

Antibiotic concentration at outer boundary ũb 3 mg ml�1

Initial concentration of negative ions ñb 1026 m�3

Equilibrium adsorption coefficient ~a 4.6 nm
Adsorption rate k 1.7 � 106 s�1

Phage radius L̃ph 3 nm
Unit cell width ã 12 nm
Antibiotic charge q̃ 3ẽ
Phage charge Q̃ 0.5ẽ nm�2

Relative bulk permittivity ~e 80
Relative phage permittivity ~eP 88
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model. Results from the microscopic model are shown for three
different values of the antibiotic concentration at the outer
Dirichlet boundary: the concentration ũb cited in Table 1, and
this concentration reduced by a factor 10 and 100. The results show
that the assumption that the antibiotic charge is negligible com-
pared to the solvent ionicity (which is necessary for homogenisation
to be applicable) is not highly accurate for a biologically realistic
value of ũb. However, since the mathematical model we have
developed is a highly simplified version of the experimental pro-
blem, the microscopic model is only expected to give approximate
quantitative agreement, and hence the degree of agreement
between the microscopic and homogenised models is sufficient
for our aims. The good agreement between the models for lower
antibiotic concentrations shows that otherwise the homogenised
model is accurate, and that the other model assumptions do not
impact the results.

Using the homogenised, instead of the microscopic, model
reduces the computation time from 10 minutes to 2 seconds for
the results in Fig. 2. Homogenisation is also advantageous
because it is hard to contain the numerical error in the
microscopic model. Consequently, fine mesh and timestep
resolution settings are required to make the solutions converge:
the results in Fig. 2 were produced with a Comsol ‘‘finer’’ mesh
with 16 boundary layers around the phages, with thickness
adjustment factor 0.1 and strict timestepping with 0.01 s
increments. Due to the absence of microscopic structure, the
homogenised model converges much more rapidly.

2.5 Parameter values

All parameters were given the same values as in the charge-less
model described in ref. 28, except for the parameters relating to
charge and the adsorption coefficient ~a. This parameter was
evaluated differently because the electric field around the
phages effectively increases their adsorptive power, which will
be discussed in detail in Section 3. The adsorption measured

experimentally by Secor et al. is the effective adsorption,
because it is quantified by the concentration of antibiotics at a
distance from the phages (separated from them by the
membrane in a dialysis cassette).8 Hence, we have set the
adsorption coefficient such that the antibiotic concentration at
a distance from the phages is equal to that for ~a = 2.2 mm in the
model of ref. 28.

The concentration of unbound antibiotics at a distance from
the phages, which did not need to be fixed in ref. 28, is fixed for
the present model to be 30% of the antibiotic concentration
used in the antibiotic tolerance experiments by Secor et al.,8

since these experiments established that approximately 70% of
antibiotics are effectively adsorbed.8

Secor et al. dissolve phages in 0.1 M PBS to which 0.05 M
sodium ions are added for the tactoid formation experiments.8

Therefore, we estimated the concentration of the negative ions
to be 0.15 M. The cationic charge of the antibiotic tobramycin is
+3 to +5,32 so we conservatively estimate it to be +3.

3 Biological predictions and discussion

Analysis of the homogenised eqn (26) uncovers how charge
affects antibiotic diffusion and organisation of the tactoid struc-
ture. In Section 3.1, we discuss how antibiotic charge affects
diffusion, and in Section 3.2, the influence of solvent ionicity on
the phage packing density is discussed; this in turn affects the
antibiotic diffusion indirectly. These direct and indirect charge
effects are discussed in separate sections for clarity.

This analysis leads to biological predictions which are
compared against existing experiments or are experimentally
testable. The main predictions are a strong, approximately
exponential increase of antibiotic diffusion time with antibiotic
charge, an increased effective adsorption of the antibiotics with
increased charge, an increase in phage packing density with
solvent ionicity, and quantitative predictions of the antibiotic
diffusion time as a function of both antibiotic charge and
solvent ionicity.

3.1 The effect of antibiotic charge for fixed phage packing

Antibiotic diffusion was modelled for different values of the
antibiotic charge that reflect the typical, expected range of a few
elementary charge units.32 The results, presented in Fig. 3,
show that antibiotic charge has a strong influence on the
diffusion time with the relationship being approximately expo-
nential. This strong influence of antibiotic charge can be
derived from the effective coefficients of the homogenised
model, using the values which are given in Table 2 and which
show a pronounced, sharp dependence of the effective diffu-
sion on antibiotic charge. The homogenised model also eluci-
dates the approximately exponential relationship shown in
Fig. 3. Since

D̂ ¼
~D dij þ ry;iwj

� �
þ q ry;ifwj
� �	 


1þ
e�qf
� �

G

e�qfh i
~a
j~Gj
j~Cj

; (30)

Fig. 2 Comparison of the microscopic and homogenised models for
various values of the antibiotic concentration at the outer boundary. The
tactoid width L is 0.24 mm.
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and the second term in the denominator is much greater than
the first for q 4 1, we can neglect the first term, and since the
diffusion time is inversely proportional to D̂,

~t90 �
~a e�qf
� �

Gj~Gj
~D dij þ ry;iwj

� �
þ q ry;ifwj
� �	 


e�qfh ij~Cj
: (31)

Since f is constant at the phage boundaries (we call this value
fph), he�q fiG = e�q fph, and since f decays rapidly with radial
distance, he�q fiE e�q fN. Here fN is the value of f at infinite
distance from the phages. Together, this gives

t̃90 p eqDf, (32)

where Df is the potential difference between r = Lph (the phage
radius) and r = N, showing that t̃90 depends approximately
exponentially on q.

The strong increase in diffusion time with increasing anti-
biotic charge arises from the higher sensitivity of the antibiotics
to the electric double layer around the phages. This double layer
has two effects, the influence of which can be derived from the
homogenised model. Firstly, it effectively increases the adsorp-
tive capacity of the phages, since antibiotics do not only attach
to binding sites on the phage surface; they are also trapped
within the Debye layer. This is reflected in the effective adsorp-
tion coefficient teff. Secondly, the charges of antibiotics and ions
influence the screening of the phage surface charge. Since this
surface charge attracts the antibiotics, it slows the diffusion and
so the diffusivity of the antibiotics is charge-dependent. This is

reflected in the dependence of the effective diffusion coefficient
on the antibiotic charge. The range of different antibiotic
charges is realistic and its influence on effective adsorption by
phages could be confirmed experimentally.

3.2 The effect of varying packing density

The electric field has one other effect that, unlike the previous
charge effects, is not naturally accounted for by the homogenised
model: the phage charge screening influences the phage packing
density. This can also be viewed as a change in effective phage
diameter, but this time as experienced by the phages, not the
antibiotics. The effective diameter description was originally devel-
oped in this context.33 To account for this effect, we performed a
quantitative analysis of the effect of a changing packing density.
The packing density is quantified by the minimal inter-phage
centre distance d̃, which is equal to the unit cell width ã.

As a starting point, we calculated the relative contribution of
the different types of particles to the total charge of the system
by integrating the charge densities of these particles over the
domain in Fig. 1(c). The results, shown in the bar chart in
Fig. 4, indicate that the antibiotic charge is small compared to
the charges of the phages and ions; it is just under 10% of the total
phage charge, and the contribution of the free antibiotics is
negligible. However, since this small contribution is sufficient to
have an impact on the agreement between the microscopic and
homogenised model (see Fig. 2), the possibility that this also applies
to the packing density cannot be excluded a priori. Hence, we
verified that the antibiotic charge can be neglected when computing
the effective phage diameter. We calculated the effective diameter
with and without antibiotics; adding the antibiotics to the computa-
tion amounted to adding the free antibiotic charge density to the
solvent ionicity and reducing the phage surface charge by 10%,
since the bound antibiotic charge is approximately 10% of the
phage surface charge. The resulting change in effective diameter
was 1%. Hence, the contribution of the antibiotics to the phage
charge screening and packing density can be neglected.

As a brief aside, we point out that a significant contribution
of antibiotics to the phage charge screening could potentially have
explained that Pf4 phages are more adsorptive to antibiotics when
they form a liquid crystalline phase than in the isotropic phase,
which was observed in ref. 8. Phages are simple objects; therefore,
it is unlikely that their surface structure changes upon transition to
a nematic phase, but as the screening of the phage charge
facilitates this phase transition, the phages might adsorb more
antibiotics in the liquid crystalline state to reduce their effective
surface charge. However, the results in Fig. 4 show that the
antibiotic contribution to phage charge screening is negligible
since it is more than an order of magnitude smaller than the other
contributions, which means that this does not explain the
increased adsorption in the liquid crystalline phase.

Having determined that only the ions contribute signifi-
cantly to the phage charge screening, we calculated the effective
phage diameter as a function of the solvent ionicity, following
the theory developed by Onsager and expanded by Stroobants
et al.33,34 This theory equates the effective phage radius with the
radius at which the potential is of the order of the thermal

Fig. 3 The equilibration time as a function of the antibiotic charge. The
tactoid width L is 0.24 mm.

Table 2 Effective parameters for various antibiotic charge values

Antibiotic charge D̃eff (mm s�2) ~teff D̂ (mm s�2)

0 12.23 1.899 6.440
e 12.56 6.8587 1.831
2e 8.13 23.125 0.352
3e 2.30 47.722 0.0482
4e 0.39 73.127 0.0053
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energy; in adopting this method to determine the packing
density, we assume that the depletion attraction is sufficiently
strong that the phages are packed with maximum density up to
the effective diameter. The results, in Fig. 4, show that the
effective diameter varies strongly. At high ionicities, the effec-
tive diameter asymptotes at the actual diameter.

Our previous results showed a strong influence of packing
density on the diffusion time,28 and we expect this to remain true
in the present model. However, when accounting for the charge
effects in the system, we find that the influence of packing
density on the diffusion time is more complex, as shown in
Fig. 5(a). At low antibiotic charge q, the system behaves in the
same manner as in the absence of charge effects. As q increases, a
different behaviour develops that consists of three regimes: when
the phages are far apart, the expected increase of t̃90 with
decreasing minimal inter-phage distance d̃ remains. This
increase is also observed when the phages almost touch. For
intermediate packing densities, however, t̃90 decreases with
decreasing d̃ (see the q = 3 curve in Fig. 5(a)). This occurs because,
somewhat counterintuitively, the electric field between the
screened phages decreases as they approach each other. This is

confirmed analytically: an expression for the electric field can be
obtained by the Debye–Hückel approximation35 or the approxi-
mation of Philip and Wooding36 (depending on the parameter
regime; see Philip and Wooding36) and the same behaviour
emerges. Thus summarising, the behaviour in Fig. 5(a) can be
interpreted as follows: when the electric force is sufficiently weak
(at large distance from the phages or due to low antibiotic charge)
the system behaves as if without charge effects. At very high
packing density, the sharp increase in diffusion time t̃90 caused
by the strong physical barrier effect dominates over the charge
effect, and it decreases with d̃. In the intermediate regime, the
charge effect (which amounts to a decrease of electric force with
increasing packing density) dominates. This means that charge
effects fundamentally alter the influence of phage packing den-
sity on antibiotic diffusion, making it nontrivial.

Finally, Fig. 5(a) shows an increase of t̃90 with q in all parameter
regimes; this is expected and in agreement with the conclusions
from Fig. 3. For each value of q, t̃90 asymptotes towards the same
value for large inter-phage distance. This is also expected, since as
the inter-phage distance tends towards infinity, the presence of the
phages, including their electric field, becomes negligible.

Fig. 4 The relative contribution of the various particles to the total charge in the tactoid, where the free antibiotic contribution is too small to be visible
(left) and the influence of solvent ionicity on the effective diameter of the phages (right).

Fig. 5 The two leftmost figures show the equilibration time t̃90 as a function of the minimal inter-phage distance d̃ (a measure of the packing density),
for different values of (a) the antibiotic charge q and (b) the solvent ionicity ñb at q = 3. (c) Shows the diffusion time as a function of solvent ionicity (also
taking into account its influence on packing density) for various values of the antibiotic charge q. The tactoid width L̃ is 10 mm.
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The nontrivial effect of charge on the relationship between
diffusion time and packing density becomes more pronounced
for weaker solvent ionicities due to the decrease in screening of
the electric potential, as shown in Fig. 5(b). This figure also
shows that the solvent ionicity influences the antibiotic diffu-
sion directly through its effect on the electric field strength,
regardless of the effect on packing density.

In summary, the electric charge of the system affects anti-
biotic diffusion through the antibiotic charge, direct influence of
the solvent ionicity, and indirect influence of the solvent ionicity
through its effect on the phage packing density. These effects are
all accounted for in Fig. 5(c), which shows the antibiotic diffusion
time as a function of solvent ionicity for various values of the
antibiotic charge, giving a complete picture of the charge effect.
Having obtained this picture, we can compare it to experimental
data: the effect of antibiotic charge on diffusion time through P.
aeruginosa biofilm colonies has been measured experimentally by
Marshall Walters III et al.,24 who found a strong difference in
diffusion time between tobramycin and ciprofloxacin (a charge-
neural antibiotic), in qualitative agreement with the modelling
results presented here. Quantitatively, Walters et al. observe the
difference in diffusion times to be of about an order of magni-
tude. At the solvent ionicity corresponding to the experiments by
Secor et al. (ñ0 = 1026 m�3) we find a difference of about two
orders of magnitude (see Fig. 5(c)), but this difference rapidly
decreases to one order within the range of possible parameter
values. Furthermore, converting the results of Walters et al. to the
equilibration time t90 in a layer of 10 mm results in t90 = 66 s for
ciprofloxacin and t90 = 931 s for tobramycin, in good agreement
with the results in Fig. 5(c).

As a final result, we demonstrate the versatility of the homo-
genised model by computing the antibiotic diffusion in a three-
dimensional tactoid and a two-dimensional layer of phages in a
nematic phase with embedded bacteria; these systems were also
modelled in ref. 28. We discuss these models in turn.

The modelling of a three-dimensional tactoid is of interest
because it introduces anisotropic effective coefficients with a
transverse and longitudinal component, and because we vary
the phage packing density along the tactoid; the values of the
effective coefficients vary with this packing density. The exten-
sion to inhomogeneous effective coefficients is valuable because
biofilms are inhomogeneous, and recent mathematical model-
ling has shown that this has a significant influence on the
antibiotic tolerance of the bacteria.37 The tactoid was modelled
as an ellipsoid with major and minor axes of 10 and 3 mm,
respectively, encapsulating an ellipsoidal bacterium of 5 by
1 mm. A larger ellipsoid of 12 by 4 mm was added around the
tactoid to add an outer layer. We model the tactoid as having an
inhomogeneous packing density which varies with the radius of
curvature as ã = ã0(1 + R̃0/R̃), where ã0 is the standard unit cell
size of 12 nm, R̃ is the radius of curvature, and R̃0 is the smallest
radius of curvature at the tip of the tactoid. Since the electric
field has no longitudinal component, the extension of the
homogenised model to three dimensions is analogous to that
of the charge-less model described in ref. 28; the diffusion along
the phages is assumed to be uninhibited by physical barriers,

resulting in an anisotropic diffusion tensor with components D̃
and D̃eff along and across the long phage axes, respectively. The
effective adsorption coefficient is the same in all directions; a
detailed derivation is given in the appendix. The anisotropic
diffusion coefficient is oriented along the direction of the
phages, which is given by the equation of the ellipsoid due to
the planar anchoring of the phages.

Secondly, a layer of phages in the nematic phase with three
embedded ellipsoidal bacteria was modelled for its closer
geometric similarity to a biofilm. The layer varies in thickness,
with an upper boundary described by

y ¼ 10þ 1

7
sin
ðxþ 8Þp

2

� �
þ 1

3
sin2

ðxþ 8Þp
4

� �
þ sin

ðxþ 8Þp
8

� �

with x and y in mm. This boundary, like the previous outer
boundaries, has a Dirichlet boundary condition to enforce an
influx of antibiotics; the vertical boundaries are periodic and
there is no flux at the lower boundary. The orientation y of the
phages is solved using the single elastic constant Frank–Oseen
equation r2y = 0 with planar alignment at the surfaces of the
bacteria. The results, shown for cationic and neutral antibiotics
in Fig. 6, show the influence of charge on antibiotic diffusion in
a very direct and intuitive way.

4 Conclusions

In this paper, we have developed a continuum model of charge
effects in liquid crystalline biofilms, and their influence on
antibiotic diffusion. To our knowledge, this is a first example of
a model of this kind, since the development of mathematical
models of biofilms is still at an early stage. We have also
developed an analytically solvable homogenised model to
enhance insight into the role of the model parameters. This
leads to the following predictions, which are the main biological
results of this paper. Firstly, we find that electric charge strongly
influences the antibiotic diffusion, through two mechanisms: it
changes the effective diameter and effective adsorptive capacity
of the viruses that form the liquid crystalline phase. These two

Fig. 6 Antibiotic diffusion in a three-dimensional tactoid (above) and a
layer of liquid crystalline phages with embedded bacteria (below) for
neutral antibiotics (left) and cationic antibiotics (right). The orientation of
the phages in the biofilm layer is indicated by blue lines. Timescales are
0.05 s for the tactoid and 10 s for the biofilm layer. The colour scale ranges
from 0 to ũ0, the initial antibiotic concentration at the outer boundary.
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mechanisms are reflected in the coefficients of the homoge-
nised model, and can be efficiently analysed in this manner. We
also elucidate the influence of the solvent ionicity on the viral
packing density, and find that this affects the antibiotic diffu-
sion in a nontrivial way. These results are experimentally
testable; for instance, the influence of the solvent ionicity on
the packing density could be tested by measuring tactoid size
from microscope images, and the relative effect of antibiotics on
samples with various solvent ionicities could be measured. An
investigation into the stability of the tactoids with respect to
changes in solvent ionicity would be valuable as well. Combining
these results, we uncover the effect of both the solvent ionicity and
the antibiotic charge on the diffusion time; this result are in good
agreement with existing biological experiments on antibiotic
diffusion in P. aeruginosa biofilm colonies.24 Finally, we demon-
strate the flexibility of the effective model, which is easily adaptable
to different geometries. Application of this model to other biofilms
and species could greatly increase our understanding of antibiotic
tolerance development and impact on future treatment
approaches. For instance, it could be used to include charge
effects and add a foundation based on physics at the microscopic
scale to the macroscopic biofilm model developed by Prince et al.37

It could also be used to model the diffusion of various other
chemicals in biofilms. Since the effective model only relies on scale
separation and local periodicity, it is also applicable to a wide
range of transport phenomena in soft matter. For instance,
homogenisation can be used to study charge transport in
batteries38 or the flow of viscous drops covered in surfactant.39
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