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The role of the nucleus for cell mechanics: an
elastic phase field approach†

Robert Chojowski, ab Ulrich S. Schwarz ab and Falko Ziebert *ab

The nucleus of eukaryotic cells typically makes up around 30% of the cell volume and has significantly

different mechanics, which can make it effectively up to ten times stiffer than the surrounding

cytoplasm. Therefore it is an important element for cell mechanics, but a quantitative understanding of

its mechanical role during whole cell dynamics is largely missing. Here we demonstrate that elastic

phase fields can be used to describe dynamical cell processes in adhesive or confining environments in

which the nucleus acts as a stiff inclusion in an elastic cytoplasm. We first introduce and verify our

computational method and then study several prevalent cell-mechanical measurement methods. For

cells on adhesive patterns, we find that nuclear stress is shielded by the adhesive pattern. For cell

compression between two parallel plates, we obtain force-compression curves that allow us to extract

an effective modulus for the cell–nucleus composite. For micropipette aspiration, the effect of the

nucleus on the effective modulus is found to be much weaker, highlighting the complicated interplay

between extracellular geometry and cell mechanics that is captured by our approach. We also show that

our phase field approach can be used to investigate the effects of Kelvin–Voigt-type viscoelasticity and

cortical tension.

1 Introduction

Many essential biological processes depend on the mechanical
properties of animal cells and their ability to dynamically react
to mechanical cues from their environment. Classical examples
include the spreading behaviour of cells on substrates of
variable stiffness,1,2 cell migration in the direction of larger
stiffness3,4 and cell differentiation in response to environmen-
tal stiffness.5,6 A typical cell response to variable environmental
stiffness is to adapt the own stiffness to match the one of the
environment.7,8 However, there are also situations in which it is
favorable for cells to work with a different stiffness then the
surrounding. One prominent example are migratory immune
and cancer cells in confined spaces, which tend to increase
their softness in order to more easily squeeze through the pores
in their environment.9–11

The main determinant of cell mechanics is the cytoskeleton,
a crosslinked and highly dynamical polymer network, giving
the cell stability and the ability to quickly change its
mechanics.12–14 In particular, the cytoskeleton allows cells to

generate forces, mainly pushing forces through polymerization
and pulling forces through motor activity, both of which
convert chemical energy into mechanical work and thus make
the cell an active system.13,15 Although the plasma membrane
typically does not contribute much to cell mechanics directly, it
is important in the sense that it determines cell volume and
surface area; in addition, it provides guidance for the organiza-
tion of the cell cortex generated by the cytoskeleton as a thin
polymeric network wrapping the whole cell.16,17

In recent years, it has become clear that a third important
mechanical component of animal cells is the nucleus.18 The
nucleus harbours the genetic information of the cell and is
separated from the cytoplasm by its nuclear envelope. Due to its
overarching role for gene expression, it has long been over-
looked that the nucleus also plays an important role in
mechanics. Having a cell-type dependent diameter of several
micrometers and occupying a large fraction of the overall cell
volume (typically up to 30%), the nucleus is the largest and
most prominent of all cellular organelles.19 The mechanics of
the nucleus is determined by the interplay between the two
nuclear membranes, the embedded nuclear pore complexes,
the nuclear lamina, the nuclear cytoskeleton (which includes
actin filaments and myosin motors) and the different chroma-
tin domains. The combined effect of these factors leads to an
effective nuclear stiffness that can be up to 10-fold stiffer than
the rest of the cell,20 which together with its size already
suggests its importance in whole-cell mechanics. A very recent
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computational study showed that even a spatially varying
nuclear stiffness can be described on the whole cell level by
one effective modulus for the nucleus.21

During recent years, it has been shown in many experi-
mental studies that the nucleus indeed has very specific
mechanical roles in animal cells. In matrix-driven cell differ-
entiation, the nuclear stiffness correlates with tissue and matrix
compliance, leading to stiffer cell nuclei on stiffer substrates
and pointing at its ability of perceiving mechanical cues and
adapting to them.22 Recently, it has been demonstrated that
nuclear deformations instruct migratory behaviour of cells in
confined spaces, indicating that the nucleus serves as a ruler
and mechanosensor.23,24 Moreover, nuclear size and stiffness
limit the minimal size of constrictions through which a migra-
tory cell can squeeze through.10 In turn, it has been observed
that nuclear softening during passage of narrow constrictions
is often associated with nuclear envelope rupture and DNA
damage, which in our context are not only failure processes, but
also signaling events.10,25,26 Stresses and strains on the nucleus
can also lead to structural changes in chromatin packing and a
subsequent softening of the nucleus.27 It also has been shown
that metastatic cancer cells use the nucleus as a ‘‘battering
ram’’ to invade soft tissue.28 In cell migration, the nucleus is
positioned by the microtubule-organizing center either at the
front or the back, depending also on the properties of the
environment; when positioned at the front, it can be used as a
ram during cell migration. Last but not least, it is known that
forces originating from the interplay between cytoskeleton and
the cellular surrounding can be directly transmitted to the
nuclear envelope leading to nuclear deformations, triggering
transcriptional activities and cellular reactions to these stimuli.
This direct mechanotransduction pathway includes the LINC
protein complexes establishing a direct physical connection
between nucleus and cytoskeleton.29,30

Despite this growing body of evidence of its importance for
cell mechanics and mechanotransduction, the nucleus is often
neglected when modelling whole-cell mechanics, often due to
lack of an appropriate theoretical framework. We here propose
an extension of our previously developed elastic phase field
approach for cell mechanics31 that also includes the nucleus. In
the spirit of multi-phase field approaches,32–34 the nucleus is
introduced as an additional field, as was done in previous
phase field studies of cells,35,36 but this time, we associate to
the nucleus elastic material characteristics and make them
different from the ones of the rest of the cell. This enables us
to study the effect of the nucleus on the cell’s mechanical
behaviour in a variety of different and biologically highly
relevant situations, including various boundary conditions
between an adherent cell and the substrate as well as compres-
sion and micropipette suction experiments of spherical cells.
We also show that our approach is sufficiently general to allow
for the investigation of viscoelasticity and cortical tension,
which paves the way towards more detailed models of nuclear
mechanics in the future.

This work is structured as follows. First, we present the
modelling approach for an elastic cell with a nucleus in

Section 2. We then demonstrate its applicability for homoge-
neously and locally adhered cells in Section 3, already pointing
out an important role of the nucleus. For the simple geometry
of an isotropically contracting, homogeneously adhering, disk-
like cell with a nucleus, we can use analytical solutions to
validate the numerical solution. We then proceed with discuss-
ing numerical studies of more complex experimental setups,
namely patterned adhesion and dynamic failure of an adhesion
point including viscoelastic relaxation of Kelvin–Voigt type.
In Section 4 we finally turn to cells in confinement and discuss
as examples the compression of cells between two parallel
plates as well as micropipette aspiration. In this section we
also study viscoelastic effects of Kelvin–Voigt type. We conclude
with a discussion and outlook on possible applications and
further extensions of the proposed method.

2 Elastic phase field model for a cell
with nucleus

To explicitly account for the cell’s nucleus in a model of an
elastic cell in both stationary and dynamic situations, we
extend the previously introduced elastic phase field
approach.31 The phase field method, originally developed in
the context of solidification processes37 is nowadays widely
used, especially in the communities of fracture mechanics38,39

and poly-crystalline structures.40 Due to its ease in describing
deformable or moving boundary problems, applications spread
out to soft matter physics, e.g. vesicles in flow41 or growing actin
gels.42 In the context of cellular biophysics, it proved efficient to
model single cell migration43–47 and cell collectives,32–34,48 as well
as more recently cell31 and tissue49 mechanics. Phase field models
for a cell containing an explicit nucleus have been already
proposed. However, ref. 35 neglected mechanics by solely con-
sidering the dynamics of two internal chemicals, while ref. 36
assumed Stokesian hydrodynamics. To our knowledge, no phase
field model has been proposed yet that would account for elastic
continuum mechanics and allow to model several cellular com-
partments – here the cytoplasm and the nucleus – having different
material properties.

The study of moving boundary problems is a computation-
ally expensive task because at each point in time the location of
the boundary has to be determined anew in order to impose the
respective boundary conditions. The phase field approach
circumvents this problem by introducing an evolution equation
for an auxiliary order parameter field f(x, t) (the phase field)
describing the object of interest. It differentiates between two
bulk ‘‘phases’’, in our context the inside of the object (f = 1)
and its outside (f = 0), defined by the minima of a double-well
potential. Interfaces between these phases are then given by
smooth tanh-like transitions from one bulk value to the other.
The location of the interface can be identified with the location
of the maximum of the phase field gradient |rf|, or simpler,
with the position of the isosurface with f = 1/2. If the evolution
equation for the phase field is coupled adequately to the
other model equations that describe the physical quantities
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of interest in the two phases (e.g. deformation, flow or diffusing
chemicals), the domain deforms and/or moves in response to
the processes described by these model equations.

In our approach, the cell and its nucleus are represented by
two phase fields, r(x, t) and c(x, t), respectively, cf. Fig. 1A. Each
field has its own evolution equation which follows an over-
damped relaxational dynamics

@tf ¼ DfDf� @fgðfÞ þDfkfjrfj

� 1

x
r � Rþ F totð Þ � rf

(1)

for f A {r, c}, respectively. The first term penalizes the
formation of interfaces whose width ef is set by the diffusion

coefficient Df ef /
ffiffiffiffiffiffiffi
Df

p� �
. In general, the two interface widths

could be chosen to be different. The second term is
the derivative of a double-well potential of the form g(f) =
f2(1 � f)2. Its minima are associated with the interior of the
cell/the nucleus (f = 1) and the space outside the cell/the
nucleus (f = 0), respectively, cf. again Fig. 1A. It should be
noted that the exact form of the double-well potential is
arbitrary; we opted for the simplest one. Inherent to the phase
field approach is a wall energy (surface tension) that tends
to pull together curved interfaces.50–52 Employing the third
term in eqn (1), proportional to the interface curvature kf =
�r�(rf/|rf|), allows to remedy this effect.51 Finally, we
couple the phase field dynamics to the continuum mechanics
via the last term in eqn (1). It describes a movement of the
phase field in case the mechanical force balance, r�R + Ftot = 0
with R being the stress tensor and Ftot all the forces acting on
the domain, is not fulfilled.

The evolution of the displacement field u can be written,
using the common assumption of overdamped dynamics for
cells and tissues, as

xqtu = r�R + Ftot. (2)

Here x sets the timescale of the relaxation into mechanical
equilibrium, given by the force balance. The total force, Ftot =
F � g(x)[1 � h(r)]u, contains all the applied forces F and a term
that suppresses artefacts in the displacement field that may
arise in the outside phase due to reverting interface motions
under force release. Eqn (1) and (2) have been developed and
verified in depth in ref. 31, where more details can be found.

The stress tensor R has to be defined on the entire computa-
tional domain. In case of several compartments with different
material properties, the phase field stress tensor has to interpolate
the stress tensors r (and lastly material parameters) of the individual
considered phases, with smooth transitions at the respective inter-
faces. For this purpose, we use weighting functions of the form
h(f) = f2(3 � 2f) for the cell and the nucleus, respectively.42,53 The
total phase field stress tensor R is then defined as

R(r, c) = [h(r) � h(c)]rC + h(c)rN (3)

with rC/N being the stress tensors of the cytoplasmic (C) (i.e. the
intracellular part without nucleus) and the nuclear compart-
ment (N). The interpolation function for the cytoplasmic com-
partment is h(r) � h(c) (i.e. cell, but not nucleus), cf. Fig. 1B. As
for the phase field potential, the form of the weighting func-
tions is again not unique. They should, however, fulfil certain
conditions, namely h(1) = 1, h(0) = 0 and qfh(1) = qfh(0) = 0.
Outside of the cell we assume the stress tensor to be zero for
simplicity. Note that the cytoplasmic and the nuclear compart-
ments are mechanically coupled (only) via the phase field stress
tensor, eqn (3).

Finally, we have to specify the constitutive relation for the
cytoplasm and the nucleus, respectively. We assume linear
elasticity54 with the stress tensors defined as ra = 2mae +
la tr(e)1, where a = {C, N} for cytoplasm (C) and nucleus (N).
Here, ma and la are the Lamé coefficients of each compartment.
The strain tensor e is defined in index notation as eij = (1/2)(qui/
qxj + quj/qxi) and 1 is the identity matrix.

In three-dimensions, the Lamé coefficients are given by l3D =
nE/[(1 + n)(1 � 2n)] and m3D = E/[2(1 + n)] with Young’s modulus
E and Poisson’s ratio n. Depending on the geometry of the
considered problem, different two-dimensional approximations
can be used: strongly spread cells, having a height d (assumed to
be along the z-axis) considerably smaller than the lateral extensions,
can be approximated as thin elastic sheets in plane stress formula-
tion. In this case the stress components szz = sxz = syz = 0 vanish and
the problem becomes effectively two-dimensional with thickness-
averaged l2D = nEd/(1� n2) and m2D = Ed/[2(1 + n)].55 For a cell having
the shape of a long cylinder (again in z-direction), the plane strain
formulation can be applied, where ezz = exz = eyz = 0.55 Here, the Lamé
coefficients are identical to the three-dimensional ones. We will
specifically mention the used approximation for each experiment
discussed in the following.

3 Modeling spread cells

We now demonstrate the applicability of the proposed method
by investigating a cell of height d spread onto a compliant

Fig. 1 (A) Sketch of the two-phase field approach for modelling a cell with
a nucleus. The computational domain O with boundary qO is divided into
different compartments by use of the phase fields r(x, t) and c(x, t) for the
whole cell and the nucleus, respectively. The distinguished phases are the
outside of the cell (r = 0, c = 0), the cytoplasm (r = 1, c = 0), and
the nucleus, (r = 1, c = 1). (B) Radial cut showing the interpolation
functions for a cell of diameter 2RC with a nucleus of diameter 2RN. The
cell (h(r), black dashed line) is split into two compartments, the cytoplasm
(h(r) � h(c), red) and the nucleus (h(c), blue).
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substrate in 2D plane stress formulation. This situation is
biologically highly important, since cells are able to sense the
mechanical properties of their environment via internal force
generation and transmission of these forces to the outside.8

The received information can then be used by the cell to adapt
its mechanical properties and morphology, and possibly even
to induce division, differentiation or motility (processes which
are beyond the scope of this work). To model a spread cell, we
have to include active cell contractility and cell–substrate
adhesion as central features into the proposed method.

Active stresses Ract can be straightforwardly introduced into
the phase field stress tensor, eqn (3), as an additive contribu-
tion. In principle, the active stress can be time- and space-
dependent. Contractile stresses within a cell arise due to the
activity of myosin II motor proteins, which slide cytoskeletal
actin filaments relatively to each other.56 While some part of
the contracting cytoskeleton spans over the nucleus, other parts
can also bind directly to it via LINC complexes, exerting
contractile stress on the nuclear boundary.29,30 Using the
common approximation of an isotropic contractile stress
ract = s0d1, with s0 4 0 and 1 the identity matrix, we write
the active stress tensor as

Ract = [h(r) � fh(c)]s0d1. (4)

The function in the bracket indicates in which cell compart-
ment the active contractile stress is acting. We consider two
extreme cases which represent processes in the third dimen-
sion that are integrated out in the effective 2D model. For f = 0,
the whole cell is under contractile stress, including the pro-
jected position of the nucleus, which would correspond to a

situation in which the 3D nucleus is surrounded by a contrac-
tile cytoskeleton. Hence only the forces at the cell boundary are
unbalanced and effectively contract the cell. Such a situation
can result from the presence of a strong perinuclear actin cap.57

For f = 1, only the cytoplasm is under contractile stress. Then
the nucleus effectively feels an extensile force. This situation
should result if the complete contractile apparatus is localized
in the cytoplasm and does not bridge over the nucleus.
By varying f from 0 to 1, we can tune the strength of this effect.
In the following, we consider ract to be time-independent and
homogeneous in the respective cell compartments and investi-
gate only steady state situations.

The second feature needed to model spread cells is cell–
substrate adhesion, anchoring the cell and allowing for
force transmission from the cytoskeleton to the substrate via
integrin-mediated adhesion sites. A simple approximation for a
fully elastic substrate is an elastic foundation, where adhesion
sites are modeled as a spring stiffness density Y(x) resisting cell
deformations.58–60 The associated restoring force entering the
elastic eqn (2) is then given by

F(x) = �Y(x)h(r)u (5)

where h(r) indicates that adhesion sites can only form under-
neath the cell. In principle, Y(x) could be made time-dependent
as well, allowing to model dynamics of bond formation.

3.1 Adhering cell with radial symmetry

We first study a circular cell which is spread and actively
contracting on an elastic foundation, as shown in Fig. 2A. This
geometry was originally used to explain the experimentally

Fig. 2 (A) Sketch of the model for a cell (thickness d, radius RC) with a concentric nucleus (radius RN). The cell is contracting isotropically with active
stress s0 while being adhered to a substrate via a spring stiffness density Y(x) on a ring RY r r r RC. The cytoplasm (EC, nC) and the nucleus (EN, nN) can
have different material properties. (B) The homogeneous adhesion case with RY = 0. Shown in the upper panel are the phase field (solid) and analytical
(dashed) solutions for the radial displacement field ur, normalized by the cell radius in mechanical equilibrium, rC. Shown are the cases: EN/EC = 10,
RN/RC = 0.5 (blue); EN/EC = 10, RN/RC = 0.75 (red); and the phase field solution for EN/EC = 1 and RN/RC = 0.5 (black, mostly covered by the blue curve).
The inset shows the trace of the stress tensor, normalized by the active stress s0, for EN/EC = 10, RN/RC = 0.5; the contour lines correspond to r = 0.5
(cell, solid) and c = 0.5 (nucleus, dashed). The lower panel shows the radial profile of r (cell, solid) and c (nucleus, dashed) in mechanical equilibrium with
colors corresponding to the upper panel. (C) Adhesion on an outer ring only. In the upper panel phase field solutions for ur/rC are shown for EN/EC = 10,
RN/RC = 0.5 and varying RY/RC = 0.5, 0.6, 0.7, 0.8 (blue to green). The inset shows the normalized stress for the case RY/RC = 0.8 (dotted line marks inner
ring boundary) and the lower panel the phase field profiles for the case RY/RC = 0.5 (blue). (D) Until now, the case f = 0 was considered (cf. eqn (4)) i.e. the
whole cell was contracting. When gradually restricting contraction to the cytoplasm by varying f = 0, 0.2, 0.5, 1 (blue to green), cf. the discussion in the
main text, extensile forces are exerted on the nucleus of radius RN/RC = 0.5. The lower panel shows the phase field profiles for f = 0 (blue) and f = 1
(green). The inset shows the normalized stress for the case EN/EC = 10 and f = 1, for better comparison with the insets of B and C. All simulations were
performed on N = 512 � 512 grid points on a domain of 50 mm � 50 mm. If not specified above, the other mechanical parameters are RC = 12.5 mm,
d = 1 mm, EC = s0 = 1 kPa, nC = nN = 0.5 and Y0 = 0.8 nN mm�3. Further parameters are as in Table 1.
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observed concentration of traction forces at the cell periphery
from a mechanical perspective and is analytically solvable for
homogeneously adhered cells.15,59,60 Recently, an analytical
solution for the case where adhesion is restricted to a ring at
the cell’s periphery has been also given.61 To benchmark our
numerical framework, we generalized the homogeneous adhe-
sion model by additionally considering a disk-like nucleus in
the cell’s center; the analytical solution is given in Appendix B.
To specify the different possible geometries, we introduce the cell’s
radius RC, the nucleus’ radius RN and the radius of the adhesive
ring RY, meaning that the cell adheres for RY r r r RC.

We begin with the simplest case of a cell fully and homo-
geneously adhered to the substrate, i.e. Y(x) = Y0 and RY - 0,
and assume the contracting cytoskeleton spans over the
nucleus, f = 0. Fig. 2B upper panel shows the phase field (solid
curves) and analytical solutions (dashed) for the radial displa-
cement field ur for different nuclear stiffnesses and radii. Both
are in very good agreement, confirming our approach. Devia-
tions result from the diffuse description of the nucleus–cyto-
plasm boundary in the phase field framework and can be
reduced by decreasing its interface width. The kink at the
nucleus–cytoplasm interface, occurring in both the analytical
and numerical solution, is due to the different rigidities of the
two considered cell compartments. Consistent with previous
results, the highest deformations are at the cell periphery.59

This is associated with high traction stresses at the periphery
and lowered total internal stresses, as visualized in the inset of
Fig. 2B by plotting the trace of the stress tensor, normalized by
the active stress level s0.

How important is the nucleus for the mechanics? For a
nucleus of half the cell’s radius, RN/RC = 0.5, the nucleus
stiffness EN has only a negligible effect on the cell’s deforma-
tion. Increasing the nuclear radius, a realistically stiff (EN/EC =
10) nucleus (red curves) leads to considerably different slopes
in the displacement field. However, the overall position of the
cell periphery remains approximately the same, cf. the solid
curves in the lower panel of Fig. 2B, displaying the radial phase
field profiles.

It is important to note that the displacement field in the
nucleus always remains small. This demonstrates that strong
cell adhesion protects the nucleus against large deformations
and stresses. The determining factors are the distance between
the nucleus and the cell boundary, RC – RN, and the charac-
teristic distance over which stress can propagate through the
cytoplasm, which for an adhering cell is given by the localiza-

tion length lC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECd=Y 1� nC2ð Þ

p
.59 Peripheral cell adhesion

is sufficient for protecting the nucleus, corresponding to the
experimental observation of strong adhesions forming mostly
at the cell periphery, while the basal side under the nucleus is
mostly adhesion free.62

This shielding can have a major impact on the nuclear
mechanosensing ability of stimuli originating at the cell edge.
In a second study we therefore restrict the adhesion to a ring at
the cell periphery of inner radius RY, to see whether the nuclear
deformation increases, indicating a higher perception of
mechanical stimuli. In most cell types, the nucleus occupies

not more than a third of the cellular volume. Therefore, we fix
the nucleus radius to RN/RC = 0.5, for which we found above
that the nuclear stiffness has only a negligible effect on cell
mechanics, and the stiffness to EN/EC = 10. We then examine
the radial deformation upon varying the inner radius RY of the
adhesion ring as shown in the upper panel of Fig. 2C. Note that
the deformation field is linear in the non-adhered cell parts,
i.e. both in the nucleus and the inner part of the cytoplasm.
As visible from the displacement field, a larger RY, and there-
fore a decreased adhesion area, increases the deformation
the nucleus experiences. This demonstrates that adhesion
restricted to the cell periphery leads to an increased stress
propagation to the nucleus, as also visible in the inset of
Fig. 2C. Nevertheless large deformations are prevented as
shown by the only slightly increased deformation peak com-
pared to the fully adhered case in Fig. 2B upper panel. This
agrees with recent experiments on optogenetic activation of
whole cells that showed that disc and ring geometries give little
differences in regard to whole-cell contractility.63

Lastly, we study the situation of a fully adhered disk, but
now with a varying parameter f as described above. Increasing f
from 0 to 1, leads to an extensile stress on the nuclear
boundary. Fig. 2D upper panel demonstrates the radial dis-
placement field for RN/RC = 0.5 and EN/EC = 2 for different f = 0,
0.2, 0.5, 1, the peaks close to the nucleus–cytoplasm interface
clearly showing a radial stretching of the nucleus, which is also
visible in the lower panel of Fig. 2D showing the phase field
profiles for the cases f = 0 (blue) and f = 1 (green). Similar
observations can be made for other nuclear rigidities. For
increasing parameter f, the nucleus experiences higher exten-
sile stresses, also visualized in the inset of Fig. 2D in contrast to
the previous discussed cases.

In summary, the above results verify our elastic phase field
approach and indicate that the transmission of mechanical
cues to the nucleus strongly depends on the actual adhesion
geometry and the force transmission from the cytoskeleton to
the nucleus.

3.2 Contractile cells on adhesion patterns

Micro-patterned adhesive substrates are a standard setup for
studying cellular behaviour in structured environments.64–67

Adherent cells are always under contraction, as nicely demon-
strated by the ubiquitous invaginated arcs that form when cells
adhere with point-like adhesions.15,68 Here, we investigate the
impact of the nucleus on the overall cell morphology in such
geometries. As a first example, we study a rectangular pattern
with four circular adhesive patches of radius radh located at its
corners. We start with a 2D rectangular cell, described in plane
stress, and allow it to form focal adhesions at the corners and
contracting isotropically under a contractile stress s0. The
nucleus initially has a circular shape of radius RN with physio-
logical nucleus-to-cell volume ratio VN/VC E 0.17. We consider
the case that the cytoskeleton contracts the whole cell, i.e. f = 0.
For the adhesion strength Y(x) we use a smoothly varying field,
transitioning in a tanh-like manner from the maximal value Y0

in the focal adhesion towards zero outside of it. Primarily, this
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ensures numerical stability compared to pinning the cell com-
pletely to the focal adhesion (via the boundary condition u = 0,
cf. also ref. 31). It also would allow to study different adhesive
strengths in different focal adhesions.

Representative results are shown in Fig. 3. The panels of
Fig. 3A study a centered nucleus and demonstrate the effect of
an increased nuclear–cytoplasmic stiffness ratio EN/EC. Clearly,
the nucleus is deformed by the invaginated arcs for low nuclear
stiffness. A higher nuclear stiffness rather changes the shape of
the cell, demonstrating again that localized adhesion and an
increased nuclear stiffness protect the nucleus against large
deformations/stresses. Yet one also sees how stress bridges
start to emerge between nucleus and adhesions, which look like
precursors of stress fibers. Similar perturbations are observable
for example for cells spreading on nanonets.69

Similar to the previous study in circular geometry, the
distance between the nucleus and the cell edge is a determining
factor for the magnitude of the morphology perturbation. If the
nucleus position is shifted away from the cell’s center, cf.
Fig. 3B, a stress accumulation at the cytoplasm–nucleus bound-
ary can be observed, while the stress is lowered on the opposite
side of the nucleus. In Fig. 3C and D the trace of the stress
along the symmetry line y = 0 is depicted, clearly showing the
stress decrease for higher EN/EC and its asymmetry when
shifting the nucleus. Interestingly, as visible in Fig. 3B, the

stress ‘‘builds a bridge’’ between the closeby focal adhesions
and the nucleus,70 quite possibly impacting the mechanosen-
sing of the nucleus. Furthermore, one can hypothesize that the
asymmetric stress distribution for shifted nuclei allows the cell
to differentiate between left and right, which may be important
to polarize for cell migration.

3.3 Failure of a focal adhesion

Having demonstrated that the proposed modeling framework
is able to describe static spread elastic cells with nucleus in
complex geometries, we now give an example of a simple
dynamic response. Similar to the last example, we consider a
cell on a micro-patterned adhesive environment favoring a
hexagonal cell shape. The cell first contracts isotropically under
a stress s0 until it reaches mechanical equilibrium. The result-
ing shape, including stress focusing at the adhesion spots and
invaginated arcs in between, is shown in the left panel of
Fig. 4A. Afterwards, one of the adhesion spots (here, the most
right one) is suddenly removed, mimicking the rupture/disso-
lution of a focal adhesion, and the cell deforms into a new
mechanical equilibrium given by this geometry, see the right
panel of Fig. 4A. One can clearly see that the cell relaxes an
substantial amount of stress in the area of the missing adhe-
sion point. The stress inside the nucleus is also reduced, in the
shown example by 14.5%, and again shows an asymmetry. Note
that the cell does not fully round up in the region close to the

Fig. 3 A cell adhering in a rectangular shape due to adhesive spots in the
corners. Adhesive spots (dotted) have a radius radh = 1.15 mm with high Y0 =
16 nN mm�3, to prevent slipping from the adhesion sites. The cell contracts
under an isotropic contractile stress s0/EC = 0.4. Shown is the normalized
trace of the stress tensor for the cases EN/EC = 1, 2, 10 (top to bottom) with
an initially circular nucleus (A) centered in the cell and (B) shifted in x-
direction by 1.5RN. The contour lines correspond to r = 0.5 (solid, cell) and
c = 0.5 (dashed, nucleus). (C) and (D) show the trace of the stress tensor
along the symmetry line y = 0 for the corresponding simulations shown in
(A) and (D). All simulations were performed on N = 1024 � 512 grid points
on a domain of 50 mm � 25 mm. Initial cell dimensions are 30 mm � 15 mm
with RN = 5 mm, d = 1 mm, EC = 1 kPa and nC = nN = 0.5. Rest as in Table 1.

Fig. 4 (A) A cell with nucleus was allowed to spread in a hexagonal
adhesion pattern and to contract isotropically with s0/EC = 0.4 until it
reached mechanical equilibrium (left panel). Subsequently the most right
adhesion spot was removed and the cell evolved towards a new mechan-
ical equilibrium (right panel). The colormap shows the normalized trace of
the stress tensor. The cell shape (isocline r = 0.5, solid black) and nucleus
shape (c = 0.5, dashed black) are also shown. (B) Shown is the average
displacement hd|u|i, with respect to the initial reference displacement
in (A), as a function of time t for different friction coefficients x. For all
tested x, the behavior is the one of a Kelvin–Voigt model. The simulations
were performed on N = 512 � 512 grid points on a domain of 50 mm �
50 mm. Initial cell edge length is 17.5 mm and RN = 6.65 mm with cell height
d = 1 mm resulting in VN/VC E 0.17. Further, EN/EC = 10 with EC = 1 kPa,
nC = nN = 0.5, radh = 1.25 mm and Y0 = 16 nN mm�3. Rest as in Table 1.
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detached adhesion point, which is a consequence of the
reference state of the elastic model.

To quantify the dynamics of this relaxation, we investigated
the cell-averaged displacement hjuji ¼ 1=Vcellð Þ

Ð
rjujdO, where

the cell’s volume is given by Vcell ¼
Ð
r dO. Fig. 4B shows

hd|u|i = h|u|i � h|uref|i, i.e. the deviation from the reference
displacement at the time point of the removal of the focal
adhesion, as a function of time and for different friction
coefficients x (cf. eqn (2)) and EN/EC = 10. As can be seen, the
displacement hd|u|i always levels at the same plateau value,
reflecting that mechanical equilibrium is reached, with x
determining the relaxation time.

It should be noted that in ref. 31 the elasto-dynamic for-
mulation of eqn (2) was introduced out of necessity to couple
the phase field dynamics with elasticity in a reversible fashion.
Hence, if one wants to describe a system with ‘‘pure’’ elastic
behavior, one should not probe the system on time scales t
faster then the one set by x. On the flip side, if one does so, the
average displacement follows the relaxation behaviour of a
viscoelastic material with long-term elastic behavior. This is
reflected by the dashed curves in Fig. 4B where we applied a
Kelvin–Voigt model, predicting hd|u(t)|i = umax[1 � exp(�t/tR)],
to interpret the data, which fits perfectly. Here umax is the
maximum average displacement and tR the characteristic
relaxation timescale. The Kelvin–Voigt model is a widely used
and experimentally validated model for cellular mechanics,
describing that mechanical relaxation does not occur instanta-
neously (as in linear elasticity), but is retarded by internal
friction, stemming from viscous flow and cytoskeletal reorga-
nization. For a Kelvin–Voigt material the relaxation timescale is
given by tR = Z/E, where E is the Young’s modulus and Z the
material’s viscosity. We verified that the correspondence to a
Kelvin–Voigt model holds for all tested nucleus stiffnesses and
the above comparison hence allows to associate x with an
effective viscosity Z. Note that, however, since the cell is a
composite material of cytoplasm and nucleus, both E and Z
entering tR are cell-averaged quantities. We will revisit viscoe-
lastic effects in Section 4.2.

4 Cells in confinement and modulus
measurements

We now turn to the problem of cells in confinement, again
focusing on the effects of the nucleus. On the one hand, in their
physiological environment, cells are often subject to (dynamic)
straining induced by their surrounding. Examples include
cyclic stretching in lung and vascular tissue or the migration
of immune cells and metastatic cancer cells through narrow
openings in tissues or fibrous networks. On the other hand,
several experimental methods have been developed to
probe cellular mechanical responses, including compression
of cells between two plates23,24,71–75 and cell aspiration by
micropipettes.76–81 Here, we show how the latter two can be
modeled using our framework to extract effective elastic
moduli.

In both experimental setups, the interaction of the examined
cell with the confining obstacles – the plates of the compres-
sion apparatus or the tube walls of the micropipette – is crucial.
In the phase field method, such ‘‘obstacles’’ can be described
by implementing another, static phase field j(x), also having
tanh-like transitions from j = 1 within the obstacle to j = 0
outside, and which is assumed here to be perfectly rigid. The
local presence of the obstacle is then manifesting itself by
interactions of the cell’s phase field with j. Motivated by a

phenomenological excluded volume potential of the form F ¼
a
2
r2f2 presented earlier,32,33,46 we add the following excluded

volume force to the force Ftot entering eqn (1) and (2):

Fexcl ¼ arf2 rhðrÞ
f ðhðrÞÞ: (6)

Here the first term, including the interaction strength a, is the
derivative of the excluded volume energy. rh(r) indicates that
the volume exclusion force acts orthogonal to the r-interface

and is restricted to the interface region. Finally, f ðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eðrxÞ2

p
with a small e { 1 implements saturation of the

force in case the phase field gradient becomes too steep.33

4.1 Compressing cells between two parallel plates

Compressing cells between two parallel plates is nowadays a
standard experimental technique to mechanically probe global
cell mechanics.20,72–75,82,83 For instance, in combination with
computational predictions, it has been demonstrated that
for mitotic cells the cell cortex dominates cell mechanics.75

Beyond that, also cellular responses to increased confinement
have been addressed, evidencing that it can induce the mesen-
chymal-amoeboid transition84 and trigger cell migration.23,24

In the latter studies it was suggested that the extent of nuclear
compression determines the onset of this response. Also a
recent computational study has shown that a stiff nucleus
increases the effective stiffness of cells as probed in such
experiments.21

We model compression experiments by implementing the
upper and lower plates via the field j(x). Both plates are
initially not in contact with the cell, such that Fexcl = 0. They
are moved towards each other successively by the grid spacing
Dx each time the cell has relaxed into mechanical equilibrium.
Having reached the desired compression level/plate distance,
this procedure can be reversed to release the cell from the
confinement. Note that we study the quasi-static, purely elastic
process first, to be able to compare with analytical solutions.
Cell compression that is continuous in time, where the
response will then be of Kelvin–Voigt-type, cf. Section 3.3, will
be investigated in Section 4.2.

So far, in Section 3 we used an effectively 2D plane stress
approach, which was justified for a thin, spread cell. In the
compression experiment, the simplest effective 2D problem
would be the plane strain approach, corresponding to a long
cylinder with circular cross-section. To see how sensitive the
compression experiment is to the geometry, we compared this
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simple case (unrealistic for a cell) to the axially symmetric case
of a 3D sphere compressed between the plates. Note that the
latter needs solving all equations defined above in cylindrical
coordinates.

Fig. 5A shows the distribution of stresses, visualised via
tr(R), within the cross-section of a cell in plane strain (top,
cylinder geometry; note that this implies that the nucleus is
also a cylinder) and of a spherical cell in axial symmetry
(bottom). The nuclear stiffnesses are EN/EC = 2 (left) and
10 (right), respectively. In the snapshots, the plates have a
distance of 90% of the initial cell diameter 2RC. Both cases
show an increased stress concentration for increasing nuclear
stiffness in the regions between the nucleus and the plates,
with a band-like stress accumulation connecting the cell edge
in contact with the plates and the nucleus. The plane strain
case shows an overall higher stress, since it does not allow a
considerable stress relaxation within the nucleus, leading to
slightly higher cytoplasmic deformations and therefore a
higher eccentricity of the cross-sectional shape as compared
to the axially symmetric situation. Nevertheless, overall the
behavior is rather similar.

To further quantify the compression experiments, we
obtained the force–compression curves for the results shown
in Fig. 5A. This was done by calculating the total force F ¼Ð
jr � Rjr dV in mechanical equilibrium for the respective total

compression d of the cell, normalized by the cell diameter 2RC,
as shown in Fig. 5B. As can be noticed, a consistently higher
force is required to deform a plane strain cylinder (triangles) by
the same d as compared to a sphere in axial symmetry (circles),
consistent with Fig. 5A. Note that for the resulting line contact
problem in plane strain, the fundamental measure for this case
is the in-plane force per length F/L.85 In order to compare the

force–compression curves in both geometries, we determined
the length of the cylinder L = 4/3RC in plane strain, such that
the cylinder volume is equal to the sphere volume in axial
symmetry, and multiplied the average force per length by L.

Importantly, for both contact problems studied here, plane
strain and axial symmetry, there exists an analytical solution
for the force–compression relation in the absence of the
nucleus.85 The force–compression relation of an elastic sphere
compressed by two rigid plates is the Hertz problem with
F p d3/2 for an arbitrary pressure distribution.85,86 In plane
strain, the relation is more complicated and can be given as

d / ðF=LÞ logðB=
ffiffiffiffiffiffiffiffiffi
F=L

p
Þ; where B is a constant containing

information about the cell size and its effective stiffness.85

Fig. 5B shows, apart from the numerically obtained data
(symbols), also fits to these relations (solid curves), resulting
in a very good agreement for both geometries. Importantly, the
Hertzian theory F p d3/2 is still valid, even in the presence of a
rather large and stiff nucleus.

As the two-plate setup is extensively used to measure cellular
stiffnesses, we tried to infer the effective Young’s modulus Eeff

(i.e. cell plus nucleus as measured in the respective apparatus)
of our model cell in the physically relevant axial symmetric

situation. We used the full Hertzian law F ¼
ffiffiffiffiffiffiffiffiffi
2RC

p
E0=3

� �
d3=2

for a parabolic pressure distribution with F the total force per
plate and E0 ¼ Eeff

�
1� neff 2
� �

. Here Eeff and neff are the effec-
tive elastic parameters of the cell–nucleus composite for rigid
plates.86 We assumed here that neff = nC = nN. Fig. 5C then shows
that Eeff increases non-linearly with increasing nucleus stiffness
EN. For physiological nucleus sizes VN/VC = 0.125–0.3, the
effective modulus Eeff experiences an up to three-fold increase
for EN/EC = 10. Note, that for EN/EC = 1 the comparison with

Fig. 5 (A) Compression of a cylindrical cell with plane strain (top) versus compression of a spherical cell with axial symmetry (bottom). Shown are the
cases EN/EC = 2 and EN/EC = 10. (B) Numerically obtained force–compression curves. The symbols are numerical solutions with plane strain (triangles)
and axial symmetry (circles), respectively, cf. panel A. The solid curves are fits to the respective analytical solutions (available in the absence of the
nucleus). (C) For the case of axial symmetry, we extracted an effective elastic modulus from fits as shown in panel B. In the physiological range of nucleus
sizes and stiffness, the effective modulus measured in compression is up to three times larger than the one of the pure cytoplasmic stiffness. Colors in
B: EN/EC = 2 in axial symmetry (blue), EN/EC = 10 in axial symmetry (yellow); EN/EC = 2 in plane strain (red), EN/EC = 10 in plane strain (green). Colors in C:
nucleus size of VN/VC = 0.125 (blue); nucleus size VN/VC = 0.3 (red). (D) Compression experiment similar to (A) but for an axially symmetric, pancake-
shaped cell. Simulations for (A)–(C) were performed on N = 512 � 512 grid points and for (D) on N = 512 � 256 grid points. Mechanically relevant
parameters for all shown simulations (if not mentioned otherwise) are RN = 6.25 mm in (A) and (D), EC = 1 kPa, nC = nN = 0.48, and a = 6 kPa. Rest as
in Table 1.
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Hertzian theory yields an effective modulus slightly Eeff o 1,
resulting from the unknown pressure distribution in the phase
field simulation.

The acto-myosin system tends to reinforce under tensile
stresses, but to disassemble under compressive stresses.13

As long as the cell is not spreading on an adhesive substrate
and therefore generating tensile stresses, but only is subjected
to compression from the outside, we do not expect an upregu-
lation of the contractile cytoskeleton. Consequently, since we
consider plates that are not strongly adhesive, we did not
include any active stress above. If we nevertheless include active
stress in our simulations, we find similar stress patterns, but
the fit to Hertz-theory did not work well anymore (results not
shown).

Our simulations can also be used to study the effect of
different cell shapes. Fig. 5D shows the compression of an
initially pancake-like shaped cell in axial symmetry, similarly as
studied in ref. 75, for different nucleus stiffnesses EN/EC = 1, 2,
10. It can be directly compared to the initially spherical cell in
Fig. 5A, bottom. Again, for increasing nucleus stiffness a
redistribution of stresses within the cell is visible. For EN/EC =
1, the regions of highest stress are located close to the cell
boundary at the transition points from vanishing to finite
curvature, as predicted before.75 However, for increasing
nucleus stiffness the upper and lower poles of the nucleus,
nearest to the plates, become the zones of highest stress. Again
a band-like stress from the cell boundary in contact with the
plates to the nucleus boundary is visible. The main impact of
cell morphology (sphere vs. pancake) on nuclear straining
thereby comes from the distance between the nucleus and
the cell boundary: forces are better propagated to the nucleus
for flatter cell shapes.

Finally, we studied the effect of cortical tension on the force–
compression curves of spherical cells. Cortical tension is due to
myosin II motor activity in the actin cortex located directly
underneath the plasma membrane. Since the cortex is thin
compared to the cell dimension, effectively this effect can
be described as a surface tension lS. Hence in the phase field
sense,51,87 we add the force

Fst ¼ lSkr
rhðrÞ
f ðhðrÞÞ (7)

to Ftot in eqn (1) and (2).
In the simulation, the cell is first allowed to mechanically

relax under the applied cortical tension, then the compression
is started. Hence we now normalized the compression height d
by the cell diameter 2rC in mechanical equilibrium, with
applied surface tension but before compression. We chose a
lower cell stiffness than before, EC = 0.5 kPa, to make the effect
more apparent, and a realistic cortical surface tension range of
up to lS = 2 nN mm�1.88,89 Fig. 6 shows the obtained force–
compression curves for nuclear stiffnesses EN/EC = 2 and 10.
One can see that increasing lS results in an increase of the
required force for compression, especially for larger compres-
sion. However, the stiffer the nucleus, the smaller is the effect
relative to the case without surface tension.

To quantify, we again performed a comparison to Hertz
theory (solid lines in Fig. 6), yielding good fits for all tested
cases. For the extracted effective cell stiffnesses Eeff we found an
increase of B63% for EN/EC = 2 (from Eeff = 0.53 kPa for lS = 0
nN mm�1 to Eeff = 0.82 kPa for lS = 2 nN mm�1) and of B25% for
EN/EC = 10 (from Eeff = 0.91 kPa for lS = 0 nN mm�1 to Eeff =
1.22 kPa for lS = 2 nN mm�1). Hence cortical surface tension
effectively stiffens cells, as is to be expected since compression
increases the surface area. The effect decreases with increasing
nuclear rigidity, and also with increasing cytoplasmic stiffness.

4.2 Compressing cells: viscoelastic effects

The mechanics of cells is much more complicated than the
simple assumption of elasticity used until now. We already
demonstrated in Fig. 4 that our approach represents viscoelas-
tic effects of Kelvin–Voigt-type and we now demonstrate this
again in the context of cell compression. We consider again the
case of a spherical cell with nucleus. Now the plates are moved
towards each other in a continuous fashion with a velocity v.

Fig. 7A shows resulting force–compression curves for
nuclear stiffnesses EN/EC = 2 (left) and EN/EC = 10 (right) and
for different plate velocities v. The blue curve marks the quasi-
static case discussed in Fig. 5. One clearly sees that increasing
the plate velocity increases the force required to reach the same
relative compression d. We also note that if the plate motion
is stopped in between, the force relaxes and reaches the
corresponding lower bound given by the quasi-stationary case
(blue curve), as observed in experiments.75

In accordance to the previous results, comparing the cases
EN/EC = 2 and EN/EC = 10 of Fig. 7A shows that increasing the
nuclear stiffness increases the force. On the other hand, the
stiffer the nucleus, the smaller the effect of the compression
velocity becomes. To further quantify these observations,
Fig. 7B shows the force-velocity relation, obtained by calculating
the total force experienced by the cell at a certain d (here at the last

Fig. 6 Force–compression curves for a spherical cell subject to a cortical
surface tension of varying strength lS = 0, 1, 2 nN mm�1 for different
nuclear stiffnesses EN/EC = 2 and 10. The symbols are the numerical results
and the solid lines fits according to the Hertz law. Note that the deforma-
tion of the cell due to the cortical tension, prior to compression, changes
its diameter (from 2RC to 2rC), which is used to normalize d. The compres-
sion is quasi-stationary; parameters are EC = 0.5 kPa and x = 0.04 nN s
mm�3 for better numerical stability. Other parameters as in Fig. 5 and
Table 1.
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time point where d/(2RC) r 0.05), for the plate velocities v shown
in Fig. 7A. An almost linear increase of the force with plate velocity
v is visible, with only a marginal difference between EN/EC = 1 and
EN/EC = 2, suggesting that soft nuclei have only a small effect. The
increase of the force with plate velocity v is due to insufficient time
of viscoelastic stress relaxation to mechanical equilibrium for
finite plate velocity. Such a higher (not completely relaxed) stress
should consequently lead to the higher effective stiffness for the
cell–nucleus composite at a given velocity. However, we refrained
from fitting the force–compression curves to the Hertz law, as it is
only valid in the stationary case.

As a second test to show that the phase field model
describes viscoelastic effects of Kelvin–Voigt-type correctly, we
analyzed a relaxation experiment. A spherical cell was com-
pressed in a quasi-stationary manner as described in the last
section. After reaching a compression d of 10% of the initial cell
diameter (2RC), the plates were removed instantly and the cell
allowed to relax back to its initial, undeformed configuration.
Fig. 7C shows the time evolution of the strain energy

Ee ¼ ð1=2Þ
Ð
VSijeijdV (left) and of the dissipated energy Ed =

E0 � Ee (right) from the time point of plate removal (t = 0) of
elastic energy E0 = Ee(t = 0), for different nuclear stiffnesses EN/
EC. The circles are the numerically obtained results, showing
that the strain energy decays exponentially and that the dis-
sipated energy levels to a plateau for large times, both indicat-
ing the mechanical equilibrium of the undeformed state.

As discussed already in Section 3.3, in the viscoelastic
regime our phase field model is of Kelvin–Voigt type. We hence
can fit the corresponding strain energy function, Ee(t) = E0

exp(�2t/tR), and dissipated energy function ED = E0[1 �
exp(�2t/tR)], to the numerical data, cf. the solid curves in
Fig. 7C, allowing to extract the relaxation timescale tR (here
we average over the results from strain energy and dissipated
energy) for the different nuclear stiffnesses considered.
Together with the effective cell–nucleus rigidities, obtained
previously in Fig. 5C for VN/VC = 0.125, we are able to infer
the effective viscosities Zeff = Eeff�tR. The obtained values are
given in the table Fig. 7D. As expected, the relaxation times
decrease with nuclear stiffness but the effective viscosity Zeff

remains approximately constant, as it is determined by x in
eqn (2). This shows that x sets the effective viscosity of the
composite model under compression, similar as had been shown
in Section 3.3 for the adhesion geometry. We note that we used a
small x here, to get a relaxation on a time scale of seconds, since
the numerical time step in the compression geometry is very small
(10�4 s). This value corresponds more to intracellular relaxation
time scales, while those for a whole cell are of the order of tens of
seconds or minutes.90 We stress that there is no problem to
increase x, and consequently the effective viscosity and tR, as
exemplified in Fig. 4B for the adhesion geometry.

4.3 Micropipette aspiration

An alternative to cell compression experiments for measuring
cellular rheological responses are micropipette experiments.76,79–81,91

In this setup, cells are sucked into a pipette tube by applying a
pressure difference DP between the tube’s interior and the exterior
space. In this setup, forces are more locally applied compared to
global straining in compression experiments. Micropipette aspira-
tion has already been studied numerically and together with experi-
ments showed that cells can have elastic and viscous signatures.92

Therefore, this experiment has been used to measure both the
elastic modulus E and viscosity Z of cells.76

We are again interested in the influence of the nucleus on
the measurement of the effective cell stiffness, in the context of
this more local force application. Considering a spherical cell
with axial symmetry, the stationary pipette wall can be modeled
as in the previous example by using a field j(x), placing it
closely to the cell membrane. Before sucking the cell into the
pipette, we first let the cell relax into mechanical equilibrium
due to the interaction with the pipette walls, cf. eqn (6).
To prevent any rigid body motion of the cell, we let it adhere
to a sphere (field ~j(x)) on the side opposite to the pipette, as
also done experimentally77,78 using an adhesion force

Fadh = Y(r~j)(rh(r))u. (8)

Fig. 7 (A) Numerically obtained force–compression curves for a spherical
cell between two plates in axial symmetry. The plates are moved with a
velocity of v = 0, 0.5, 1.25, 1.875, 2.5 mm s�1 (blue to grey); v = 0
corresponds to the quasi-stationary case studied in Fig. 5. Left panel: EN/
EC = 2; right panel EN/EC = 10. (B) Force-velocity curve extracted from (A)
at a given d, here the last time point where d/(2RC) r 0.05. The force
required for the same compression increases with plate velocity, as time
becomes increasingly insufficient to relax stress. (C) Shown is the strain
energy (left) and the dissipated energy (right), as a function of time for
different nuclear stiffnesses EN/EC = 1, 2, 10. At t = 0 the plates were
suddenly removed and the cell allowed to relax back to its spherical,
undeformed state. The numerically obtained solutions (circles) are fit
(solid lines) allowing to extract relaxation times and effective viscosity.
(D) Table giving Eeff obtained from Fig. 5C, the average tR from the fits in
(C) and the resulting Zeff = Eeff�tR. Parameters as in Fig. 5 with VN/VC =
0.125, i.e. RN = 6.25 mm. Other parameters as in Table 1.
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Note that this is the phase field version of eqn (5), modeling
adhesion of the cell with strength Y when it is in contact with
the sphere.

Applying now a pressure, P1, in the micropipette tube that is
smaller than the pressure P0 in the cell’s interior (the outside
pressure is assumed to be P0 as well) leads to a boundary force
acting at the cell membrane within the pipette like

Fp ¼ DPðxÞ rhðrÞ
f ðhðrÞÞ (9)

where DP(x) = (P1 � P0)p(x) and where p(x) marks the micro-
pipette interior (where P1 is applied).

Fig. 8A shows results for the aspiration of spherical
nucleated cells (RC = 15 mm, RN = 7.5 mm) for nucleus stiffnesses
EN/EC = 1, 2 and 10 into a micropipette of radius Rp = 2/3RN =
5 mm using a pressure difference of DP/EC = 0.5. As expected, the
highest positive stresses occur at the cell membrane within
the pipette, while negative stresses arise at the edges of the
micropipette, where it effectively pushes against the cell.
Furthermore, in the case of stiff nuclei (EN/EC = 10), stress
accumulation occurs again in the vicinity of the nucleus
boundary nearest to the pipette. This again suggests the
possible perception of mechanical stimuli by the nucleus, even
for very locally applied forces. While stiffer nuclei only deform
marginally and are shifted within the cell towards the pipette
position, soft nuclei (EN/EC = 1, 2) show some egg-like asym-
metry in their morphology due to deformation. The black
curves in the panels of Fig. 8A show the cell and nucleus
boundaries (0.5-phase field isocurves) for three different time
points, to exemplify the dynamic nature of the problem.

Also in the micropipette geometry, one can extract an
effective modulus for the cell–nucleus composite. Within the
elastic regime of aspiration, the stiffness can be approximated

by the relation E = (3z/2p)DP(Rp/Lp), where Rp is the inner
micropipette radius and z is a shape factor for the micropipette
geometry.93 No closed form exists for calculating the shape
factor z.

To calculate the effective cell stiffness Eeff from the
numerics, we determine the aspiration length Lp and, knowing
the applied pressure difference and the micropipette radius, we
estimated the effective modulus over a range of nucleus stiff-
nesses, nucleus sizes, pressure differences and micropipette
radii, cf. Fig. 8B. All tested cases yield Eeff E 1 for EN/EC = 1 with
a deviation of less than 5% for DP/EC = 0.5. Since the shape
factor is unknown, we hence shifted all results such that for
EC = EN we get the correct modulus. There also is a slight
dependence on the applied pressure. However, with increasing
pressure (from blue to yellow curves in Fig. 8B), the extracted
effective moduli Eeff approach each other, indicating that the
method is best suited for sufficiently large applied pressures.

All studied cases show an increase in effective stiffness for
stiffer nuclei. However, this increase is approximately 30% for
the largest and stiffest nuclei. Hence the localized force appli-
cation due to the micropipette geometry leads to much lower
measured Eeff compared to the global cell compression geome-
try, cf. Fig. 5. This clearly demonstrates – and quantifies – that
experimentally measured effective cell stiffnesses do not
only depend on the inner structure of the cell, but also on
the experimental setup.

5 Discussion and conclusions

Cell mechanics and mechanotransduction are strongly influ-
enced by the largest cellular organelle, the nucleus. Despite
increasing evidence of its mechanical importance, models
explicitly accounting for nuclear mechanics are still rare.

Fig. 8 (A) Micropipette aspiration of a spherical cell (RC = 15 mm) with nucleus (RN = 7.5 mm) into a pipette of Rp/RN = 2/3 with DP/EC = 0.5 in axial
symmetry. Shown are the cases EN/EC = 1, EN/EC = 2 and EN/EC = 10. Cell and nucleus boundary are depicted for three different time points: before
pressure application (dotted black), during pressure application (dashed gray) and in mechanical equilibrium (solid black). The solid line outside the cell
marks the edges of the pipette walls (top) and the spherical bead the cell adheres to (bottom). The color map shows the trace of the stress tensor
normalized by the cytoplasmic stiffness EC. (B) Effective moduli extracted from experiments as shown in A at DP/EC = 0.5 (blue), for higher pressures DP/
EC = 0.75 (red) and DP/EC = 1 (yellow), and at DP/EC = 0.5 but for a larger nucleus VN/VC = 0.3 (gray) or for a larger pipette Rp/RN = 1 (green). All cases
show an increase in effective modulus with nucleus stiffness, but much smaller as compared to the compression experiment in Fig. 5C. Note, due to the
unknown shape factor for the micropipette, we shifted the curves slightly such that for EN/EC = 1 the expected modulus is recovered. Simulations were
performed on N = 512 � 512 grid points. If not mentioned otherwise, the parameters used are RC = 15 mm, RN/RC = 0.5, EC = 1 kPa, nC = nN = 0.48,
a = 6 kPa and Y = 5 nN mm�2 (unit for adhesion strength is now different due to phase field-type definition, eqn (8)). Other parameters as in Table 1.
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We here developed a two-phase field approach for modelling
cell mechanics with an additional internal compartment asso-
ciated with nuclear elastic properties and investigated the
mechanical response of cells in a selection of biologically
relevant geometries and experimental setups. We also verified
our approach in several cases for which analytical solutions are
available to the elastic equations and investigated the effects of
cortical tension and viscoelasticity.

In the first part described in Section 3, we considered the
case of spread cells in unstructured and structured environ-
ments using a 2D plane stress formulation. For homogeneous
adhesion, the effect of a physiologically sized nucleus on the
mechanical response of the cell is small as the adhesion to the
substrate effectively shields the nucleus from deformations and
stresses. Even peripheral adhesion on a ring pattern is still
sufficient to protect the nucleus. However, in more structured
environments with highly localized adhesion sites, a much higher
transmission of stresses to the nucleus was observed. These
observations demonstrate theroretically that the actual adhesion
geometry can be sensed by cells at the nucleus, similar to recent
conclusions with a purely elastic model (no phase field).61

When modeling micro-patterned environments, stiffer
nuclei also change the cellular morphology, by perturbing the
formation of the invaginated arcs. Additionally, the nuclear
position largely effects the stress distribution within the cell,
which may be an important input for the cell with regard to the
determination of its polarity, e.g. when having to distinguish
between front and back. For stiff nuclei, ‘‘stress bridges’’
resembling stress fibers form from close-by focal adhesions
to the nuclear boundary, suggesting an effect on the perception
of mechanical cues. Again a similar effect can be seen in purely
elastic models (no phase fields).70

The here-proposed phase field method allows to model not
only stationary but also dynamic situations. As a simple exam-
ple we considered the failure of a focal adhesion for a cell on a
hexagonal micro-patterned substrate. The coupling of phase
field dynamics and elasticity made it necessary to use an
elastodynamic formulation for the evolution of the displace-
ment field.31 We here showed, that the relaxation into mechan-
ical equilibrium is of Kelvin–Voigt type. In turn, if a purely
elastic behaviour of the system is desired, it should not be
probed on timescales shorter than the respective relaxation
time. It should also be noted that the elastic description
memorizes the initial condition (i.e. the reference state of the
elastic displacement) of the cell before the application of forces
or stresses. Hence in situations such as the study of adhesion
failure in Fig. 4A, the cell does not relax to a (deformed)
pentagonal shape with an invaginated arc at the cell edge
where the disappeared focal adhesion was located. In the
future, the memory effect can be removed by an extra dynamics
for the reference state.

In the second part, described in Section 4, we modeled
compression experiments of cells between two parallel plates
and the aspiration of cells into micropipettes in an axial
symmetric geometry. Again, stiffer nuclei showed stress accu-
mulation near their boundary pointing towards a significant

role of nuclear mechanics in determining the properties of the
cellular environment. Importantly, our model allowed the
extraction of effective elastic moduli of the cell–nucleus com-
posite for both experimental methods, yielding consistently
lower effective moduli for local pressure application in micro-
pipette experiments compared to more global cell compression.
This shows theoretically that the determination of effective cell
moduli is not only dependent on cell geometry but also the
experimental setup used. A similar conclusion has been
reached when experimentally comparing different methods to
probe whole cell mechanics.94 For the micropipette aspiration
experiments the extraction of elastic moduli is best suited for
sufficiently large pressures. Low pressure application leads to a
slight underestimation in the range of 5% of the effective cell
stiffness, which is partially influenced by the unknown shape
factor for the pipette, cf. the discussion of Fig. 8B. We also
investigated the effect of cortical tension in the compression
geometry. It results in an increase of the required force needed
for compression. The stiffer the nucleus, the smaller is the
effect relative to the case without cortical tension.

The quasi-stationary compression of cells is described well
by Hertz theory and therefore allows the identification of an
effective modulus, similar to a very recent computational study
with elasticity (no phase field).21 We next demonstrated that
our phase field approach is also applicable in the viscoelastic
regime, e.g. for dynamic compression with different plate
velocities and relaxation studies. The force required for the
same compression increases with plate velocity, as time
becomes increasingly insufficient to relax the stress induced
by the plate motion. From numerical relaxation experiments we
could extract the relaxation time scale, which can be adjusted in
the model varying the parameter x in eqn (1) and (2), and the
effective viscosity, confirming that our approach is fully con-
sistent with the Kelvin–Voigt viscoelastic solid. At the current
stage, our model does not describe viscoelasticity of Maxwell
type, that is a viscoelastic fluid without memory. The best way
to achieve this in our context might be to introduce an own
dynamics for the reference state.

In the future, the here-developed method should prove
useful for investigating the effect of a nucleus and/or other
cellular organelles, potentially described with different material
laws, in a large variety of situations. Additional new insights on
mechanotransduction could be gained by examining the effect
of the nuclear position within the cell in fully three-
dimensional (3D) situations. In this respect, the phase field
method can be extended relatively easily to 3D, making it
possible to consider more complex environments like fibrous
network geometries or non-symmetric constrictions.95–97 The
presented method could also be used to describe the role of cell
nucleus mechanics in tissues, using the multi-phase field
approach.32–34 Note that recently, a new jamming transition
due to the presence of nuclei was predicted for tissues by an
active foam model.98 It would be interesting to study the same
effect in our dynamic continuum framework.

Another important context of cell and nuclear mechanics
is cell migration through constrictions, where the minimal
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constriction size is predominantly determined by the nuclear
size and stiffness.10 We envision to supplement the current
approach by self-organized internal driving forces inducing
cellular motility, that could be implemented by an actin ‘‘polar-
ization’’ field44 and should naturally enter the elastodynamic
eqn (2). In the context of mechanotransduction, the coupling of
the proposed method to a system of reaction–diffusion equa-
tions should allow to model nuclear translocation of proteins
like YAP/TAZ in response to nuclear straining (and opening of
nuclear pore complexes99–101). This could elucidate further –
and more directly – the role of nuclear mechanics on spatio-
temporal import dynamics and mechanically induced signal-
ling events.

In summary, the elastic phase field approach for modelling
the mechanics of nucleated cells is very versatile and easy to
generalize for future applications. The results presented should
be useful to quantify experiments and last but not least point to
many interesting implications with regard to the role of the
nucleus on whole cell mechanics, mechanosensing and related
subjects.
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Appendices
A Other parameters of the model

Table 1 contains the default values for additional parameters
used, if not specified otherwise in the figure captions.

In Section 4 Dt = 10�4 s.

B Analytical solution for an adherent contractile disk-like cell
with nucleus

We consider a concentric cell and its nucleus with possibly
different Young’s moduli EN and EC and Poisson’s ratio nN and

nC as depicted in Fig. 2A. Further we assume a homogeneous
and isotropic contractile stress s0(x, t) = s0 and spring stiffness
density Y(x, t) = Y. Both nucleus and cytoplasm are assumed to
be linearly elastic. In each of these two cell compartments the
equation of mechanical equilibrium

r�r � Yu = 0 (10)

has to be solved under respective boundary conditions. From
the radial symmetry of the problem follows that the only non-
vanishing displacement is in the radial direction, i.e. u = urer.
Therefore, eqn (10) can be rewritten in polar coordinates
yielding

r2
@2ur
@r2
þ r

@ur
@r
� 1þ r2

la2

� �
ur ¼ 0 (11)

with la ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ead= Y 1� na2ð Þ½ �

p
being the localization lengths59 for

cytoplasm (a = C) and nucleus (a = N), respectively. Note, that Y
could also vary between cytoplasm and nucleus. Eqn (11) is a
modified Bessel equation with general solution

urðrÞ ¼ AI1
r

la

� �
þ BK1

r

la

� �
(12)

where I1(x) and K1(x) are modified Bessel function of the first
and second kind and A and B are constants to be determined
via the boundary conditions for both subdomains. These are
for the nucleus compartment

uN
r (0) = 0 and srr(RN) = �sNd, (13)

where sN is the a priori unknown stress at the cell–nucleus
interface, and for the cytoplasm

srr(RC) = �s0d and uN
r (RN) � uC

r (RN) = 0. (14)

The stress sN at the nucleus–cytoplasm boundary can be
determined by using that

sNrrðrÞjr!RN
¼ sCrrðrÞjr!RN

: (15)

By using the above boundary conditions, the resulting solution
is

urðrÞ¼

� sNdlN
2mNþlN

I1
r

lN

� �

I0
RN

lN

� �
� 2mN
2mNþlN

lN

RN
I1

RN

lN

� � for 0� r�RN

ACI1
r

lC

� �
þBCK1

r

lC

� �
for RNor�RC

8>>>>>>>><
>>>>>>>>:

(16)

with lengthy but straightforward to obtain expressions for
AC, BC.
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Table 1 Phase field parameters not specified in the figure captions

Parameter Symbol Value Unit

Time step Dt 0.001 s
Diffusion coeff. phase field (PF)a Df 1.25 mm2 s�1

Friction coefficientb x 0.004 nN s mm�3

Local suppression coeff.b g(x) 0.014–0.04 nN s mm�3

Regularization parameter e 0.0025 mm2

Diffusion coeff. adhesion PF DY 0.25 mm2 s�1

Diffusion coeff. obstacle PF Dj 0.625 mm2 s�1

a For f A {r, c}, i.e. cell and nucleus. Sets the interface width to 0.5 mm.
b Note, in plane strain and axial symmetry the unit is nN s mm�4.
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33 J. Löber, F. Ziebert and I. S. Aranson, Sci. Rep., 2015,

5, 9172.
34 D. Wenzel and A. Voigt, Phys. Rev. E, 2021, 104, 054410.
35 B. A. Camley, Y. Zhang, Y. Zhao, B. Li, E. Ben-Jacob,

H. Levine and W.-J. Rappel, Proc. Natl. Acad. Sci. U. S. A.,
2014, 111, 14770–14775.

36 A. Moure and H. Gomez, Biomech. Model. Mechanobiol.,
2020, 19, 1491–1508.

37 A. Karma and W.-J. Rappel, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 1998, 57, 4323.

38 I. S. Aranson, V. A. Kalatsky and V. M. Vinokur, Phys. Rev.
Lett., 2000, 85, 118–121.

39 A. Karma, D. A. Kessler and H. Levine, Phys. Rev. Lett.,
2001, 87, 045501.

40 J. A. Warren, R. Kobayashi, A. E. Lobkovsky and
W. C. Carter, Acta Mater., 2003, 51, 6035–6058.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/2
1/

20
25

 5
:1

9:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00345d


4502 |  Soft Matter, 2024, 20, 4488–4503 This journal is © The Royal Society of Chemistry 2024

41 T. Biben and C. Misbah, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2003, 67, 031908.

42 K. John, P. Peyla, K. Kassner, J. Prost and C. Misbah, Phys.
Rev. Lett., 2008, 100, 068101.

43 D. Shao, W.-J. Rappel and H. Levine, Phys. Rev. Lett., 2010,
105, 108104.

44 F. Ziebert, S. Swaminathan and I. S. Aranson, J. R. Soc.,
Interface, 2012, 9, 1084.
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