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We study the dynamics of dense three-dimensional systems of active particles for large persistence times
at constant average self-propulsion force f. These systems are fluid counterparts of previously investigated
extremely persistent systems, which in the large persistence time limit relax only on the time scale of 7,. We
find that many dynamic properties of the systems we study, such as the mean-squared velocity, the self-
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intermediate scattering function, and the shear-stress correlation function, become t,-independent in the
large persistence time limit. In addition, the large ,, limits of many dynamic properties, such as the mean-
DOI: 10.1039/d4sm00338a square velocity and the relaxation times of the scattering function, and the shear-stress correlation function,

depend on f as power laws with non-trivial exponents. We conjecture that these systems constitute a new
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1 Introduction

Self-propelled or active particles, which use energy from their
environment to perform persistent motion, behave in surprising
and interesting ways.'™ Recently, novel intermittent dynamics
was identified in extremely persistent dense homogeneous two-
dimensional systems.*” These systems were shown to relax on
the time-scale of the persistence time 1, by going through
sequences of mechanical equilibria in which self-propulsion
forces balance interparticle forces. In contrast, at low and
moderate densities and long persistence times active matter
undergo motility-induced phase separation (MIPS), and separate
into regions with dramatically different densities.

Here we examine the fluid counterparts of systems considered
in ref. 4-7; extremely persistent homogeneous three-dimensional
active fluids in which the interparticle interactions never manage
to balance the self-propulsion forces, which influence particles’
motion in a nontrivial way. Although our fluid systems are less
dense that those considered in ref. 4-7, they are dense enough
such that we do not observe MIPS.

The parameter space of active systems is much larger than
that of passive ones. At a minimum, one has to specify the average
strength of active forces and their persistence time in addition to
the set of parameters characterizing the corresponding passive
system. If one considers athermal active systems, this results in a
three-dimensional control parameter space. Thus, when compar-
ing results of diverse studies, one needs to specify the path in the
parameter space that one is following.

Early studies of dense homogeneous active systems focused
on the glassy dynamics and the active glass transition.®™'” Many
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class of extremely persistent active systems.

of these studies considered a limited range of persistence times
and often examined the behavior at constant active tempera-
ture T, that characterizes the long-time motion of an isolated
active particle. For many models of self-propulsion, with
increasing 7, at constant T, the strength of active forces
decreases and dense active systems typically become glassy,
see Fig. 2(c) of ref. 6 for a recent example. Thus, to investigate
the effects of extremely persistent active forces it is common to
fix the force strength while increasing the persistence time.*””

Recently, it has been shown that interesting behavior
emerges for large persistence times in dense active particle
systems.®”"'® First, it was found that some extremely persistent
dense active systems relax only on the time scale of 7,.*” In
these systems, the mean squared displacement (MSD) and the
two-point overlap function exhibit well-defined large 7, limits
when plotted versus time rescaled by the persistence time.’
Distributions of velocity components were found to exhibit fat
exponential tails.® An intermediate-time plateau in the MSD was
absent. Instead, a region of super-diffusive MSD scaling with time
as ¢’ with § ~ 1.6 for times less than T, Was identified.®

Second, a recent study of two-dimensional active systems
that remain fluid in the large persistence time limit showed
that mesoscale advective flows, forming streams and vortices,
emerge for large persistence times.'® These flow patterns
resemble turbulent flows, and thus this phenomenon was
identified as a type of ‘““active turbulence”.

Here we study dense homogeneous three-dimensional active
systems that do not undergo dynamic arrest in the large
persistence time limit. In contrast to findings of ref. 4-7, for
large persistence times 1, many dynamic properties of our
systems become 7p-independent and their relaxation functions
exhibit well-defined limits when plotted versus time not scaled
by the persistence time. Also, the large persistence time limits
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of many properties depend on the strength of active forces fas
power laws. We emphasize that both the active systems studied
in ref. 4-7 and the fluid-like active systems studied here exhibit
universal behavior, but on very different time scales.

It could be surmised that, in the infinite 7z, limit, our
systems lie in the un-jammed phase of the active yielding phase
diagram studied (in two dimensions) by Liao and Xu.'’
However, these authors studied systems of particles interacting
via a harmonic repulsion, in which interparticle forces are bounded,
and thus strong enough self-propulsion forces are always able to
induce motion. In contrast, in our systems interparticle forces are
un-bounded, and thus their jamming phase diagram may be
different from that obtained by Liao and Xu.

2 Simulations

We study a three-dimensional 50:50 binary mixture of spheri-
cally symmetric active particles interacting via the Weeks—
Chandler-Andersen®® potential,

aee@@)] o

for r < ¢,5 = 2"%0,5 and 0 otherwise. Here, o,  denote the
particles species A or B and ¢ is the unit of energy. The distance
unit is set by ozp = 1.0, 644 = 1.4, and o, = 1.2. We study the
number density N/V = 0.451, which corresponds to the volume
fraction ¢ = nN[cas® + G5 )(12V) = 0.625.

We use the athermal active Ornstein-Uhlenbeck particle
model without thermal noise.>’>* The equation of motion for
the position r, of particle n is

éoi'n = Fn + fru (2)

where F, = — > V,V(ru,) and £, is the active force. &, = 1 is
m#n
the friction coefficient of an isolated particle and &yoz5°/e sets

the unit of time.

In turn, the self-propulsion forces evolve according to the
Ornstein-Ulenbeck process. The equation of motion for the
self-propulsion force acting on particle n reads

Tpfn = —f, + {p, (3)

where 7, is the persistence time of the self-propulsion and
{, is a Gaussian white noise with zero mean and variance
(GOt )) noise = 2E0Taldnmd(t — t'), where (.. .)poise denotes
averaging over the noise distribution, T, is a single particle
effective temperature, I is the unit tensor and we set the
Boltzmann constant kg = 1. The root-mean square strength of
active forces is f = /3T, /7. The time step for the simulations
ranged from 0.01 to 0.0001 with a smaller time step needed for
larger f"and longer t,. We simulated at least 10 7, for each of 4
productions runs, which required up to 10° time steps.

To check for finite size effects we studied systems of 1k, 8k,
and 64k particles at large persistence times. We did not find
any system size dependence of the system’s dynamics or
properties. The results shown in this work are for 1K particles
unless otherwise noted in the figure caption.
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Fig. 1 The persistence time dependence of the mean squared velocity
v? = (%) for fixed active force strength . The velocity decreases and then
saturates. The vertical dashed lines indicate approximate 7, at which the
saturation occurs. The dotted lines are the free particle value of V2 = £ for
each corresponding color.

3 Single-particle dynamics

We start by examining the persistence time dependence

b (i) -
N~ <Z F,>+ 3> 2F, .fn> + f2, which is shown in Fig. 1. With

of the mean square velocity,

increasing persistence time v> decreases and then saturates. For
the range of fthat we studied, the cancellation of the interparticle
and active forces is never complete and the system does not
become arrested on the time scale of the persistence time.>’

Next, we examine the persistence time dependence of
the MSD

(or(1)) —N1<Z[rn(1) —rn(O)}2>, 4)

n

shown in Fig. 2. At short times the motion is ballistic and it is
determined by v*, (67%(¢t)) ~ v*£."" For large persistence times the
short-time dynamics become t,independent, which confirms
saturation of v*. For small 7, and fixed f'we observe a well developed
intermediate time plateau crossing over to diffusive behavior at long
times. This behavior, characteristic of a system close to dynamic
arrest, can be understood by noticing that the state point f = 5.48,
7, = 0.001 is the same as the state point Teg = 0.01, 7, = 0.001 of
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Fig. 2 The mean squared displacement (MSD) (6r2(t)) for f = 5.48 and
several 1. For shorter 7, MSDs display a glassy plateau followed by diffusive
motion. With increasing t, an extended superdiffusive region appears that
is analyzed in Fig. 4(a).
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Fig. 3 The long time diffusion coefficient D for fixed active force strength
f as a function of persistence time. D grows with increasing 7, and is
proportional to , in the large 1, limit.

ref. 17. Fig. 2(c) and 3 of the latter paper show that this state point
is on the fluid side of the glass phase diagram, very close to the
dynamic arrest line. With increasing 1, the intermediate time
plateau characteristic of glassy dynamics disappears and the system
becomes more fluid like. Similar fluidization with increasing 7, and
fixed fwas observed in two-dimensional systems by Paoluzzi et al.**

At long times, the MSD exhibits diffusive behavior. The self-
diffusion coefficient, D = lim (6r*(1))/(61), is shown in Fig. 3.

For a given f it monotonically increases with increasing 7. At
large 7, we find that D ~ 1, indicated by the dashed lines.

We find a surprising time-dependence of the MSD between
the initial ballistic and the long-time diffusive regimes. In
Fig. 4(a) we show the MSD divided by v*#* to show this time-
dependence more clearly. The MSD exhibits a superdiffusive
behavior that does not follow a single power law. Instead, a
second, intermediate time ballistic regime appears, with velo-
city v;. In the 7, — oo limit the systems stays in the second
ballistic regime.

The time-dependence of the MSD shown in Fig. 4(a) is
reflected in the time-dependence of the velocity auto-correlation
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Fig. 4 (a) The mean squared displacement divided by v2t? for f = 5.48. For
large 1, at short times the motion is ballistic (not shown), and then there is
a super-diffusive regime. For very large 1, the super-diffusive motion
speeds up and the resulting behavior is approximately ballistic. For t >
1, long-time diffusive motion is observed. In the 7, — oo limit the system
stays in the second ballistic regime, with velocity vi. (b) The velocity
autocorrelation function. For very large 1, an intermediate time plateau
is observed. The level of the plateau is the same in both panels.
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Fig. 5 The distribution of velocities for f = 0.0548 for a range of persis-
tence times. The distributions are non-Gaussian; the tails become more
prominent with increasing 1, until the persistence time at which V2
saturates and then the distributions overlap. The dashed line represents
a Maxwell distribution.

function, VACF(7) = N~ 3" (i,(¢) - £,(0)), shown in Fig. 4(b). We
n

observe a two-step decay, which becomes increasingly more
pronounced with increasing t,. This agrees with the observation
in ref. 18, except that, since we keep strength of active forces f
constant, we find the plateau level to be 7, independent. We note
that the plateau levels are the same in both panels of Fig. 4. The
plateau level decreases with increasing self-propulsion force f.

Results shown in Fig. 4 suggest that, in the large 7, limit, the
diffusion can be thought of as a random walk consisting of
steps of length v, taken every 7. This reasoning rationalizes
the observed scaling D ~ t,. We note that while the physical
picture of a random walk of steps of length v,7,, taken every t, is
identical to the behavior expected at low densities, our systems
exhibit highly non-trivial dependence of v; on the average self-
propulsion force f, which we will discuss at the end of this
section. This dependence suggests that the observed effective
behavior is strongly influenced by interparticle interactions.

In Fig. 5 we show velocity distributions. As found by
Keta et al.,® the distributions are strongly non-Gaussian. Their
broad tails become more prominent with increasing t, and
then saturate.
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Fig. 6 The self-intermediate scattering function Fg(k;t) for f = 0.0548 and
a range of persistence times. The relaxation time decreases with increasing
persistence time until around 1,(f) where F(k;t) becomes independent of
persistence time. The inset shows the 1, dependence of parameter I' of fit
to Fulk:t) = ae~9"
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Fig. 7 The large t, limit of v?, D/7, and 1/15 as a function of the self-
propulsion strength f. The lines are power law fits where the exponent for
V2, D/tp and 1/tg are 2.6 + 0.1, 27 + 0.1 and 1.3 + 0.1, respectively. The
inset shows D/(rpvz) versus f, which varies between 0.02 to 0.2 over the
range of f examined, with error bars of about 0.05.

The evolution of the MSD with the persistence time is
reflected in the 1, dependence of the self-intermediate scattering

function
1 )
— N< E elk'“n(’)*'n 0))> (5)

We chose k = 5.3, which is approximately equal the first peak
of the total static structure factor. In Fig. 6 we show Fy(k;t) for f=
0.0548. With increasing 1, the intermediate time glassy plateau
disappears and the decay changes from stretched exponential,
to exponential, then to compressed exponential. Shown in the
inset to 'Fig. 6 is the parameter I" obtained from fits to Fy(k;¢) =

~(ry’ where we restrict @ < 1. I increases with increasing t,
and reaches a plateau above 7, ~ 94.

We find that the large persistence time limits of several proper-
ties discussed above depend on the strength of the active forces as
power laws. In Fig. 7 we show the large t,, limits of v* (squares),
Djt, (circles) and 7, (triangles). We find that the former two
quantities follow a power law with f with statistically the same
exponent, 2.6 =+ 0.1 for v and 2.5 = 0.1 for D/t,. We note that v* is
bound from above by 2, which corresponds to the limit in which
interactions become irrelevant compared to active forces. Thus, we
do not expect the power law for v* to extend up to arbitrary large f.
The power law of the relaxation time, 74 ~ f ' can be related to

10 -
- T T T -
[ 0.002 F EESEEN
S v S i 1

% = = E ! E
of Z 2 W 0001E |
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Fig. 8 Normalized shear-stress correlation function for f = 0.0548 and a
range of persistence times. The shear stress relaxation time initially
increases with 1, and then saturates. Additionally, X,,(0) grows with ,
and then it becomes approximately constant (inset).
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that of v?; in the large 7, limit F; decays on the time scale on which
a particle moves over its diameter, which scales as v.

We also analyzed the dependence of v, on the strength of the
active forces. To this end, we extracted v, for each f by finding
the plateau in (67%(t))/¢ for large t,,. We find that v, grows with
f as a power law with an exponent of 2.5 + 0.2, which is
statistically the same as the exponent for v*.

We emphasize that, although in the large 7, limit the motion
of individual particles is close to ballistic, it is still influenced
by the interparticle interactions in a highly non-trivial way. If
there were no interparticle interactions, scaling exponents
discussed above would have values 2 and —1.

4 Collective dynamics

The quantities discussed in Section 3 describe the single particle
motion in our many-particle systems. To examine collective proper-
ties we investigated the persistence time dependence of the stress
fluctuations and the rheological response. First, we examined the
shear-stress correlation function Z,4(¢) = V"~ (6,4(£)5,5(0)), where

)=y Y

n m#n

dr( r,,,,,)
drum

)IITI nm

: 6)

O'ac/}

and 7%, is the « component of the distance vector between particle n
and particle m.

In Fig. 8 we report the normalized shear stress correlation
function, X,(t)/2,,(0), for f=0.0548 and a large range of . For
small 7, there is a rapid decay to an emerging plateau followed
by a slow decay to zero. With increasing persistence time, the
decay of X,,(t) becomes less stretched; it is exponential for a
long enough 7,,. In the inset we show the dependence of the
initial value, X,,(0), on 7,. We see that the initial value first
grows with 7, and then plateaus.

To probe the rheological response of our active systems we
simulated shear flow by adding to the equations of motion (2) a
bulk non-conservative force F), = Eoyyne, with Lees-Edwards
boundary conditions.”® In Fig. 9 we show the average shear
stress, (oy,)/7, for f=0.548 and a large range of ;.. In Fig. 10 we
show the 1, dependence of the zero-shear-rate viscosity

©® 1p=0.1
O 1=03
A+ 1p=05

8 TFtp=10
10 * ,=10
<+ 1, = 1000
& 7, = 5000
7 Tp = 10000

f=0.548

107! 1

1072

1075 107

1073
Y
Fig. 9 Average shear stress (o,,) divided by the shear rate j at constant f =

0.548 for a range of persistence times. The zero-shear-rate viscosity n can
be obtained from the small shear rate plateau.

This journal is © The Royal Society of Chemistry 2024
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Fig. 10 The viscosity n at fixed average active forces strength versus .
The viscosity initially decreases with increasing 1, and then becomes
constant. The vertical dashed lines indicate approximate t, at which the
saturation occurs.

obtained from the small  plateaus of (ay,)/7. We find that 5
initially decreases and reaches a 7,-independent plateau.

We find that large 7, limits of collective properties also scale
with fas power laws. In Fig. 11 we show the dependence of the
large 1, limits of the relaxation time of the normalized stress
tensor autocorrelation function and of the viscosity on the
strength of the self-propulsion.

5 Static structure

When analyzing the dynamics in passive systems, one usually
tries to make connections between the average distribution of
the particles and their dynamics. To check how the average
arrangement of the particles in our active systems changes with
increasing 7, we evaluated the total steady-state structure factor

S(k) = %<Z <>> )

with summation over all particles in the system, and the pair
correlation function between the large particles,

g(r) :(N/V2)2<ZZ(S(r (r, rm))>, (8)

n m#n

where the summation extends over the large particles only.
In Fig. 12 we show that the peak height of S(k) initially
decreases with increasing t,, which nicely correlates with
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Fig. 11 The large T, limit of the relaxation time of X, (t)/X,,(0) (defined as
when this function equals e™) and of viscosity 5 as a function of the self-
propulsion strength f. The lines are power law fits where the exponents for
7, and n are —1.2 + 0.1 and —0.60 =+ 0.1, respectively.
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Fig. 12 The persistence time dependence of the steady-state structure
factor S(k) for f = 0.548. The peak height decreases with increasing
persistence time and then saturates at a large persistence time.

relaxation getting faster and viscosity decreasing. The peak
height then saturates at a large persistence time. The large 1,
limit of the structure factors still looks liquid-like, and thus it
does not signal the interesting dynamics we uncovered. To
describe the dynamics of extremely persistent dense active
fluids one cannot rely upon static structure factors only.

We note that the absence of any small wavevector peak
implies that our systems are homogeneous. We confirmed this
observation by evaluating local density histograms at several
simulated state points. Incidentally, the homogeneity allows us
to rationalize the absence of shear thickening that was observed
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Fig. 13 The pair correlation function between the large particles for f =
0.548 and f = 5.48 and two representative persistence times 7, = 1and 7, =
10 000. For small f the first peak in g(r) is sharply peaked; it is shown in
Fig. 14. There is little dependence of g(r) on the persistence time.
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Fig. 14 The first peak of the pair correlation function between the large
particles for f = 0.548 and f = 5.48 and two representative persistence
times 7, = 1 and 7, = 10000. The peak height decreases and the peak
width increases with increasing f. There is little dependence of the first
peak of g(r) on the persistence time.
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at large self-propulsions in ref. 26, which was attributed to
clustering and was dubbed motility-induced shear thickening.

In Fig. 13 and 14 we show the pair correlation function
between the large particles. In contrast to the behavior exhibited
by the structure factor, g(7) is not very sensitive to the changes in
the persistence time. However, the height of the first peak of g(r)
decreases rapidly with increasing self-propulsion force f while
the position of the first peak shifts to the smaller r, suggesting
that the system becomes effectively less crowded with increasing
/- This rationalizes decreasing large persistence time limits of the
relaxation times and of the viscosity and increasing large persis-
tence time limit of the diffusion coefficient.

6 Conclusions

We conjecture that the systems we presented here form a new
class of extremely persistent active matter systems. Earlier
investigations™’ revealed systems that relax on the time scale
of the self-propulsion and exhibit intermittent dynamics. The
systems with intermittent dynamics slow down with increasing
7p at fixed f, but they exhibit universal dynamics when investi-
gated as a function of time rescaled by 7. In contrast, the
systems we presented exhibit universal dynamics for large 7,
but as a function of un-scaled time. We expect that for higher
volume fractions there is a transition between the regime in
which the relaxation becomes independent of the persistence
time of the self-propulsion, which is the regime we analyzed,
and the regime in which the system flows only on the time scale
of the self-propulsion, which is the regime investigated
earlier.>’ At a fixed strength of the active forces the transition
is driven by the density. Since interparticle interactions in our
systems are not bounded, it is not obvious whether, at constant
density, the transition can be induced by changing the force
strength, like in two-dimensional systems with harmonic inter-
actions, which were investigated by Liao and Xu."’

For the systems studied here, the single-particle motion
exhibits two ballistic regions separated by a superdiffusive
regime. Classic signatures of two-step relaxation seen in glassy
systems are absent both in the MSD and Fy(k;t). Therefore, our
systems are not close to a glass transition. Many properties that
quantify the large persistence time limit of the relaxation
depend on the strength of the active forces as a power law.

In contrast to Keta et al,'® we did not observe essential
features of ‘‘active turbulence”. In particular, mean-squared
displacement difference of initially close by particles monitored
by Keta et al. was only slightly smaller than the MSD. This may
not be surprising since our systems have somewhat lower
density and larger active forces.

Finally, we note that approximate theories developed to
describe the relaxation in active fluids®> > we tested against
computer simulations for rather limited range of self-
propulsion force f and persistence time 7,. The discovery of a
new paradigm of extremely persistent active fluids with non-
trivial power laws calls for additional theoretical work. The
single-particle motion in the systems that we investigated can
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perhaps be described as a persistent random walk with renor-
malized density and self-propulsion-dependent velocity.
However, it is unlikely that such a simple picture could also
account for the collective dynamic properties.
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Appendices

Motility induced phase separation (MIPS) is often reported and
extensively studied in active systems. In two-dimensional sys-
tems it has been shown that MIPS will occur with increasing 7,
and fixed f over a range of densities.”® We note that, in three-
dimensional systems states with MPIS, coexistence is meta-
stable with respect to active crystallization in a large region of
the parameter space.>® Here we claim that our system is not
undergoing MIPS at any of the state points studied.

To determine if the system undergoes MIPS one can examine
structural signatures and density distributions. One structural
signature is an upturn of the structure factor S(k) at small
wavevectors k. However, an upturn can occur if there are large
density fluctuations but no MIPS. The density distribution is
another method to examine MIPS, where two peaks indicate that
the system has separated into high density and low density
regions. We use these two methods.

To calculated the density distribution we divide the system
into boxes of length / = 2.6082 and determine the density inside
each box. For each configuration used in the calculation we
determine the density distribution of the small boxes and then
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Fig. 15 (a) The structure factor S(k) for f = 54.8 for our 64k system. There

is a distinct upturn at small wavevectors which is not see for our other f.
(b) The density distribution for the same f, N, and t,, as shown in (a), and for
two state points for which structure factors were shown in Fig. 12. We do
not observe the two peak structure expected for systems undergoing
motility induced phase separation.
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average these distributions. To examine smaller wavevectors
and to get a more accurate density distribution we present
results for our 64k systems.

As shown in Fig. 12 we don’t see any evidence of an upturn
in the low wavevector values of S(k) for f= 0.548. The only fwe
do observe an upturn at small wavevectors is f= 54.8, Fig. 15(a).
We note that the small t upturn does not increase with
increasing 7, and thus we don’t expect any changes with
increasing t,. The density distribution for these state points
do not show a two peak structure and remains statistically
unchanged when increasing t,, Fig. 15(b). We conclude that
there are large density fluctuations, but the system is not yet
undergoing MIPS. For larger f we expect that this system will
exhibit MIPS.

Acknowledgements

We thank L. Berthier and P. Sollich for discussions and com-
ments on the manuscript. Part of this work was done when GS
was on sabbatical at Georg-August Universitdt Gottingen. He
thanks his colleagues there for their hospitality. We gratefully
acknowledge the support of NSF Grant No. CHE 2154241.

Notes and references

1 M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao and R. Aditi Simha, “Hydrodynamics of soft
active matter”’, Rev. Mod. Phys., 2013, 85, 1143-1189.

2 J. Elgeti, R. G. Winkler and G. Gompper, “Physics of
microswimmers-single particle motion and collective beha-
vior: a review”, Rep. Prog. Phys., 2015, 78, 056601.

3 C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt,
G. Volpe and G. Volpe, “Active particles in complex and
crowded environments’’, Rev. Mod. Phys., 2016, 88, 045006.

4 R. Mandal, P. J. Bhuyan, P. Chaudhuri, C. Dasgupta and
M. Rao, “Extreme active matter at high densities”, Nat.
Commun., 2020, 11, 2581.

5 R. Mandal and P. Sollich, “How to study a persistent active
glassy system”, J. Phys.: Condens. Matter, 2021, 33, 184001.

6 Y.-E. Keta, R. L. Jack and L. Berthier, “Disordered Collective
Motion in Dense Assemblies of Persistent Particles”, Phys.
Rev. Lett., 2022, 129, 048002.

7 Y.-E. Keta, R. Mandal, P. Sollich, R. L. Jack and L. Berthier,
“Intermittent relaxation and avalanches in extremely per-
sistent active matter”’, Soft Matter, 2023, 19, 3871-3883.

8 L. Berthier and J. Kurchan, “Non-equilibrium glass transi-
tions in driven and active matter”’, Nat. Phys., 2013, 9,
310-314.

9 L. Berthier, “Nonequilibrium Glassy Dynamics of Self-
Propelled Hard Disks”, Phys. Rev. Lett., 2014, 112, 220602.

10 R. Ni, M. A. Cohen Stuart and M. Dijkstra, “Pushing the
glass transition towards random close packing using self-
propelled hard spheres”, Nat. Commun., 2013, 4, 2704.

11 G. Szamel, E. Flenner and L. Berthier, “Glassy dynamics of
athermal self-propelled particles: Computer simulations

This journal is © The Royal Society of Chemistry 2024

View Article Online

Paper

and a nonequilibrium microscopic theory”, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2015, 91, 062304.

12 R. Mandal, P. J. Bhuyan, M. Rao and C. Dasgupta, ‘‘Active
fluidization in dense glassy systems”, Soft Matter, 2016, 12,
6268-6276.

13 L. Berthier, E. Flenner and G. Szamel, “Perspective: Glassy
dynamics in dense systems of active particles”, J. Chem.
Phys., 2019, 150, 200901.

14 N. Klongvessa, F. Ginot, C. Ybert, C. Cottin-Bizonne and
M. Leocmach, “Active Glass: Ergodicity Breaking Dramati-
cally Affects Response to Self-Propulsion”, Phys. Rev. Lett.,
2019, 123, 248004.

15 L. Janssen, ‘“Active glasses”, J. Phys.: Condens. Matter, 2019,
31, 503002.

16 E. Flenner, G. Szamel and L. Berthier, “The nonequilibrium
glassy dynamics of self-propelled particles”, Soft Matter,
2016, 12, 7136-7149.

17 L. Berthier, E. Flenner and G. Szamel, ‘“How active forces
influence nonequilibrium glass transitions”, New J. Phys.,
2017, 19, 125006.

18 Y.-E. Keta, J. U. Klamser, R. L. Jack and L. Berthier, “Emer-
ging mesoscale flows and chaotic advection in dense active
matter”’, Phys. Rev. Lett., 2024, 132, 218301.

19 Q. Liao and N. Xu, “Criticality of the zero-temperature
jamming transition probed by self-propelled particles”, Soft
Matter, 2018, 14, 853-860.

20 J. D. Weeks, D. Chandler and H. C. Andersen, “Role of
Repulsive Forces in Determining the Equilibrium Structure
of Simple Liquids”, J. Chem. Phys., 1971, 54, 5237-5247.

21 G. Szamel, “Self-propelled particle in an external potential:
Existence of an effective temperature”, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2014, 90, 012111.

22 U. M. B. Marconi, N. Gnan, M. Paoluzzi, C. Maggi and R. Di
Leonardo, “Velocity distribution in active particles sys-
tems”’, Sci. Rep., 2016, 6, 23297.

23 E. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco and
F. van Wijland, “How Far from Equilibrium Is Active
Matter?”, Phys. Rev. Lett., 2016, 117, 038103.

24 M. Paoluzzi, D. Levis and I. Pagonabarraga, “From motility-
induced phase-separation to glassiness in dense active
matter”’, Commun. Phys., 2022, 5, 111.

25 A. W. Lees and S. F. Edwards, “The computer study of
transport processes under extreme conditions”, J. Phys. C:
Solid State Phys., 1972, 5, 1921-1929.

26 A. Giilce Bayram, L. Biancofiore, F. J. Schwarzendahl, H. Lowen
and L. Biancofiore, “Motility-induced shear thickening in dense
colloidal suspensions”, Soft Matter, 2023, 19, 4571-4578.

27 G. Szamel, “Theory for the dynamics of dense systems of
athermal self-propelled particles”, Phys. Rev. E, 2016,
93, 012603.

28 A. Liluashvili, J. Onody and T. Voigtmann, “Mode-coupling
theory for active Brownian particles”, Phys. Rev. E, 2017,
96, 062608.

29 M. Feng and Z. Hou, “Mode coupling theory for none-
quilibrium glassy dynamics of thermal self-propelled parti-
cles”, Soft Matter, 2017, 13, 4464-4481.

Soft Matter, 2024, 20, 5237-5244 | 5243


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00338a

Open Access Article. Published on 18 June 2024. Downloaded on 1/7/2026 10:59:00 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

30 J. Reichert, L. F. Granz and T. Voigtmann, ‘“Transport
coefficients in dense active Brownian particle systems:
mode-coupling theory and simulation results”, Eur. Phys.
J. E: Soft Matter Biol. Phys., 2021, 44, 27.

31 M. Feng and Z. Hou, “Mode-coupling theory for the
dynamics of dense underdamped active Brownian particle
system”, J. Chem. Phys., 2023, 158, 024102.

5244 | Soft Matter, 2024, 20, 5237-5244

View Article Online

Soft Matter

32 V. E. Debets and L. M. C. Janssen, ‘“Mode-coupling theory
for mixtures of athermal self-propelled particles”, J. Chem.
Phys., 2023, 159, 014502.

33 A. K. Omar, K. Klymko, T. GrandPre and P. L. Geissler,
“Phase Diagram of Active Brownian Spheres: Crystallization
and the Metastability of Motility-Induced Phase Separa-
tion”, Phys. Rev. Lett., 2021, 126, 188002.

This journal is © The Royal Society of Chemistry 2024


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00338a



