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1 Introduction

Surface coating refers to the process of applying a layer or layers
of a substance onto a surface to protect, improve, or decorate it.
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During coating processes, dust deposition can lead to an uneven thickness in the resulting film, posing
significant problems in industrial processes. Our study explores the effects of solid defects using a
vertical cylindrical fiber deposited on a silicone oil film coating a horizontal solid substrate. We use a
hyperspectral camera to measure the film thickness by interferometry in the vicinity of the defect.
As predicted and observed in many studies on various geometries, a circular groove appears around the
fiber because of the capillary suction induced by the meniscus that grows at the bottom of the fiber.
We measure the evolution of the thickness of the film at the groove over time. The thickness decreases
and then increases again leading to the healing of the perturbation over time. We propose that healing
is due to the arrest of the suction when the meniscus reaches its equilibrium shape. By combining
geometric analysis with the thin film equation, we have developed scaling laws that predict both the
minimum thickness of the groove, that we call the time—minimum thickness, and the time required to
reach this minimum. If the time—minimum thickness reaches the thickness at which intermolecular
forces begin to play a role prior to healing, the thickness of the groove will stop decreasing and saturate
due to the competition between drainage and repulsive intermolecular forces. Based on the previous
scaling law, we developed a scaling law accounting for the critical initial thickness of the film below
which the intermolecular repulsion will start to have an effect, which is in good agreement with our
experiments. These results thus offer valuable insights into predicting and preventing defects in coating
processes, thereby improving the quality and reliability of coated products in various industries.

by creating ribs while roll-coating"* and various mechanisms
can induce thickness heterogeneities through drying such as
evaporation-induced instabilities,>® evaporation inhomo-
geneities” or the coffee ring effect®' in which particles set

This process is used to enhance properties like the appearance
of the surface, its corrosion, wear or scratch resistance, and its
chemical stability. Among different possible coating techni-
ques, such as chemical vapor deposition (CVD), physical vapor
deposition (PVD), and electroplating, the use of a liquid is a
cheap and common technique.® In this technique, surface
coating typically involves spreading a liquid film, followed by
a drying process.>® Most applications, designed to confer
chemical, optical, as well as mechanical properties to the
surface, necessitate a film that is homogeneous in thickness
at an optical scale. Nevertheless, spontaneous instabilities,
such as the ribbing instability, can alter the film homogeneity
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on the edges of the drop.

The presence of a defect at the liquid/air interface can increase
these heterogeneities."' ™ When a wetting sub-millimetric defect,
such as a dust particle, is deposited on a film of micrometric
thickness #,, the meniscus rises around the dust particle. This
phenomenon can be reproduced using a fiber of small radius r¢
deposited vertically in contact with a liquid film coating a
horizontal solid substrate. The equilibrium profile, which corre-
sponds to the long-time situation, is a flat film connecting a
meniscus. When the fiber radius is small compared to the
capillary length, the equilibrium meniscus height scales as the
fiber radius'**® and the thickness profile decreases continuously
from this maximum to the flat film thickness #,.

Upon contact between the fiber and the substrate, a small
volume of liquid is displaced and forms an initial meniscus of
strong negative curvature. Because of its low capillary pressure,
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it then sucks the liquid from the film, rises on the fiber, and
grows.'®'® This suction creates a groove corresponding to the
appearance of a minimum in the thickness profile #(r,t), which
is characterized by its thickness &,(t). Such a groove has been
observed in many different situations and geometries as soon as a
flat film is in contact with a meniscus: in soap films and soap
bubbles, where the groove is also referred to as a dimple,"” > in
coalescence problems,” as well as in inkjet printing'® or in the
case of solid objects on liquid deposited films."**®

Aradian et al.*® predicted the self-similar profiles achieved
by the groove over time in a soap film or a wetting film, in the
vicinity of a meniscus of constant radius. In the situation of a
vertical fiber, the meniscus radius grows over time and its
negative Laplace pressure decreases in the absolute value.
Aradian’s model therefore does not apply in this case, but the
physical processes leading to a groove still hold. As the equili-
brium profile achieved over time does not exhibit any mini-
mum, the groove is only present in the transient regime.
Consequently, h4(t) has a non-monotonic time dependency,
reaching its minimum value Ag"" at ¢y, In this scenario, after
tmin, the film thinning stops, and the perturbation induced by
the dust particles relaxes towards a meniscus of height compar-
able to the dust particle size. If hg““ is smaller than Ayqw =
100 nm at which intermolecular forces start to play a role,
the film dynamics may be affected by these forces before ¢yip.
The precise value of hgin, and its comparison with A,qw, thus
determines the fate of the final coating.

In this work, we provide the first experimental evidence of the
time-minimum groove thickness. We develop scaling laws for
hg‘i“ and i, in good agreement with our quantitative measure-
ments. Additionally, we predict the critical film thickness below
which the film will reach intermolecular repulsion forces.

2 Experimental setup and results

To observe the surface deformation in the vicinity of a cylind-
rical defect, we use a thin silicone oil film (HMS 301 Gelest) of
viscosity = 30 mPa s (at 25 °C), surface tension y = 20 mN m ™"
and density p = 980 kg m~>. The capillary length is thus

l. = +/v/(pg) = 1.4mm. A film of controlled thickness is depos-
ited on a silicon wafer by spin-coating (Polos Spin 150i) at a
rotation speed between 400 and 780 rpm during 30 seconds.
We explore a range of initial thicknesses %, from 9 pm to 21 pm.

A vertical cylindrical glass fiber of radius r¢ (Hilgenberg,
radii from 100 pm to 500 pm) is fixed above the wafer, which is
moved up with a lab jack. The wafer is covered by a Petri dish
lid, in which a hole is drilled for the fiber to go through. The
slow approach is stopped when the fiber begins to buckle,
which makes sure that it is in contact with the wafer. As soon as
this contact is made, the interference patterns provide a direct
signature of the surface deformation (Fig. 1(b)). The circle of
bright colors indicated by an arrow in Fig. 1(b) corresponds to the
groove. This direct visualization shows that this groove remains
axisymmetric, consistently with the good reproducibility of our
groove measurements close to ¢,;,. Nevertheless, for the thicker
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Fig. 1 (a) Experimental setup: a hyperspectral camera receives the reflection
of a white LED light on a thin silicone oil film deposited on a wafer.
(b) Photograph of the film after depositing the fiber on the wafer. The lower
half of the fiber is a reflection on the wafer. One can see the surface
deformation thanks to the thin film interferences and especially the colored
circle that detaches from the rest, which corresponds to the groove. The
observation line of the camera, materialized by a blue solid line, is set to be a
radius of the system. (c) Space—time diagram of the colors of the film: the
radius of the fiber is drawn in grey, the black region is the meniscus, next to it
there is a grey region, where the thickness cannot be measured because the
spectra are not resolved due to high thickness variation in space, then there is
a thin colored region which is the groove, and then a series of fringes which
correspond to the rest of the film. (d) Crop at early time of the space—time
diagram above. The first colored region, the closest to the meniscus, where
the colors do not vary much, is the groove. The pink region corresponds to
the time minimum of the groove thickness, h§™". The second flat colored
region is the bump. The distance w between the bottom of the groove and
the top of the bump is highlighted.

fibers, the buckling can result in a long-range asymmetric pertur-
bation. Moreover, spin-coating results in a thicker film at the edge
of the wafer, which will cause heterogeneities far from the fiber.

We measure quantitatively the film thickness along a line
(blue solid line in Fig. 1(b)) thanks to a hyperspectral camera
(Pika L-Resonon), receiving the reflection of a white LED fiber
optic light (Dolan-Jenner Fiber-Lite Mi-LED) on the film
(Fig. 1(a)). The camera is carefully oriented so that the line of
measurement is along a radial direction. A hyperspectral cam-
era is the equivalent of a line of spectrometers, which measures
the spectrum of light for each point of the line the camera is
aiming at. The camera software produces a space-time diagram
of the colors of the film (Fig. 1(c)), with a light spectrum
available at each pixel. We use the oospectro python library®®
to process the obtained spectra and compute the corresponding
thicknesses with a precision of 20 nm. The range of initial
thicknesses that we can explore is limited. The camera spectral

This journal is © The Royal Society of Chemistry 2024
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resolution is too low to resolve the numerous oscillations of the
spectra at higher thicknesses. The oospectro method prevents
the measure of too small thicknesses, under 400 nm approxi-
mately. The possibility to measure the entire profile at all times
determines our choice of the initial film thickness range:
between %, = 8.4 pm and A, = 21 pm. We obtain the profile
h(r), with r the radial distance from the center of the fiber,
determined as the middle of the black region at ¢ = 0. r is known
with a precision of 5 pm which is the resolution of the camera.
In Fig. 1(c) the space-time diagram is cropped so that the first
black pixel on the left corresponds to the edge of the fiber.

In Fig. 2(a), we plotted different thickness profiles for different
times ranging from ¢ = 0 h to ¢ = 4.0 h. The origin of time is
determined when the perturbation appears on the space-time
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Fig. 2 (a) Typical thickness profiles: thickness of the film h as a function of

the radial position r for different times (here for hg = 14.3 um and r¢ = 100 pm).
tis known with an accuracy of 5 s, given the frame rate of the camera. Close to
the fiber, the thickness decreases as we go down the meniscus. The film gets
thinner till it reaches a minimum hy(t) at the bottom of the groove, and finally
relaxes towards the flat part of the film of thickness hg. The thickness is not
measured at small r, which corresponds to the meniscus, because the profile
is too steep. (b) Thickness profiles at early times zoomed in on the groove: the
groove first deepens and then fills back up. hg" is the time—minimum
thickness of the groove.
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diagram, the acquisition starting before making the contact. The
precision of £5 s is given by the frame rate of the camera. For all
the times, we observed similar shapes for the profiles. At small r,
i.e. close to the fiber (all the geometrical notations are defined in
Fig. 4), and in the upper part of the meniscus, there are no points
as the meniscus is too steep to measure the thickness. At the end
of the meniscus, the thickness A(r) decreases, goes through a
minimum, and increases again. This space minimum corresponds
to the bottom of the groove located at the position r, and with a
thickness A,(t). On the first recordable profile shown in Fig. 2(a), at
t =0 h, we can see that at r larger than r,, the thickness increases
and reaches a maximum (a bump) at 1, and then relaxes towards
the flat part of the film. The positions 7,(t) and r,(¢) increase with
time. Focusing on the groove at early times, in Fig. 2(b), we see that
the groove first deepens until a thickness 5" and then fills back
up. To quantify this space minimum, we extract the thickness at
the bottom of the groove /,(t) from those thickness profiles and
plot it against time as shown in Fig. 3(a). We see that the evolution
of the groove thickness /,(t) is indeed non-monotonic and reaches
its time minimum value ;" at the time #y,. This is the time-
minimum thickness we mentioned in the introduction. In the
discussion we will focus on this time-minimum thickness of the
groove, ig™", and show that it is governed by the growth of the
meniscus. In the following, all parameters X taken at this instance
will be denoted X, or X™".

We can also extract the “width” of the groove w, defined as the
distance between the bottom of the groove and the top of the
bump, r,-7,. The measured value is extracted from the space-time
diagrams as shown in Fig. 1(d). However, we can only measure w
at early times (~10 min) given that w grows over time (Fig. 3(b))
and the bump quickly goes out of the field of view of the camera.

3 Discussion

Let us start with a description of the equilibrium shape of the
meniscus. The height of the meniscus is fixed by the fiber
radius r;. Nevertheless, even for small fiber radii, the lateral
extension far from the fiber is given by the capillary length
I..'7%® The semi-analytic expression of the entire profile in the
limit of fiber of radius much smaller than the capillary length is
1(r), given in Section 6 from ref. 26.

ln(r+ x _,‘3>+KO(Z)], o)

where K, is the modified Bessel function of the second kind of
order 0. This profile is plotted in the inset of Fig. 4 for the three
fiber radii we use. Its asymptotic behavior at a distance r > r¢is
I ~ reKo(r/l.). We checked (not shown) that the equilibrium
meniscus volume is dominated by this long-range behavior

W) =r

and, using [°xKo(x)dx = 1, we get

Qfﬁ‘ ~ rflcz. (2)

The scaling of the radius of curvature of the static menis-
CUS T',eq in the (r,2) plane will also be needed in the following.

Soft Matter, 2024, 20, 7715-7722 | 7717
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Fig. 3 (a) Typical time evolution of the thickness of the groove hy (here
for hg = 14.3 um and r = 100 pm). First, the groove deepens, then it
reaches a minimum, and finally, it fills back up again. (b) Width of the
groove w over time for different initial thicknesses hg and fiber radii r¢: the
groove gets wider with time and with thicker films. The black symbols are
used to better distinguish the shapes of the symbols.

Close to the groove minimum, it is dominated by the last term
of eqn (1) and scales as:

1 re
~ 5 (3)
C

T'tz,eq

Before reaching its equilibrium shape, the thin film is
governed by the lubrication equation

oh v

. 3 2
50 =3y (FYV). (a)
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Fig. 4 Notations used in the models: r; is the fiber radius, hg is the initial
thickness of the film, w is the width of the groove, rq is the position of the
groove, rp is the position of the bump, Q, is the volume of the meniscus,
and Qg is the volume of the groove. (inset) Profile of the static meniscus
computed with the equation of the interface from James?® (Section 6).
The black line is the asymptotic profile for r > ry.

With a vertical characteristic length scale Ay, this equation
directly imposes a scaling for the in-plane length scale, which
has been proven to be valid in many different systems.'**%?27:28

This scaling
1/4
W~ (%h(ft) , (5)

is also observed to rescale our data (Fig. 5). The different curves
roughly collapse on a single master curve of slope 2.2 + 0.45.
For the fiber of radius 250 um, the data are more dispersed than
for the fiber of radius 100 um. This is due to the fact that for
several experiments for 7y = 250 pum, the perturbation is not
perfectly axisymmetric around the fiber as previously discussed.
Moreover, the edge effects discussed previously are probably the
cause of some curves deviating from the straight line at later times.

However, in our specific situation, the film is in contact with
a meniscus, whose radius of curvature r., introduces another
length scale. The above scaling (eqn (5)) is therefore not the
only possible one for in-plane lengths, and a more detailed
study is required. The long-time behavior of an initially flat film
in contact with a meniscus has been solved by Aradian et al.*°
In their case, the meniscus is invariant by translation in one
direction and of constant radius of curvature. The scalings
of our data will be obtained by adapting their results to our
specific geometry.

In the geometry of Aradian et al., the groove can be des-
cribed through three characteristic length scales (denoted
respectively /,  and w in ref. 20 and adapted to our notations
in the following, with a superscript ‘a’): the lateral extension
of the perturbation w?, the thickness at the minimum of the
groove A and the in-plane characteristic length near the
bottom of groove wg (typically the groove width at h = 2A3).
The scaling obtained for w® does not depend on the presence of

This journal is © The Royal Society of Chemistry 2024
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Fig. 5 Width of the groove w as a function of the scaling of w for different
fiber radii rr and initial thicknesses hq: the data collapse on a master curve with
slight scattering due to experimental conditions. The dashed line is the mean
of the slopes resulting from the fits of each experiment; the coefficient of this
slope is 2.2. The upper and lower slopes of the grey zone correspond to the
slope of the dashed line plus or minus the standard deviation of all the slopes
of the fits of each experiment, this standard deviation being 0.45.

the meniscus and the scaling of eqn (5) is recovered, consistently
with our experimental observations. However, wy scales differently
and is obtained by (i) matching the film curvature on the left side
of the groove with the meniscus curvature and (ii) matching the
slopes on the right side of the groove. As the meniscus size
depends on the time in our situation, the time scalings for wg
and hg cannot be directly used. In particular, with a steady
meniscus, the groove thickness A decreases as a function of time
whereas in our situation /(t) is non-monotonic. However, the
matching conditions (i) and (ii) are true at each time and should
remain valid in our case, leading to, respectively,

hg 1
R (6)
Wy Tz
and
hz hO
=~ )
We w
These scalings impose that, at each time, the minimal

thickness in the groove scales as

o\
hy ~ Iy (W) (8)
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4 Scaling laws for h]"™ and tmin

We propose to associate the conditions of eqn (8) with a volume
conservation law to predict hg‘in. At time ¢, the capillary
suction of the meniscus is overcome by the leveling process of
the film, and we assume that the meniscus shape already scales
as the equilibrium shape, so, using eqn (2), Qm™ ~ rdl2
Indeed, in Fig. 1(c), one can see that at ¢, the black zone,
which is the meniscus width, has already reached 75% of its
equilibrium value. On the other hand, the volume extracted
from the groove at this time can be estimated as

QP ~ R — (FP — B, ()

with 75" and "™ respectively the positions of the groove and
the bump at ¢,;, (Fig. 4). We assume that the groove is very
deep so 1y — hg"™ ~ ho and that wy,;, ~ ", which leads to:

Q™ ~ RoWin’ (10)

The volume conservation imposes that this volume extracted
from the groove equals the sum of the meniscus and bump
volumes. Assuming that the bump volume remains smaller
than the meniscus volume (or at most of the same order), we
find that QM" scales as ngi“. The volume conservation can thus
be expressed as rid.”> ~ AgWmin> which gives

(12
Wmin ~ le| 7~ .
ho

This cannot be tested directly as the bump is outside the
field of view of the camera at ¢.,i,, SO we cannot measure w any
longer.

We use eqn (8) at tmin, eqn (11), and the scaling of r,, at
equilibrium (eqn (3)) to build a scaling law for hg":

(1)

htl?  ho’

e

hrgm'n ~

(12)

Wmin 2y [y

This scaling law describes well our data of the time-mini-
mum thickness of the groove for different initial thicknesses
and fiber radii (Fig. 6) as they collapse on a master curve. The
dashed line is a fit of all the data and its slope is 14 which is of
order-unity, and therefore the scaling law is validated.

Additionally, assuming that the scaling of w, given by
eqn (5), still holds at ¢y, and combining it with eqn (11), we
get a scaling for tyn:

274
n el
7 ho

(13)

min ™

This scaling is tested in Fig. 7. The data for different initial
thicknesses #, and fiber radii r¢ collapse on a master curve for
the smallest fiber radii 7y = 100 pm and 250 pm. The dashed line
is a straight line fit of these two data series. The surprisingly
small slope of 1/162 could be attributed to the rough estimation
of the volumes.

The data obtained with the fiber of radius ¢y = 500 um are
significantly below the master curve. In this case, r¢ gets close to

Soft Matter, 2024, 20, 7715-7722 | 7719


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00292j

Open Access Article. Published on 11 September 2024. Downloaded on 1/23/2026 10:56:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
8-
/E\ 61 ,//
= L
CEVE .
2
@
AN
0 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6
hire (um)
ry = 100 pm ry = 250 pm r¢y = 500 pum
. ho = 10.7 pm W hy=15.2 pm hy = 18.3 pm
. ho=11.4 pm ho=16.2 um
. ho=11.7 um hy = 18.3 pm
. hy = 14.3 pm ho=21.1 pm
ho=16.2 pm
hy = 18.3 pm
ho = 18.8 um

Fig. 6 Time minimum of the groove thickness hg‘i” as a function of the
theoretical value of hg"" for different fiber radii r¢ and initial thicknesses ho.
The dashed line is a fit of all the data, and the coefficient is 14.

the capillary length (/. = 1.4 mm), and the length scale separa-
tion begins to fail, which may explain this discrepancy.

5 Towards intermolecular repulsion

As hg‘i“ decreases with h,, if we conduct experiments with even
smaller initial thicknesses (smaller than 10 pm), we can expect
hfg“i“ to reach a thickness at which the intermolecular forces
start to play a role before or at fy,;,. To reach such small
thicknesses, we have used a silicon oil with a smaller viscosity,
n = 3 mPa s. Indeed, the process is so slow at small thicknesses
with the viscous oil that the heterogeneities due to the spin-
coating start to invade the film before ¢.,;,. For a less viscous
oil, we sometimes obtain space-time diagrams that look like
the one in Fig. 8. At early time, there is a groove very close to the
meniscus; its colors are barely visible on the space-time dia-
gram. At longer time, we see that a zone of almost uniform
color (beige here) appears close to the meniscus which is the
black area. It corresponds to a thin flat zone. To measure the
thickness in this zone, we use the spectra measured using
the hyperspectral camera. The thickness is too small to use the
oospectro library to compute the thickness. Thus, we use the
Sheludko renormalization.> It consists of inverting the func-
tion giving the intensity as a function of the thickness since it is
bijective for small enough thicknesses. The measured thickness
is of the order of 10 nm. We call this thin film a Newton film
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Fig. 7 Time tmin when the groove reaches its minimum thickness, as a
function of the theoretical value of t;,, for different fiber radii r and initial
thicknesses hg. All data collapse on a master curve except the data for the
largest fiber radius ry = 500 um as this radius gets close to the capillary
length therefore the length scale separation begins to fail. The dashed line
is a fit of all the data except rf = 500 um, the coefficient being 1/162. The
error bars are estimated based on the width of the time interval at which
we determine the time-minimum thickness. The legend is the same as in
Fig. 6 on the left.

\
\

{ M
\\\
Fig. 8 Space-time diagram of a film which is a Newton film before tpin.
The radius of the fiber is 250 um and the initial thickness of the film is 5 pm.
Close to the meniscus, we see a beige fringe that gets much larger than

the other fringes. Before the beige fringe enlarges, there is a groove very
close to the meniscus, which is difficult to see on the image.

with reference to the Newton black film in soap films, which
necessitate repulsive forces to be stable.

We want to measure the critical initial thickness for which
the groove will deepen enough (before ¢,;,) to reach a thickness
at which a Newton film appears. We built a phase diagram,
plotted in Fig. 9, discriminating between experiments where a
Newton film appears before ¢.,;, (in green) or does not appear
before ¢y, (in red). tyin is determined via the scaling of
eqn (13) and the coefficient from Fig. 7. Orange points are
for experiments with rs = 500 um where t.,;, could not be

This journal is © The Royal Society of Chemistry 2024
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Fig. 9 Phase diagram of the film: the initial thicknesses hg are plotted
against the fiber radii rr. One point corresponds to one experiment.
Crosses denote a viscosity n = 3 mPa s (PDMS) while full points stand for
n = 30 mPa s (HMS 301 Gelest). The green points correspond to situations
in which the Newton film appears before the groove reaches its minimum
thickness (at tmin) and red points correspond to cases when there is ho
Newton film before tmin. tmin is determined via the scaling of egn (13) and
the coefficient from Fig. 7. Orange points are for experiments with r¢ =
500 um where tnn could not be determined theoretically as the scaling
law was not validated for this fiber radius. The 42.5 pm radius fiber has
been made by melting a 100 um radius fiber from Hilgenberg. The dashed
line is what we expect for the scaling of eqn (14). The coefficient comes
from the fit of Fig. 10.

determined theoretically as the scaling law was not validated
for this fiber radius. We call Ay* the thickness at which we
observe a transition between the red and the green phase.

For silicone oil on a silicon wafer, the van der Waals forces
between both interfaces are repulsive,***' which may prevent
the groove from thinning further. The thickness thus saturates
to hyaw, which explains the almost uniformly beige zone on the
space-time diagram (Fig. 8). This situation is reached as soon
as hy'™ = hyaw- Using the scaling for hg™" (eqn (12)) gives the
critical initial thickness:

]’lo* ~ (hvdwrfz)l/s. (14)

This scaling law is tested in Fig. 10. The data align on a
straight line of slope 0.86 for Ayqw = 10 nm (measured pre-
viously), which confirms the scaling. This scaling law is also
plotted in Fig. 9 as a dotted line and is in reasonable agreement
with the experimental data.

6 Conclusions

To summarize, we have measured the evolution of the thick-
ness of the groove, which appears around the meniscus created
by a vertical cylindrical fiber on a thin silicone oil film.

This journal is © The Royal Society of Chemistry 2024
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Fig. 10 Critical initial thickness ho* for reaching the Newton film as a
function of its scaling law, for different fiber radii r¢. The tops of the error
bars are the minimum initial thicknesses hg for which the film exhibits a
groove, and the bottoms of the error bars are the maximum initial
thicknesses hg for which there is a Newton film. h,qw is taken equal to
10 nm. The dashed line is a straight line fit of the middle of the error bars,
the slope of which is 0.86. The two lines for r; = 250 um come from the
two different viscosities used.

This groove propagates radially over time and its thickness
exhibits a minimum in time. The width of this groove w is well
described by a scaling law accounting for the flow which
relaxes this perturbation using the thin film equation, as
previously shown in various geometries. We build another
scaling law for the time necessary to reach the time-minimum
thickness of the groove assuming that the whole volume of the
meniscus comes from the groove and that the time-minimum
thickness of the groove is reached when the suction of
the meniscus stops, that is to say at the equilibrium of the
meniscus. This scaling law is in very good agreement with the
measured values of ¢, except for the largest fiber because its
radius gets comparable to the capillary length. Using geo-
metric arguments on the shape of the groove, based on an
asymptotic matching on each side of the groove, we obtain
a scaling law for the time-minimum thickness of the groove
hg"™, which rescales our data.

For small initial thicknesses Ay, the groove reaches a thick-
ness (~10 nm) at which intermolecular forces start to have an
effect and the space-time diagrams exhibit a large zone where
the thickness is uniform corresponding to a thin flat zone.
Based on the scaling law for hrgm“, we deduce a scaling law for
the critical initial thickness Z,* below which disjoining repul-
sion forces will play a role. Experimental data are well described
by this prediction.

As for perspectives, the dynamics of the groove while going
down and then up are still open questions, as well as the
Newton film dynamics: enlargement velocity, influence of the

Soft Matter, 2024, 20, 7715-7722 | 7721


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00292j

Open Access Article. Published on 11 September 2024. Downloaded on 1/23/2026 10:56:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

nature of the substrate etc. Moreover, drying could be added to
the system to mimic the industrial coating problem.
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