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Dynamics of a self-interacting sheet in shear
flow†

William T. Funkenbusch, Kevin S. Silmore and Patrick S. Doyle *

Solution processing of 2D materials such as graphene is important for applications thereof, yet a

complete fundamental understanding of how 2D materials behave dynamically in solution is lacking.

Here, we extend previous work by Silmore et al., Soft Matter, 2021, 17(18), 4707–4718 by adding

short-ranged Lennard–Jones interactions to 2D sheets in shear flow. We find that the addition of these

interactions allows for a rich landscape of conformations which depend on the balance between shear

strength, bending rigidity, and interaction strength as well as the initial configuration of the sheet.

We explore this conformational space and classify sheets as flat, tumbling, 1D folded, or 2D folded based

on their conformational properties. We use kinetic and energetic arguments to explain why sheets adopt

certain conformations within the folded regime. Finally, we calculate the stresslet and find that, even

in the absence of thermal fluctuations and multiple sheet interactions, shear-thinning followed by shear-

thickening behavior can appear.

1 Introduction

Solution processing and liquid exfoliation are important
aspects of the production and application of 2D materials such
as graphene, graphene oxide, transition metal dichalcogenides,
and, more recently, 2D polymers,1–19 but fundamental under-
standing of many properties of suspended 2D sheets is lacking.
For example, much work has been devoted to the transition
from a flat to a crumpled state with increasing temperature,20–28

but there is still debate as to whether self-avoiding sheets crumple
or are flat at all temperatures.29–42 The introduction of attractive
interactions, which appear in real systems in the form of, for
example, dispersion forces, has been explored as a potential way to
induce conformational changes in sheets,36,43,44 and a series of
folding transitions have also been theorized and observed in
thermal simulations.45

One can also apply a flow field to sheets, resulting in
dynamics which are even less well understood than the equili-
brium behavior. Xu and Green studied the rotation of semi-
flexible sheets under shear and extensional flows and found
shear-thinning rheological behavior.46,47 Yu and Graham found
coil-stretch-like and compact-stretched transitions for stiff
sheets in extensional flows.48,49 They found that flexible sheets
in extensional flows additionally exhibit wrinkling which
significantly modifies the aforementioned transitions. Salussolia

and Botto characterized the separation of multi-sheet systems
(although in 2D) with long- and short-range hydrodynamics in
shear and found that separating sheets can reassemble under
certain conditions.50 Recently, Perrin and Botto also showed (again
in 2D) that, despite multi-layer sheets having a higher bending
rigidity than single-layer sheets,51 a lateral hydrodynamic force at
moderate sheet separations can cause the sheets to bend for shear
rates much lower than expected.52

Previous work by Silmore et al.53,54 showed that Jeffery’s
equations for the rotation of rigid ellipsoids in shear55 matched
well with the behavior of semi-flexible sheets in shear under
certain conditions.53 Introducing thermal energy resulted in
shear-thinning followed by shear-thickening rheological
behavior54 which has been observed in dilute graphene suspen-
sions56 as well as dilute graphene oxide suspensions.57 These
experiments showed the same stronger shear-thinning at
higher temperatures. Because these simulations involved only
single sheets, they show that conformational changes may
contribute to this non-monotonic rheological behavior in addi-
tion to sheet-sheet interactions (e.g. the buildup and break-
down of agglomerates or the formation of lamellar layers).

In many real systems, however, such as graphene, bending
rigidity is several orders of magnitude greater than thermal
energy58,59 (graphene oxide being an exception, with bending
rigidity about the same as thermal energy at room temperature60).
This raises the question as to whether non-monotonic rheological
behavior can be generated in the athermal limit. As discussed
earlier, self-interactions are a potential method of producing
conformational changes in sheets, which can affect their rheo-
logical properties.
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In this work, we study athermal, semi-flexible sheets
with long-range hydrodynamics using the model developed in
previous work53 but with the addition of attractive self-
interactions. We show that single sheets with attractive self-
interactions can exhibit diverse and interesting conformational
and rotational behaviors. The parameters in the system allow
us to define two dimensionless groups which map out
the conformational space, showing several distinct regions of
different conformational behaviors. These behaviors, together
with rotation, give rise to non-monotonic rheological behavior.
We use kinetic and energetic arguments to explain our results.

2 Models and methods
2.1 Simulation method

Similar to the model employed in previous work,53,54 we con-
struct hexagonal sheets with circumradius L = 39a with beads of
radius a such that each interior bead has 6 tangent neighbors,
totalling N = 1141 beads. We also apply many of the same forces
to beads within the sheets. We use harmonic forces between
neighboring beads with in-plane stiffness k and dihedral forces
between neighboring triangles of beads with bending rigidity
(out-of-plane stiffness) k. This discrete bending rigidity can be

mapped to a continuum bending rigidity, ~k, with ~k ¼ k=
ffiffiffi
3
p

for
this specific triangulation.61 We set the in-plane stiffness of the
sheets to be much larger than their out-of-plane stiffness, as in
true in many real system. This can be quantified using the
Föppl–von Kármán number, FvK B kL2/k, which was between
103 and 107 for the simulations in this paper. Thus, the sheets
are inextensible relative to bending. We also apply hard-sphere
interactions between non-neighboring beads with a pair-
potential which places overlapping beads tangent to each other
under Rotne–Prager–Yamakawa dynamics, which give long-
range hydrodynamics (see below).

Finally, we apply a short-ranged interaction in the form
of a truncated Lennard–Jones potential between non-neigh-
boring beads:

ULJðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� �
; (1)

where e is the interaction strength and s is the interaction
range. We use a turn-on distance of ron = 2a and cut-off radius

of rcut = 2.5s. For all simulations, we set s ¼ 4
ffiffiffi
6
p

a=3.
Beads can interact via this potential along the sheet surface,

which may change the in-plane behavior of the sheets. However,
we find empirically that, even for the largest interaction strengths
used, the harmonic bonds between neighboring beads in a flat
sheet extend by less than 0.1% of their equilibrium distance.
Therefore, we expect that self-interactions do not significantly
affect the in-plane interactions of the sheet.

We integrate this system forward in time using an Euler–
Maruyama integrator with the following equations of motion

for Brownian dynamics with hydrodynamics:

dxi ¼ �
X
j

Mij
@Ui

@xj
þ Lxi

 !
dt; (2)

where (L)mn = _gdm1dn2 is the velocity gradient tensor for simple
shear with shear rate _g and Ui is the sum of the applied
potentials on bead i. To achieve long-range hydrodynamics,
we use the Rotne–Prager–Yamakawa tensor62 for Mij, which is
given analytically by

Mij ¼
1

6pZa

3a

4r
þ a3

2r3

� �
Iþ 3a

4r
� 3a3

2r3

� �
r̂r̂T r4 2a

1� 9

32a

� �
Iþ 3

32a
r̂r̂T r � 2a;

8>>>><
>>>>:

(3)

where r̂ is the unit vector pointing from particle i to particle j.
The Rotne–Prager–Yamakawa tensor models long-range,

pairwise hydrodynamic interactions between beads, with each
bead acting as a regularized Stokeslet.53 Thus, finite discretiza-
tions of these beads as sheets have some degree of permeabil-
ity. However, Yu and Graham recently showed that, for similarly
discretized sheets, the permeation velocity (i.e. the fluid velocity
normal to the sheet surface) in extensional flows tends to be
small (on the order of 1% relative to the sheet size and strain
rate).49 We expect shear flows to carry similar permea-
tion velocities. Second, for small enough sheets, lubrication
forces are relatively small compared to the forces from self-
interaction. We discuss this assumption and the sheet size
limit in Appendix A. Conceptually, because the applied self-
interaction includes a repulsive component and equilibrium
distance, small enough sheets do not approach closely enough
for lubrication forces to be significant.

Initially flat sheets aligned with the flow-vorticity plane were
rotated by an angle y = 51 about the vorticity axis and then by
a varying angle f about the flow axis. We sample from f = 01 to
f = 901 with samples at every 51. In averages over f, we give
relative weights to each f proportional to sinf, corresponding
to initially randomly oriented sheets. We use a time step of
_gDt = 2 � 10�4 for all simulations. Simulations were run for
2000 strain cycles (_gt = 2000) and results were calculated using
the last 200 strain cycles using data from every 100 _gt, as
analysis of the autocorrelation of sheet properties such as the
radius of gyration at small interaction strengths (i.e. for tum-
bling sheets, as described later, as they have the slowest decay-
ing autocorrelations) showed that approximately every 100 _gt are
independent. Simulations were run using HOOMD-blue on
NVIDIA GeForce GTX 1080 Ti’s63 with a custom package from
Silmore et al.53 which was adapted from Fiore et al.64 All images
of sheets were rendered using Ovito.65

2.2 Dimensionless groups

The addition of self-interaction adds two new parameters
to the system: the interaction strength, e, and interaction
range, s. To give a roughly continuous energy landscape for
two sheets sliding parallel to each other, we require s c a.
As mentioned earlier, for all sheets in this work, we choose
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s ¼ 4
ffiffiffi
6
p

a=3 � 3:27a. While e is the energy scale for the inter-
action between two beads, the energy scale for the interaction
of a bead with a plane of beads separated by the equilibrium
distance of s is

~es2 ¼ e
s2

2
ffiffiffi
3
p

a2
; (4)

where ~e ¼ e=2
ffiffiffi
3
p

a2 is the interaction energy density of the
sheet. For two parallel sheets of characteristic size L aligned
with the shear-vorticity plane and separated by a distance s,
shear acts as a force trying to separate the two sheets by sliding
them along each other, while their interaction resists this
sliding. Taking the ratio of these two forces gives a dimension-
less group characterizing the ability of attractive interaction to
resist shear:

w � ~es2

6pZ _gL2s
L

a

� �
; (5)

where Z is the fluid viscosity and _g is the shear rate. This
dimensionless group characterizes the ability of nearby sections
of the sheet to slide along each other. A more detailed derivation
of this dimensionless quantity can be found in Appendix B.

We note the existence of the bead radius, a, in this dimen-
sionless number. In previous work,53,54 a was the smallest
resolvable length scale and did not play a role in the dynamics.
Here, because interactions happen between individual beads,
a is relevant. The quantity (L/a) is proportional to the number
of interactions along the edge of the sheet. In a physical system,
a now corresponds to the interacting elements of a sheet, for
example, individual carbon atoms in a graphene sheet inter-
acting via van der Waals forces. Typical solution-processed
sheets have sizes ranging from nanometers to micrometers66

and may interact at a wide range of distances.67 Further control
over the shear rate in experiments means that this dimension-
less number can span several orders of magnitudes, and we
thus expect this dimensionless number to reveal interesting
transitions in real systems.

While the ratio of bending rigidity to shear, denoted S in
previous work53,54 with

S ¼ k
pZ _gL3

; (6)

is a relevant dimensionless group for the dynamics of this
system, as we discuss in the results, we find that another
illuminating group is the ratio between bending rigidity and
interaction strength:

K � k
~es2

: (7)

Interaction tries to move sections of the sheet together by
folding, while bending rigidity resists this folding. Thus,
when K c 1, attraction interactions cannot overcome bending
rigidity, and we expect the sheet to behave as in previous
work.53,54 This dimensionless group is also convenient because
it is a function of material properties, while w can be tuned
experimentally by adjusting shear rate.

Plots varying K and w�1 thus have a convenient physical
interpretation: moving along the first axis adjusts the material
property of bending rigidity to interaction strength, while
moving along the second axis changes the experimental property
of shear force relative to interaction strength. The value of S can be
determined from the values of w, K, s and a with S = 6wK(a/L)(s/L).

3 Conformational properties
3.1 Identifying sheet conformations

The conformational properties of sheets are highly sensitive to
experimental conditions (w), material properties (K), and initial
conditions (e.g. the initial orientation of the sheets relative to
the flow axis, f). We identify four different conformations that
sheets can exhibit: flat, tumbling, 1D folding, and 2D folding.
An example of each is shown in Fig. 1. Videos of simulations for
each conformation along with their corresponding average
signed local mean curvature (see Section 3.3) are included
in the ESI.† We examine how the values of w, K, and f lead to
each of these conformations in future sections. In this section,
we show how each conformation can be characterized.

We identify these conformations by looking at the square
root of the eigenvalues of the gyration tensor, li (i = 1, 2, 3 with
l1 4 l2 4 l3), which correspond to the three characteristic
lengths of the conformation. We take averages of each li over
the last 250 _gt of the simulation every 0.25 _gt, denoted �li.

Flat sheets have almost no bends and therefore �l1 and �l2 are
near their maximum value of 0.456L at all times. We categorize
sheets as flat if �l2 4 0.4L. They are the only sheet conformation
we observe which are not necessarily continuously rotating
about the vorticity axis.

Tumbling sheets are characterized by impermanent folds
which cause their li to fluctuate significantly throughout the
simulation. We categorize sheets as tumbling if, regardless of
�li, the smallest standard deviation in li (over the last 200 _gt) is
greater than 7 � 10�3L or the largest standard deviation in li is
greater than 3 � 10�2L.

1D folded sheets are characterized by a series of parallel
folds, resulting in a l1 close to the maximum value, but a much
smaller l2. We categorize sheets as 1D folded when �l1 4 0.4L
and �l2 o 0.4L.

2D folded sheets are characterized by the appearance of non-
parallel folds, causing l1 to deviate significantly from its max-
imum value. We categorize sheets as 2D folded when �l1 o 0.4L.
1D folded and 2D folded sheets are referred to together
as folded sheets. Folded sheets are distinct from tumbling
sheets, which also have folds, because their folds are persistent
over time.

The boundaries between different sheet conformations were
chosen by looking at histograms of �li and the standard devia-
tion in li, included in the ESI.† There is a clear gap in the
histogram of �l2 at 0.4L, making �l2 4 0.4L a natural choice for
characterizing a sheet as flat. The transition between 1D and 2D
folded sheets appears continuous in that sheets can have both
parallel and non-parallel folds. The cutoff between these

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
4/

20
25

 1
2:

34
:4

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00197d


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 4474–4487 |  4477

conformations was therefore chosen by eye by finding a value of
�l1 which seems to correspond to the beginning of the appear-
ance of non-parallel folds. For tumbling sheets, the cutoffs were
chosen again by eye such that each distribution of standard
deviations for tumbling sheets appears normal-like.

3.2 Phase map of sheet conformations

We performed a parameter sweep across w, K, and f and
categorized each conformational state as flat, tumbling, 1D
folded, or 2D folded. We plot using w�1 instead of w as
increasing w�1 corresponds to increasing shear rate, as one
might see in a rheological experiment. As this is a large, 3D
phase space, we present 2 slices at f = 01 and f = 451, shown in
Fig. 2. First looking at the phase plot for f = 01, we see clear
divisions between each conformation. For large K (41), attrac-
tive interactions cannot overcome bending rigidity, and sheets
tend to be flat. At large w�1 (4100) and low K (t1), shear is able
to break local attractive interactions, and the sheets tumble.
At low w�1 (t100) and low K (t1), shear is unable to break
local attractive interactions, so folds are permanent and the

sheets are 1D or 2D folded. Lower values of w�1 at low K (o1)
correspond to less well-aligned folds and thus more 2D folded
sheets.

At f = 451, the features of the plot remain the same with one
notable exception. The tumbling region expands to occupy the
high w�1 (4100), high K (41) regime, similar to Fig. 6 in
previous work,53 where the continuously tumbling regime was
larger for larger f. The specific sheets which tumble for K \ 1
are unpredictable, but on average tumbling behavior is more
common at larger f and w�1. This makes sense, as larger f
mean larger initial deformations from the flat conformation
and larger w�1 at constant K mean stronger initial buckling due
to a reduced value of S, the dimensionless ratio of bending
rigidity to shear strength. However, the tumbling behaviors in
the sheets in this work are notably different than in previous
work53 due to the presence of self-interaction. For example, in
Fig. 3, the sheet forms several, slowly sliding folds which
continuously flip in sequence. We term this ‘‘teacup’’ behavior.
This behavior was observed for many initial orientations near
the tumbling/folded boundary (1.4 � 102 r w�1 r 1.4 � 103).

Fig. 2 Conformational phase map of sheets with initial conditions (a) f = 01 and (b) f = 451.

Fig. 1 (a)–(d) Example conformations for (a) flat, (b) tumbling, (c) 1D folded, and (d) 2D folded sheets. x is the flow direction and y is the shear direction.
(e)–(h) Square root of the eigenvalues of the gyration tensor, li, over time for the (e) flat, (f) tumbling, (g) 1D folded, and (h) 2D folded sheets. Green is the
smallest, orange is the second largest, and blue is the largest characteristic length.
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Teacup behavior is usually transient in the sense that sheets
alternate between it and more typical tumbling behavior over
long time scales (several hundred _gt). It is classified as tum-
bling due to the existence of non-persistent folds and is difficult
to distinguish from typical tumbling behavior using the values
of �li and the standard deviations of li. A video of a simulation
with this behavior is included in the ESI.†

Within a given region (flat, tumbling, and folded), sheet
behavior can be predicted reliably. Near the boundaries
between regions, sheet behavior may be highly sensitive to
initial orientation.

3.3 Bending modes of 1D folded sheets

As in previous work,53 we calculate the signed local mean
curvature of the sheets and calculate the average over 101
equally spaced snapshots during the last 200 _gt, giving an
average signed local mean curvature (ASLMC). We plot these
for the f = 01 and f = 451 conditions in Fig. 4. These plots
correspond well to the characterizations given in the previous
section. Flat sheets have no local mean curvature, and thus
have an ASLMC of about 0 at all points. Tumbling sheets have
significant but non-persistent folds, and their ASLMC’s thus
appear noisy. Folded sheets have persistent folds, and thus are
characterized by sharp bands of high magnitude ASLMC. 1D
folded sheets have folds which are aligned along a single axis,
while 2D folded sheets have non-parallel folds which can
branch off into more folds. Some sheets, especially for f =
451 have characteristics of both 1D and 2D folded sheets.

1D folded sheets at the boundary with tumbling sheets (e.g.
w�1 = 1.4 � 102) typically have two close parallel folds and
moderate curvature throughout the rest of the sheet. These 1D
folded sheets take on a ‘‘rolled-up’’ conformation, as seen in
Fig. 5. A video of a simulation of a rolled-up sheet is included in
the ESI.† Interaction is strong enough to cause an initial
folding of the sheet, but shear is strong enough to anneal all
but the last two folds. This results in rolled-up sheets being an
even more energetically favorable state due to the high degree
of contact for self-interactions and gentle folding throughout.
1D folded sheets have a number of folds ranging from 2-folds
in rolled up sheets, to 6, evenly spaced folds. There appears to
be no clear pattern to the exact number of folds that will

appear, although roughly the number appears to increase with
decreasing w�1 unless the sheet 2D folds.

We can estimate the expected number of folds using a
simple energetic argument balancing the bending and inter-
action energies of a 1D folded sheet, which is detailed
in Appendix C. Doing so, we obtain the following estimate
for the optimal number of folds, n�fold, in a rectangular 1D
folded sheet:

n�fold �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L=wfold þ 1

1� bþ aK

s
� 1; (8)

where a and b are fit parameters. a is a measure of the relative
importance of bending to interaction strength and b is a
measure of the interaction energy of beads within a fold.
We find a = 0.0618 � 0.0010 and b = 0.528 � 0.003 (� one
standard deviation) for rectangular sheets. wfold is a correlation
length characterizing the width of a fold, which is an unknown
function of the system parameters, including perhaps the
Föppl–von Kármán number. We observe that all folded sheets
in our simulations have wfold E 6a, which corresponds to the
smallest fold a sheet can have. This means that folds under the
conditions in this work are controlled by the smallest length
scale, a.

For small w�1 (t41), shear is not strong enough to break up
all the folds, and the sheet can obtain an energetically stable
folded configuration. In the small K limit for sheets with
L = 39a, eqn (8) approaches about 4.46, which is close to 4,
the most common number of folds observed. For sheets with
L = 79a, eqn (8) approaches about 6.62. A series of simulations
run with L = 79a and f = 01 in the 1D folded regime showed
6 folds at higher w�1 (shear rates) and 8 folds at lower w�1.

For slightly higher w�1 (E141), shear is strong enough to
break up all but 2 folds and the sheet adopts a more energe-
tically favorable rolled-up conformation, which is not modelled
by eqn (8). At even higher w�1 (\410), shear is strong enough to
continuously break new folds which form as the sheet tumbles.

Because a E 0.05, the number of folds predicted by eqn (8)
does not decrease significantly until K E 20. The sheets
flattening at about K = 3.0, a full order of magnitude lower, is

Fig. 3 Sequential snapshots showing a 1801 rotation of a sheet exhibiting teacup behavior, rotating in the counterclockwise direction with w = 2.42 � 10�3,
K = 0.01, and f = 851. x is the flow direction and y is the shear direction. A single bead is colored red to guide the eye.
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therefore likely a kinetic phenomenon, which we explore in the
next section.

3.4 Creation of persistent folds in 1D folded sheets

To explain why sheets in shear adopt configurations with
parallel folds as opposed to other configurations (e.g. the

‘‘double folded’’ configuration observed by Abraham and
Kardar45), we return to previous work,53 which calculated the
buckling modes of sheets in shear as a function of the ratio of
bending rigidity to shear, S = k/pZ _gL3, at f = 01 and at the
maximal in-plane stress for a flipping sheet, y = 451. This
analysis did not consider attractive interactions, which could
change the buckling behavior, however we believe it to still be
useful. Lines of constant S correspond to lines of slope 1 in
plots of K versus w�1. In our simulations, S � 105 ranges from
9.4 � 10�4 to 2.8 � 104, which covers more than 10 of the first
buckling transitions. Notably, the calculated buckling modes
from previous work53 have alternating signs in curvature, just
like what is observed in the 1D folded sheets in this work.

Fig. 4 shows the local mean curvature for sheets averaged
over the last 200 _gt and during their initial flip (determined as
when the average normal vector of the triangles in the sheet is
closest to y = 451). As w�1 decreases for low K, the number of
folds at the initial buckle decreases as expected because the
effective bending rigidity increases relative to shear strength
(given by S). In the 1D folded regime, sheets have folds which
which are sharper in the initial buckle than the buckles that
appear in the absence of interactions, showing that interaction

Fig. 4 Average signed local mean curvatures for sheets during the last 200 _gt with (a) f = 01 and (b) f = 451. Signed local mean curvatures for sheets at
their initial flip with (c) f = 01 and (d) f = 451. Backgrounds correspond to different conformational behaviors (black: flat, green: tumbling, red: 1D folded,
blue: 2D folded). Diagonal lines running up and to the right correspond to sheets with constant S. Moving right or down corresponds to increasing
S by about a factor of 3. The arrow in the top right corner of each plot indicates the direction of maximally increasing S. For reference, the sheet at
K = 1.0, w�1 = 1.4 has S � 105 = 920.

Fig. 5 Example of a 1D folded sheet that adopts a rolled-up conforma-
tion. x is the flow direction and y is the shear direction.
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is strong enough to affect the initial buckling. In this regime,
the number of folds often decreases from the initial buckle to
the final conformation, showing annealing to a more energeti-
cally stable configuration. As K increases, the magnitude of the
curvature in the initial flip decreases, again due to an increas-
ing S, until the sheet eventually appears flat. While the analysis
done in previous work53 was only done for sheets with f = 01,
the same trends are seen in sheets with any value of f, as seen
in Fig. 4d.

We propose that persistent folds in 1D folded sheets are
formed during the initial buckling of the sheet during the first
flip followed by annealing caused by shear towards an energe-
tically stable state. If shear is too strong (w�1

\ 410), the folds
formed during buckling are not persistent, and the sheet
tumbles or flattens. At an intermediate value of shear (w�1 E
141), folds form during buckling but most are broken up by
shear, resulting in an energetically favorable rolled-up sheet. At
lower values of shear (w�1 t 41), shear anneals the sheets
towards their energetically preferred number of folds as pre-
dicted by eqn (8). If shear is too weak, it can only anneal
partially (thus why some 1D folded sheets have more than 4
folds). Annealing can only decrease the number of folds. So, if
the number of bends in the initial buckle is less than the
energetically ideal number of folds, it is kinetically trapped with
that number of folds. Because the buckling modes of sheets in
shear have parallel folds, the resulting conformations have
parallel folds.

At low K, interactions are stronger than buckling, so buck-
ling will propagate into folds. For K \ 1, interactions are not
strong enough to overcome bending, so the extent of buckling
is determined by the competition between bending rigidity and
shear (i.e. the value of S). This explains how sheets can
transition from flat to 1D folded and back to flat with increas-
ing shear at K = 3.0. At low shear, the sheets do not buckle
strongly, and interactions are insufficient to fold the sheet. As
shear increases, S decreases, and the sheets buckle more
strongly. Only if the buckling is strong enough can it initiate
folding through interactions. Once shear becomes too strong,
however, interaction is not strong enough to create persistent
folds, so the sheet is flat. The critical value of S � 105 above
which sheets will not buckle if K B 3 is about 943 (which is
indeed the lowest value of S in these simulations above the first
buckling transition determined in previous work53). The critical
value of w � 105 below which shear is too strong for sheets to
fold is approximately 710.

S = 6wK(a/L)(s/L), so depending on the size of a given sheet,
the 1D folded region between two flat regions may be inacces-
sible. Specifically, given a critical S* and w*, we require S o S*,
w 4 w*, and K B 1. As L increases, S decreases relative to w, and
we expect the 1D folded region to increase in width. Similarly,
the region decreases in width with increasing s. Therefore, this
region increases in size as the size of the sheet increases
relative to interaction range. Because w* E S*, K B 1, and
(L/a) c 1, this region should exist if s is not much larger than L
(if (s/L) t (1/K)(S*/6w*)(L/a)), that is, if sheets are not much
smaller than the range of their interactions. In such a system,

w is no longer the relevant dimensionless parameter as each
bead would interact with every other bead in the sheet and
therefore ~es2 is no longer the relevant energy scale.

If both w�1 and K are small, small deviations from the
alignment of the folds caused by finite-size, edge, and/or initial
orientation effects will cause the spontaneous formation of
more folds, and the sheet can 2D fold. This is supported by
the 2D folded sheets in Fig. 4c, which are already in their 2D
folded configuration at the first flip.

It is important to consider how sheet behavior would change
with sheet shape. The equation for the optimal number of folds
was derived for a rectangular sheet but the overall arguments
are valid as long as the number of beads vertically along the
folds does not change quickly across the width of the sheet
(relative to the width of folded regions). This, along with the
equation matching with the hexagonal sheet simulations in
this work, suggest that eqn (8) is applicable for a broad range of
sheet shapes with slowly changing widths.

Changing the sheet shape will affect the bending modes of
the sheet and therefore the critical values of S corresponding to
different buckling modes. This might affect the shape of the
right edge of the folded/flat boundary due to the earlier
discussion of the importance of S. Additionally, videos of 1D
folded sheets (provided in the ESI†) show that the process of a
1D folded sheet losing folds involve these folds ‘‘sliding’’ along
the width of the sheet until it hits the edge of the sheet, where
the fold disappears. This process may be affected by the
shape of the sheet. Simulations with different sheet shapes
(e.g. rectangular or circular) would be valuable in illuminating
the effects of sheet shape on the formation and breaking of
1D folds.

4 Rheological properties
4.1 Sheet viscosity calculations

The stress of a dilute suspension of force-free rigid particles is

S ¼ �phIi þ 2ZE1 þ n ~S
	 


; (9)

where p is the pressure, EN is the rate-of-strain tensor, n is the

number density of particles, and ~S is the stresslet (the first
moment of the stress on a particle).68 As in previous work,54

we calculate an approximate upper bound on the stresslet using
the minimum-bounding ellipsoid of the sheet, its Jeffrey
orbits,55 and the stress for an ellipsoidal particle as found in
Kim and Karilla.69 The resulting average off-diagonal (flow-
gradient) contribution to the stress over the last 200 _gt, which is
expected to grow linearly with the viscosity of a dilute suspen-
sion of these sheets, is shown in Fig. 6.

The sheet viscosity shows 2 different behaviors based on K.
For K \ 10.0, sheets have a small sheet viscosity at low w�1

(i.e. low shear rates). Flat sheets which rotated about the
vorticity axis contributed a higher stress than flat sheets in

the flow-vorticity plane, with ~S12

�
6pZ _gL3
� 

4 1:5. These sheets
were ones initially oriented with their normal close to the
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vorticity axis (f = 851 or 901). Finally, once shear is strong
enough to induce tumbling, shear-thickening behavior begins.

For K t 1.0, there is steady shear-thinning followed by
shear-thickening behavior which appears near the same critical
w�1 as for the high K behavior. We discuss the origin of these
behaviors in the next section.

4.2 Explanation of non-monotonic rheological properties

The nature of this shear-thinning into shear-thickening beha-
vior is different than that with thermal energy but no interac-
tions, which resulted from the ‘‘u-turn’’ radius of a flipping
sheet.54 In our current work, sheets in the shear-thinning
regime are 1D or 2D folded.

We calculate three summary statistics, the radius of gyra-
tion, Rg/L, the relative shape anisotropy, z2, and the orientation
of the largest axis of the minimum bounding ellipsoid of the
sheet dotted with the vorticity axis, |v1	ẑ|, which we term the
‘‘alignment’’ of the sheet. The relative shape anisotropy varies
from 0 to 1, with 0 occurring only if all beads are on the same
line, and 1 occurring only if the beads have spherical symmetry.
The alignment also varies from 0 to 1, with 0 occurring if the
largest axis of the sheet is in the shear-flow plane, and 1
occurring if the largest axis of the sheet is along the vorticity
axis. Scatter plots of the sheet viscosity versus each of these
quantities are included in the ESI,† however we note several
notable features of these plots in the following discussion.

In Fig. 7, we plot these three summary statistics as a
function of w�1 and K to explain the observed rheological
behavior.

4.2.1 Folded: low v�1t 1.4 � 102, low Kt 3.0 behavior. In
this regime, sheets are 1D or 2D folded. Below w�1 B 1.4 � 101,
Rg/L and z2 increase with shear rate. This corresponds to fewer
sheets adopting the 2D folded conformation at higher shear
rates. However, at even higher w�1, these values plateau despite
shear-thinning continuing. Peculiarly, there appears to be
no strong correlation between radius of gyration and sheet

viscosity for folded sheets. Instead, the 1D folded sheets form
two distinct clusters, one with a higher sheet viscosity (B0.35 �
6pZ _gL3) and one with a lower sheet viscosity (B0.2 � 6pZ _gL3).

This can be explained by looking at the average alignment of
the sheets, which increases with shear rate. For prolate spher-
oids (ellipsoids with one large axis and two small axes) such as
the minimum bounding ellipsoid of 1D folded sheets, large
average alignment (‘‘log-rolling’’) behavior is favored, which is
why large average alignments result in lower sheet viscosities.
Conceptually, this is because the distance the sheet ‘‘sticks out’’
into the shear axis is lower. These two types of motions
(high and low average alignment) were observed in the past
as the long-time behavior for ellipsoidal particles in shear.70

Indeed, for 1D folded sheets, most sheets have an average
alignment close to either 1 or 0, indicating that they reach one
of these terminal behaviors. The mechanism for these sheets
deviating from their Jeffrey orbits to reach this high or low
average alignment state is possibly the deformability of the
sheets, which has been shown to influence the orbits sheets
take in this manner.71,72 1D folded sheets with high average
alignments have lower stresses than 1D folded sheets with low
average alignments, explaining the two clusters observed in a
scatter plot of sheet viscosity versus the Rg/L. The behavior of
individual sheets is erratic, necessitating an average over initial
condition. Thus, shear-thinning is due to a statistical average
over many initial conditions. At higher shear rates, sheets on
average adopt more log-rolling behavior, causing shear-thinning.
This makes sense, as stronger shears cause greater perturbations
in sheets, and thus allow for them to be more likely to be able to
access the more favorable, lower stress, rotational behavior. Note
that the decrease in average alignment at w�1 B 1.4 � 102 is due
to the rare appearance of tumbling sheets at this value of w�1.

4.2.2 Tumbling: high v�1
\ 1.4 � 102, low K t 3.0

behavior. Once shear increases enough to cross the tumbling/
folded boundary, Rg/L decreases slightly before recovering to
close to the 1D folded value. z2 and the average alignment,

Fig. 6 Stresslet (‘‘sheet viscosity’’) averaged over the last 200 _gt and all f. Error bars are 95% confidence intervals. Dotted lines drawn to guide the eye. On
the borders are characteristic behaviors for different regions. x is the flow direction and y is the shear direction. Top left: high alignment folded. Bottom
left: low alignment folded. Top right: tumbling. Bottom right: flat.
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however, both decrease drastically. While the trends for Rg/L
and the average alignment upon increasing w�1 further are
noisy and depend on the specific value of K, z2 continuously
decreases with shear rate. Thus, shear thickening is caused by

sheets with lower values of z2 sticking out further into the shear
axis at larger shear rates. This makes sense, as lower values of z2

correspond to more spherically symmetric sheets, where the
effect of increasing average alignment on sheet viscosity is
lower. Thus, the sheet viscosity is higher for the same values
of Rg/L and average alignment. Note that an average alignment
value of approximately 0.52 corresponds to random orientation,
which is around where the average alignments hover past the
tumbling transition, suggesting that there is less preference for
a particular rotational behavior. This is explained by the small
values of z2.

Sheets exhibiting teacup behavior have similar sheet viscos-
ities to folded sheets. This behavior is seen as a low sheet
viscosity cluster of low average alignment tumbling sheets at a
range of Rg/L. This behavior decreases in frequency at higher
shear rates as it is a self-interaction-dependent behavior, which
could contribute to the shear-thickening behavior. However,
because this behavior is relatively rare, we expect that its effect
is small. A detailed study of teacup behavior, its frequency as a
function of w�1 and K, and its effects on the sheet viscosity
would be enlightening.

Another interesting aspect of tumbling sheets is their tum-
bling time, which is roughly the time for a sheet to make half a
revolution about the vorticity axis. Scaling arguments for the
tumbling time of 2D polymers have been proposed and con-
firmed with simulations for flipping sheets in previous work.53

These scaling arguments are indeed only valid for relatively
inflexible sheets. Because tumbling sheets are constantly
deforming, it is difficult to both develop scaling arguments
for the tumbling time as well as calculate it in simulations. This
is further complicated by the existence of self-interactions in
these sheets, which can change their effective macroscopic
bending rigidities and affect their conformational behaviors.
However, we believe that a detailed study on tumbling times for
these sheets would be valuable and merits further investiga-
tion. Flipping times for folded sheets could likely be predicted
using the average rotational velocity of its corresponding Jeffrey
orbit. However, because the sheets are deformable, they are
likely to adopt different trajectories according to an effective
orbit constant and aspect ratio.73 A study of the flipping
dynamics of folded sheets was not conducted in this work,
but would also be valuable in the future.

4.2.3 Flat: high K \ 3.0 behavior. For large enough values
of K, bending rigidity overcomes interaction strength, and
sheets are flat. The deviation from zero sheet viscosity, which
would be the case for an infinitely thin sheet in the flow-
vorticity plane, comes from a fraction of the flat sheets which
lie in the flow-shear plane and rotate like a discus about the
vorticity axis. Because these sheets stick out into the shear axis
by the maximum amount possible for inextensible sheets, these
sheets produce the highest sheet viscosities of any other con-
formational or rotational behavior. As shear increases, this
behavior becomes less likely, again resulting in overall shear-
thinning behavior. In Fig. 6, the sheet viscosity curves for low
w�1 and K Z 10.0 are flat. To observe shear-thinning beha-
vior here, we suspect that more initial conditions need to be

Fig. 7 (a) Radius of gyration, (b) relative shape anisotropy, and (c) align-
ment averaged over the last 200 _gt and all f. Error bars are 95% confidence
intervals. Dotted lines drawn to guide the eye.
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sampled. Past the tumbling transition, some sheets begin to
tumble, resulting in shear-thickening as before.

The value of K B 3.0 appears to be right at the boundary
between low K and high K behaviors and exhibits a mix of both
behaviors, resulting in complex trends in Rg/L, z2, and average
alignment.

In Fig. 6, we scale the sheet viscosity to L3. However, given
two additional length scales, a and s, this is not necessarily the
proper scale. Furthermore, the proper scale for the sheet
viscosity might be different for flat vs. tumbling vs. folded
sheets. We have not confirmed any such scalings in this work,
but we believe it warrants investigation and discuss predicted
scalings in Appendix D.

Note that thermal energy would cause deviations from
the discussed conformational behaviors which would decrease
with increasing shear rate, likely resulting in the shear-thinning
behavior seen in previous work.54

5 Conclusions

In this work, we examined the role of short-ranged attractive
interactions for semi-flexible, athermal sheets in shear flow.
We found a rich set of conformations which depend on two
dimensionless groups: the material properties of the sheet (K)
and experimental conditions (w). We characterized these sheets
as flat, tumbling, 1D folded, or 2D folded based on the
eigenvalues of the gyration tensor. We found roughly that
sheets folded when K t O(1) and w�1 t O(102), tumbled when
K t O(1) and w�1 4 O(102), and were flat otherwise, although
the exact behavior depended highly on initial condition near
the boundaries.

We used the average signed local mean curvature of the
sheets to show the nature of each type of sheet. Specifically,
we identified parallel folds in 1D folded sheets and non-parallel
folds in 2D folded sheets. We used a simple energetic argument
to estimate the number of folds in a 1D folded sheet and
showed that our equation matched well with the number of
folds for these sheets in the low K limit. We also showed the
relevance of the bending rigidity to shear (S) in inducing
folding when K B 3. From this, we proposed a mechanism of
an initial buckling followed by shear-induced annealing
towards the most energetically favorable number of folds. The
strength of shear determines the degree of annealing which is
possible. We also discussed the expected effect of changing L
on the rheological properties of the sheet based on the pre-
dicted number of folds in a 1D folded sheet.

Finally, we calculated an approximate upper-bound on the
stresslet, which is expected to grow linearly with the viscosity of
a dilute suspensions of these sheets. We found shear-thinning
followed by shear-thickening behavior with increasing shear
rate, with different behavior depending on whether K is greater
than or less than 1. This shear-thinning is present in the
absence of sheet-sheet interactions and thermal fluctuations.
Instead, it is a result of the average conformational and rotational
behaviors of folded sheets. The changes in the conformation of a

sheet with changing initial conditions follow trends, but are
chaotic in the sense that small changes in the initial conformation
can cause unpredicted changes in the final conformation near the
boundaries between different conformations, similar to previous
work.53 We have yet to study the effect of changes in y, the initial
orientation of the sheet about the vorticity axis.

We note here that thermal fluctuations cause out-of-plane
stiffening for sheets,20,22,58,74 which can change their bending
rigidity quite significantly. Translating this work from the
athermal limit to real systems, therefore, requires careful
consideration of the effective bending rigidity of the system.

This type of shear-thinning into shear-thickening behavior
is often attributed to the buildup and breakdown of agglomer-
ates or other multi-sheet structures. However, we show that
even in the dilute limit, this behavior can still emerge.
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Appendices
Appendix A: neglecting lubrication forces

As parallel sections of sheet approach each other, a lubrication
force is generated. Consider two parallel sections of sheet of
area, A, approaching due to shear and initially separated by a
distance, 2s. The strongest lubrication forces will be generated
when the characteristic length of these sheet sections is L. The
lubrication force goes as the lubrication pressure, plub, times
the area of the sheet sections:

Flub B plubA. (10)

The scaling for plub can be obtained from the lubrication
equation:

@plub
@x
¼ Z

@2u

@z2
: (11)

The x direction goes laterally along the sheets and the z
direction goes perpendicularly from the sheets. Therefore,
dx B L and dz B s. u is the lateral velocity. The maximum
relative velocity of the two sheet sections due to shear is s _g. The
lateral velocity, to satisfy the continuity equation, thus goes as
u B L _g. Together,

Flub 

AZ _gL2

s2
: (12)

The energetic benefit of bringing a bead from non-
interacting to interacting with a neighboring sheet section goes
as ~es2. The distance it must travel to go from non-interacting to
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interacting goes as s. In bringing two parallel sheet sections
together, the number of beads which become interacting with
the neighboring sheet section goes as A/a2. Therefore, the force
of interaction goes as

Fint 
 ~es2
1

s
A

a2
: (13)

Taking the ratio between the lubrication and interaction
forces gives their relative strength:

Flub

Fint

 Z _gL2a2

~es3
: (14)

Our simulations, which neglect lubrication forces, are valid
when this ratio is much less than unity. For example, graphene
has inter-atom separation, a B O (1 Å), and athermal Lennard
Jones interaction strength, ~e B O (0.1 eV Å) with interaction
range s B O (1 nm).67 We use the above approximation for the
lubrication force even though the continuum approximation
breaks down at these length scales. This means that even at
high shear rates, _gB O (103 s�1), lubrication forces are small for
graphene sheets in water as long as the sheet size, L { 10 mm. This
is reasonable for the O (mm) flakes produced by exfoliation
techniques75–77 and becomes better for smaller shear rates or
larger interaction ranges. Furthermore, the repulsive nature of
the Lennard–Jones interaction at small distances restricts sheet
segments from getting too close, similarly to lubrication forces. For
purely attractive potentials, lubrication forces could fill a similar
role in restricting the distance between neighboring sheet seg-
ments. Thus, we believe our decision to neglect lubrication forces
is valid for real systems.

Appendix B: derivation of v

Consider 2 parallel sheets of characteristic size L interacting via
a short-ranged potential of range s and separated by their
equilibrium distance, s. If the sheets are sheared such that
the flow-vorticity plane cuts between them, the shear force
trying to separate the sheets can be approximated as

Fshear = 6pZas_gNbeads, (15)

where s_g is the relative velocity induced on the sheets due to
shear (6pZas_g is the Stokes’ drag on a sphere) and Nbeads B
(L/a)2 is the number of beads in each sheet.

We now consider the force required to slide the sheets and
break the short-ranged interactions between them. Assuming
the sheet is large (L c a) and the separation is large (sc a), the
energy of the beads in the bulk of the sheet does not change as
the sheets slide relative to each other – only beads which are at
the leading and trailing edges of the slide matter. The number
of beads which separate as a result of a slide of distance s can
be approximated as

DNslide 

Ls
a2
: (16)

The change in energy for each of these beads is approximately

DEbead B ~es2 (17)

Thus, the force required to separate the beads is approxi-
mately

Fslide 

DNbeadsDEbead

s
¼ ~es2

Ls
a2

� �
1

s

� �
: (18)

Taking the ratio of these two forces gives the dimensionless
parameter we desire to an order 1 geometry-, orientation-, and
packing-specific constant:

w � Fslide

Fshear

 ~es2

6pZ _gL2s
L

a

� �
: (19)

Appendix C: derivation and confirmation of n�fold scaling

We wish to obtain an approximation for the optimal number of
folds in a 1D folded sheet. We make the following simplifying
assumptions. First, the folds are parallel and equally spaced
across the length of the sheet, with regions of flat sheet
between them. Second, only neighboring parallel sections of
sheet will interact with each other (i.e. the interaction is short-
ranged). Third, the sheet is rectangular with characteristic
length 2L and characteristic width 2W. Fourth, that there is
no stretching or compression of the sheet (i.e. FvK c 1).
We define nfold to be the number of folds in the sheet, wfold

to be the width of a fold, and wflat to be the width of a flat
region. With these assumptions, we obtain the following bal-
ance for the length of the sheet:

2L = nfoldwfold + (nfold + 1)wflat. (20)

The energy of bending roughly goes as the number of
triangles which are within folds times the bending rigidity,

Ebending 
 knfold
Wwfold

2a2

� �
: (21)

The energy of interaction goes as

Einteraction 
 ~es2nfold
Wwflat

a2
þ b0

Wwfold

2a2

� �
; (22)

where the first term sums interactions for beads between
parallel regions and the second term sums interactions for
beads within folds. The parameter b0 is a fold geometry-specific
parameter added as a measure of the strength of interactions
for beads within folds. We wish to minimize the quantity

E = a0Ebending � Einteraction (23)

with respect to nfold to obtain the optimal number of folds, n�fold.
The term a0 is a fold geometry-specific parameter added as a
measure of the relative strength of bending rigidity to inter-
action strength. Doing so, we obtain

n�fold �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L=wfold þ 1

1� bþ aK

s
� 1; (24)

where a = a0/2 and b = b0/2 have been redefined for convenience.
We note that the the characteristic width of the sheet, 2W,
disappears from the final equation as all interactions are linear
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in this term. For non-rectangular sheets which are wide enough
such that edge effects are irrelevant (i.e. most beads are interior
beads), the changing width affects the energy because folds and
flat regions can be in locations with different widths. This effect
is small for slowly-changing widths and thin folds and/or thin
flat regions.

We confirm this scaling by generating rectangular sheets
(such that each interior bead of these sheets has 6 neighbors)
and finding their optimal number of folds. All neighboring
beads in these sheets, even the ones in folds, are a constant
distance, 2a, apart, and neighboring parallel regions of sheet

are a constant distance, s, apart. We choose wfold = 6a and s ¼
4
ffiffiffi
6
p

a=3 for consistency with our simulations. A folded region
consists of 1 row of beads within a flat region, 1 row at the
‘‘crease’’ of the fold, and 1 row within the neighboring flat
region. We find the optimal number of folds for a given K and
L/wfold with constant W/wfold = 50.0. We then fit these data to
eqn (24) using least-squares regression, and find a = 0.0618 �
0.0010 and b = 0.528 � 0.003 (� one standard deviation). The fit
can be seen in Fig. 8. This equation appears to fit the data quite
well, with R2 = 0.989. The data also collapse fairly well onto a
master curve, with the largest deviation coming from the
smallest sheet, where edge effects are the most relevant. This

suggests that n�fold 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=wfold

p
, as predicted.

Appendix D: discussion of L dependence of rheological
properties

Because wfold B a, where a is the equivalent of a molecular or
atomistic length scale in a 2D sheet, the number of folds is

expected to increase for larger sheets, with n�fold 
 L=að Þ1=2, as
derived in Appendix C. For a 1D folded sheet, its largest
characteristic size scales as L because this dimension is parallel
to the folds. Another characteristic size is the width of each
folds times the number of folds: snfold B s(L/a)1/2. The last

characteristic size is the width of each flat region: wflat B
L/nfold B a(L/a)1/2. The sheet viscosity will grow roughly as
the cross-sectional area of the sheet in the shear-vorticity
plane times the length of the sheet along the shear axis.
If the sheet is log-rolling, for example, its cross-sectional area
in the shear-vorticity plane goes as L3/2 and its length along
the shear axis goes as L1/2. The sheet viscosity would therefore
go as L2. Orientations of sheets with their largest dimension
rotating about the vorticity plane have sheet viscosities which
go as L5/2. Rolled-up sheets occupy a roughly circular area
perpendicular to their largest axis which goes as Ls, so its

other characteristic sizes go as
ffiffiffiffiffiffi
Ls
p


 L1=2, so its sheet
viscosity will have the same scaling as sheets with many folds.
Assuming each characteristic size of a tumbling sheet scales
with L, the stress scales as L3, which is stronger than in the 1D
folded regime.

If we were to treat a as simply the smallest resolvable length
scale in the system, we would expect wfold to grow proportion-
ally to L. In this case, n�fold is not a function of L, and the three
characteristic sizes of the sheet grow as, from largest to
smallest, L, L, and s. In the limit of L c s, the sheet will
preferentially align itself with the flow-vorticity plane, and
behave effectively as a flat sheet with a small width. The sheet
viscosity, assuming the largest axis is aligned with the vorticity
axis, would thus grow as Ls2, which is weaker than when a is
the atomistic or molecular length scale in the system. This
highlights the importance of treating a as an explicit length
scale in these systems.

As L increases, w�1 increases, and sheets are pushed toward
the tumbling regime. Sheet suspensions are often poly-
disperse78 and the total contribution to the viscosity in a dilute
suspension is the sum of the individual sheet viscosities. So,
the total contribution to the viscosity is a weighted sum of the
sheet viscosity from each particle size’s sheet viscosity, each of
which is non-monotonic with shear rate.

Fig. 8 (a) Optimal number of folds for varying K and L/wfold. Points are data points and solid lines are eqn (24). Optimal values of a and b were found to be
a = 0.0618 � 0.0010 and b = 0.528 � 0.003 (� one standard deviation) using least-squares regression with R2 = 0.989. (b) Master curve using eqn (24) to
collapse all plots of n�fold .
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Appendix E: movies

Movies of sheet trajectories can be found in the ESI† and
include trajectories for flat, tumbling, 1D folded, and 2D folded
sheets. They also include trajectories for a sheet with a low
average alignment (1D folded), a sheet exhibiting teacup beha-
vior (tumbling), and a rolled-up sheet (1D folded). All trajec-
tories are accompanied by movies of the corresponding signed
local mean curvatures of the sheets. Sheet trajectories were
rendered in Ovito.65
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