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Tuning the stability of a model quasicrystal
and its approximants with a periodic substrate

Nydia Roxana Varela-Rosales and Michael Engel *

Quasicrystals and their periodic approximants are complex crystalline phases. They have now been

observed in many metallic alloys, soft matter systems, and particle simulations. In recent experiments of

thin-film perovskites on solid substrates, the type of complex phase was found to change depending on

thermodynamic conditions and the type of substrate used. Here, we investigate the effect of a substrate

on the relative thermodynamic stability of a two-dimensional model quasicrystal and its approximants.

Our simulation model is particles interacting via the Lennard-Jones–Gauss potential. Our numerical

methods are molecular dynamics simulations and free energy calculations that take into account phason

flips explicitly. For substrates interacting weakly with the particles, we observe an incommensurate–

commensurate transition, in which a continuous series of quasicrystal approximants locks into a

small number of approximants. Interestingly, we observe that the 3/2 approximant exhibits phason mode

fluctuations in thermodynamic equilibrium. Such fluctuations are reminiscent of random tiling and a

phenomenon usually associated only with quasiperiodic order. For stronger substrates, we find an

enhancement of the stability of the dodecagonal quasicrystal and variants of square lattices. We explain

all observed phenomena by the interplay of the model system with the substrate. Our results demon-

strate that designing novel complex periodic and quasiperiodic structures by choice of suitable sub-

strates is a promising strategy.

1 Introduction

The discovery of structures with point group symmetries
forbidden in periodic crystals1 created a new field of crystal-
lography, the field of quasicrystals2,3 (QCs). Bulk, three-
dimensional QCs became popular as candidates for materials
with functional properties such as thermal insulators,4 coating
materials,5,6 photonic crystals7 and superconductors.8 The first
atomic QC in two dimensions was found only recently in the
thin-film perovskite BaTiO3 on a Pt substrate.9 This discovery
inspired follow-up work on thin-film perovskite QCs as well as
their approximants at different chemical compositions.10–15

Despite significant efforts, how these perovskite QCs form
and why they are stable remain mostly open questions. Answer-
ing these questions is of interest to simulation studies but is
difficult to address with quantum mechanical methods at the
atomic scale because the lack of periodicity and slow phason
relaxation in QCs require large systems over long simulation
times.16,17 Coarse-grained model systems are advantageous
because they capture the essential physics and offer a route
towards elucidating the relative thermodynamic stability of the
involved phases and their phase transformation pathways.

Two-dimensional particle systems in the presence of a sub-
strate exhibit intricate structure formation phenomena caused
by the competition of two length scales. These length scales are
the size of the unit cell of the unperturbed particle system and
the periodicity of the substrate. The competition of the length
scales can introduce novel commensurate and incommen-
surate phases.18,19 Incommensurability also plays a role in
nanotribology by influencing Aubry transitions in systems of
colloids sliding on a substrate.20–23 Three factors are relevant
for controlling the phase behavior in such systems: substrate
potential depth, substrate periodicity, and the crystallographic
symmetries of the particle system and the substrate.24

The investigation of thin QC films on a substrate can be
divided into two classes of systems. The first class comprises
systems, which are templated to have QC order using a QC
substrate. Such QC films have been realized at the nanoscale as
atomic adlayers.25–28 And at the colloidal scale, QC laser fields can
be finely tuned to induce a gradual transition from an unperturbed
system to a frozen QC.29–33 The second class comprises systems
with intrinsic QC order. That is, such systems are QCs even in the
absence of the substrate. It is suspected that thin film perovskite
QCs fall into the latter class.9 Both classes of systems can show
interesting phase behavior as the substrate is tuned.

There exist many simulation models for two-dimensional
QCs. Prominent examples are binary mixtures of particles that
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interact with the Lennard-Jones potential,34,35 one-component
systems of particles with interaction potential minima on
two length scales,36–38 and anisotropic particles with patchy
interactions.39,40 Here, we study the Lennard-Jones–Gauss (LJG)
potential, which stabilizes a number of one-component QCs
and approximants already in the absence of a substrate.37,41

We use this coarse-grained model to investigate the possibility
of targeting specific approximants by tuning substrate para-
meters. As we will see, the LJG system can behave like a thin
film QC in both the first and the second classes, depending on
the choice of thermodynamic conditions and the substrate.

2 Methods
2.1 Coarse-grained model

As in our previous work,41 we investigate a coarse-grained two-
dimensional model system, which is known to form different
types of periodic and quasiperiodic phases.37 In this model,
identical particles interact isotropically with the LJG potential
given by

VLJGðrÞ ¼
1

r12
� 2

r6
� eLJG exp

� r� rLJGð Þ2

2sLJG2

 !
: (1)

The potential parameters are fixed in this work at eLJG = 1.8,
rLJG = 1.42, and sLJG

2 = 0.042 to stabilize a dodecagonal QC at
intermediate temperatures.41 The phase diagram of the LJG
potential at these parameters contains a number of phases
described by tilings made from squares, triangles, and penta-
gons. The sequence of phases can be described according to the
underlying symmetry change41

p3m1 ��!0:24 p6m ��!0:35 p12m ��!0:36 p4m ��!0:41 Eð2Þ; (2)

where the symbols are the wallpaper groups of the phases and
the numbers above the arrows indicate the critical temperature
of the phase transitions. It has been shown that a relatively
simple periodic approximant (wallpaper group p3m1) is the
energetic ground state stable at T = 0. This simple approximant
transitions via a series of increasingly more complex hexagonal
approximants (wallpaper group p6m) continuously to a dode-
cagonal QC (wallpaper group p12m) in the temperature range
0.24 o T o 0.35. Towards a slightly higher temperature, at T =
0.36, the QC converts into a square tiling (wallpaper group p4m)
before melting at T = 0.41 into the liquid. The liquid has no
broken rotational or translational symmetry and is thus repre-
sented by the group of all isometries, the Euclidean group E(2).

The phase behavior of the LJG system is only known in the
absence of a substrate. Here, we add a substrate by including an
external potential. We mimic the effect of the Pt (111) substrate
for thin-film perovskite QCs by choosing an external potential
in the form of a hexagonal lattice by superposition of three
plane waves,

Vext ¼ e
eLJG
T

X2
j¼0

cos 2pkj � r=l
� �

=3þ 1

2
(3)

with kj = (cos(pj/3), sin(pj/3)). There are two parameters, sub-
strate potential depth e and substrate periodicity l. A prefactor
of eLJG/T is included for convenience to ensure that the region
of interest is approximately rectangular in the T–e parameter
plane (see assembly diagram below, Fig. 5). A schematic depic-
tion of the model, comprising of the particles (red) interacting
with themselves and the periodic substrate (green/yellow),
is shown in Fig. 1.

To justify the choice of a model system for this work, we
need to discuss phason modes. Phason modes are dynamic
modes characteristic of QCs. They are realized as a collective
rearrangement of finite clusters of tiles and can be decomposed
into a series of elementary particle displacements called pha-
son flips. In many common QCs, like for example, the Penrose
tiling, phason mode excitation requires only a low activation
energy and can occur locally with only a small number of
phason flips. We call phason modes such as those found in
the Penrose tiling continuously excitable. In other QCs, for
example the square-triangle tiling, phason mode excitation
requires creating a pair of defects and propagating each defect
along a path rearranging the tiling in the process until the
defects annihilate. In the square-triangle tiling, this process is
called a zipper.42 Zippers are not efficient in relaxing the square
triangle-tiling. We call phason modes such as those found in
the square-triangle tiling therefore not continuously excitable.
Continuously excitable phason modes are found in thin-film
perovskite QCs where they involve rhomb tiles with small
interior angle 301. Because of the presence of continuously
excitable phason modes, perovskite QCs can efficiently relax
their tiling and transform to and from approximants.10,11

We chose to study the LJG model system because it stabilizes
and includes continuously excitable phason modes in the p6m and
p12m phases.41 This means that our model system is similar to
perovskite QCs in the character of its phason flips and the phase
transformations between approximants and the QC.

2.2 Tiling construction in hyperspace

The tilings of the dodecagonal QC and its approximants in the
LJG model system can be described by the cut-and-project

Fig. 1 Schematic depiction of the model system of this work. Particles
(red) interacting with themselves via the LJG potential and with an external
potential simulating the substrate (green/yellow). The particles form a
dodecagonal quasicrystal. Bonds (gray) connect nearest neighbors and
form three types of tiles: triangles, squares, and pentagons. Tiles are
deformed due to the vibrational motion of the particles at an elevated
temperature. (a) Top view. (b) Side view at an angled perspective.
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method43,44 in a four-dimensional hyperspace. We construct
tiling models in two steps.

In the first construction step, approximants of the quasi-
crystalline shield tiling45 are constructed. The projection
matrices on the two-dimensional physical (or parallel) space are

Pk ¼ 1ffiffiffi
2
p

c0 c1 c2 c3

s0 s1 s2 s3

" #
(4)

with ci = cos((i + 1/2)p/6) and si = sin((i + 1/2)p/6). The projection
matrix on the two-dimensional internal (perpendicular)
space is

P? ¼ 1ffiffiffi
2
p

c00 c05 c010 c03

s00 s05 s010 s03

" #
(5)

with c0i ¼ cosðip=6þ fÞ and s0i ¼ sinðip=6þ fÞ. The occupation
domain for the shield tiling is a dodecagon with twelve vertices
vi ¼ c0i; s

0
i

� �
, i = 1,. . .,12. The parameter

f ¼ arctan
t�

ffiffiffi
3
p

tþ
ffiffiffi
3
p

 !
with t ¼ 2

q

p
� 1 (6)

constructs the dodecagonal shield tiling for f = 0 and q/p
periodic approximants for f a 0. In this notation, approxi-
mants are labeled by two integers, q and p. Their ratio ranges
from q/p = 2 for the simple periodic approximant with wall-

paper group p3m1 to q=p ¼
ffiffiffi
3
p
þ 1

� ��
2 for the quasicrystal with

wallpaper group p12m. This means that the simple periodic
approximant is identified as a 2/1 approximant. All approxi-
mants with wallpaper group p6m can be constructed in the

range
ffiffiffi
3
p
þ 1

� ��
2o q=po 2. The approximants have rect-

angular unit cells with lattice constants bx ¼ by
ffiffiffi
3
p

and

by ¼ tþ
ffiffiffi
3
p� �

p
� ffiffiffi

2
p

. The approximants of the shield tiling con-
structed so far are built from three basic tiles: square, triangle,
and shield.45

In a second construction step, the basic tiles square, tri-
angle, and shield are decorated by placing one particle in
the center of the square tiles, one particle in the center of the
triangle tiles, and three particles as a regular triangle in the
center of the shield tiles. The result is the tilings of interest,
built from three larger tile types: square, triangle, and slightly
deformed pentagon. Examples of these resultant tilings are
found in Fig. 1 and Fig. 6. The combination of these tile
decorations forms a substitution rule.

2.3 Simulations and free energy calculations

We perform simulations and free energy calculations using a
combination of molecular dynamics (MD) and Monte Carlo
(MC) to accelerate relaxation and exploration of phase space.
MD is used to sample phonon modes and configurational
entropy. MC is used to sample phason modes.46 From the
van Hove autocorrelation function,38 we observe that all phason
flips readily occur over a single flip distance near r = 1 and that
most particles can perform phason flips. This demonstrates
that phason modes are continuously excitable via local phason

flips and do not require significant activation energy. We use
the HOOMD-blue molecular dynamics simulation package47,48

as the basis for our simulations and further extend it to include
MC moves. For MD, the integration timestep is 0.01. The NVT
ensemble with Nosé–Hoover thermostat is used and open
boundary conditions are applied. The Boltzmann constant is
set to 1. For MC, we attempt a phason flip in MC by choosing a
particle at random and a flip vector uniformly distributed in the
ring 0.9 o r o 1.1. The MC move is accepted according to the
Metropolis acceptance criterion. The measured acceptance rate
of MC phason flips is about 10%. Periodic boundary conditions
are employed to minimize finite size effects. We now discuss
the two different simulation modes used in this work.

In the first simulation mode, used for generating a diagram
summarizing assembly behavior as a function of model para-
meters, called an assembly diagram, and for studying phase
transitions, we perform MD simulations without MC moves.
We simulate 10 000 particles in a quadratic simulation box of a
box edge length 300. The particles are initially placed in a
central circle with a number density of 0.3. The particles
crystallize over time into a roughly circular, compact cluster,
which corresponds to a solid–gas coexistence. We chose this
setup to effectively obtain open boundaries for the crystalline
cluster. Such open boundaries are essential for efficient phason
relaxation because phason relaxations are generally suppressed
by the topological constraints of periodic boundary conditions.

In the second simulation mode, used for the calculation of
Helmholtz free energies, we combine MD and MC. 5000 MD
sweeps, i.e., moving each particle 5000 times, are alternated
with 5000 MC steps, i.e., attempting to perform a phason flip
for 5000 randomly chosen particles. System size varies for
different approximants and the QC between 4000 and 12 000
particles. In contrast to the first simulation mode, the simula-
tion box for approximants is now completely filled to prevent
solid–gas coexistence and to avoid phase transitions between
approximants. For the QC, we simulate with open boundaries
and only consider particles sufficiently fare from the surface.
We first relax constructed approximants in an NPT simulation
and then perform free energy integration in the NVT ensemble.
In this way, the number density of simulations in the second
simulation mode is guaranteed to agree with that of simula-
tions in the first simulation mode.

We use the Frenkel–Ladd (FL) method49 to compute free
energies. FL performs a thermodynamic integration over a
parameter l. It interpolates between the system of interest at
l = 0 and an Einstein crystal at l = 1. In an Einstein crystal, each
particle is connected to a reference position by a harmonic
spring. The integration is performed as

F ¼ FEin �
ð1
0

DFðlÞdl; (7)

where DF is measured from simulation. Because the reference
free energy of the Einstein crystal, FEin, is known, we can
calculate in this way absolute free energies.

It is important to check that the system remains in equili-
brium throughout the FL integration. We perform such a check
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by calculating the free energy in the forward direction
(increasing l) and in the backward direction (decreasing l)
and by checking for hysteresis. The absence of hysteresis is an
indication that the free energy calculation is accurate. A test FL
integration for the 2/1 approximant is shown in Fig. 2. Forward
and backward curves for DF agree, except for a small difference
near l = 0. At small l, particles diffuse strongly through the
system, which slows down equilibration. We use our test FL
integration to adjust the numerical parameter to ensure that
the hysteresis is sufficiently small. For numerical integration in
production calculations, we use Legendre–Gauss quadrature
with 20 l points. Each l point is simulated for 25 000 MD
sweeps. The spring constant of the Einstein crystal is LE = 100.
This value guarantees similar vibrational dynamics in the
Einstein crystal and the system of interest as indicated by an
approximately flat integrand.50

We validate the FL implementation by comparison to
reported free energies41 for the continuous transition p3m1 -

p12m in the absence of a substrate at e = 0. We calculate free
energies Fn(T) for six constructed approximants q/p = n/10 with n A
[15,. . .,20] and a well-equilibrated QC. We follow the continuous
transition from the 2/1 approximant to the quasicrystal via the
superstructure wave vector41

qs ¼
8pffiffiffi
6
p 2p� q

2qþ
ffiffiffi
3
p
� 1

� �
p
: (8)

This wave vector is calculated from the distance between
first-order satellite peaks and main diffraction peaks in reci-
procal space.41 The appearance of satellite peaks is a conse-
quence of the presence of structural modulations in the

approximants. We define the stability temperature of the
approximant n/10 as the intersection of Fn�1 and Fn+1. As an
exception, instead of the 14/10 approximant, we use a well-
equilibrated quasicrystal.

Our implementation of the FL plus phason mode relaxation
algorithm shown in Fig. 3(a) accurately reproduces prior
work.41 In particular, we reproduce the reported linear increase
of the wave vector qs as a function of temperature (Fig. 3(b)).
The agreement with prior work validates our free energy
calculation with the FL plus phason model relaxation method.

Fig. 2 Frenkel–Ladd integration for the 2/1 approximant at T = 0.25. We
measure the integrand DF in simulation by time-averaging at each l point
in both forward direction and backward direction. The inset shows a
zoom-in to small l values.

Fig. 3 (a) Helmholtz free energies Fn(T) for a well-equilibrated quasicrys-
tal and six approximants n/10, n = 15,. . .,20. Standard errors are estimated
from eight independent FL calculations. Purple plus markers indicate the
stability temperatures of approximants. Data shows the forward branch of
the free energy calculation. (b) Validation of the free energy calculation
with the FL plus phason model relaxation method. The superstructure
vector grows linearly with temperature from the 2/1 approximant to the
QC. Error bars on the temperature axis connect the FL calculation for
the forward and the backward calculations. Stability temperatures for
approximants agree with reference values41 within the error bars.
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3 Results
3.1 Molecular dynamics simulations

We analyze the crystallization behavior of our system by per-
forming 77 MD simulations at seven temperatures 0.2 r T r
0.5 in steps of 0.05 and for eleven substrate potential depths
0.0 r e r 0.1 in steps of 0.01. Substrate periodicity is fixed at
l = 0.5. This value is inspired by a direct comparison of relevant
length scales in our simulations and the perovskite QCs on a Pt
substrate.11 Each simulation is run for 108 integration steps
and the final simulation snapshot at the end of the run is
analyzed. In this subsection, we first perform a general analysis
of the orientational order and then conduct a more in-depth
analysis of the observed structures by visual inspection and
with the help of diffraction patterns.

3.1.1 Local orientational order analysis. We quantify the
presence of n-fold local orientational order via the Mermin
order parameter51 defined as

Cn ¼
1

N

X
j

1

Nj

X
kNN j

exp inyjk
� �

; (9)

where N is the number of particles, Nj is the number of nearest
neighbors (NNs) of particle j using the cut-off r = 2.5, and yjk is
the orientation of the nearest neighbor bond connecting par-
ticle j and particle k. The Mermin order parameters for n = 6
and n = 4 are also called the hexatic and quadratic order
parameters, respectively. We are specifically interested in these
order parameters because we expect to observe a competition
between the quadratic order at high temperature T (as pre-
viously found in the LJG potential41) and the hexagonal order of
the substrate.

The results of the local orientational order analysis are
shown in Fig. 4. Indeed, there exists a competition between
quadratic and hexagonal local orientational order. Hexagonal
local order dominates at high T. Here the liquid phase is
expected. In contrast, the quadratic local order dominates at
intermediate T and high e. Apparently, the substrate does not
promote local hexagonal order but instead local quadratic
order. This observation will be discussed further below. The
gradual variation of local orientational order across the T–e
parameter plane indicates that the particles can react smoothly
to changes in temperature and the substrate at a local level.
We also observe that the presence of thermal fluctuations
dominates over crystallographic symmetry in our two-dimensional
system, smearing out the boundaries separating ordered phases.
This precludes using the Mermin order parameters for automatic
calculation of an assembly diagram without relaxation or temporal
averaging.

3.1.2 Classification of observed phases. To obtain an
assembly diagram, we analyze each final simulation snapshot
in direct space by inspection of the particle configuration as
well as in reciprocal space via calculation of its diffraction
pattern. The latter is important because approximants can
exhibit significant phason fluctuations (see discussion below).
We manually compare snapshots to tiling structures with
the following wallpaper groups: p3m1 (2/1 approximant), p6m

(other hexagonal q/p approximants), p12m (dodecagonal QC),
p4m (square lattice), and E(2) (liquid). Manual classification is
typically unique and unambiguous. In the presence of multiple
tiling structures or in case defects remain in simulation snap-
shots, a snapshot is classified as belonging to the dominant
tiling structure.

We summarize the structure classification in the assembly
diagram of Fig. 5. In the absence of a substrate, e = 0, the known
phase behavior of eqn (2) is reproduced. Notice that due to low
resolution along the temperature axis, the continuous series of
q/p approximants reported previously41 is not fully resolved.
Phase boundaries shift with e according to four trends. First,
the dodecagonal QC and the 3/2 approximant become stable
over broader temperature ranges and shift towards lower
temperatures. This finding demonstrates that a hexagonal
substrate can, in fact, stabilize a dodecagonal quasicrystal
despite it having lower symmetry than the quasicrystal. Second,
the stability region of the square lattice shifts towards high T
with an increase of e, and a new structure, called the modulated
square lattice (msq), appears. Third, melting temperature
increases with e. Fourth, at low T and high e we find a novel

Fig. 4 Prevalence of local orientational order in final simulation snapshots
of long MD simulations. Data is smoothed by cubic interpolation. (a)
Hexatic order parameter C6. (b) Quadratic order parameter C4.
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chiral quasicrystal (cqc). In cqc, the inversion symmetry of the
dodecagonal quasicrystal is broken. Because this manuscript
focuses on weak substrate potentials, cqc will be the subject of
follow-up work. Three simulation snapshots at parameters
marked by asterisks in Fig. 5, the 2/1 approximant at (T,e) =
(0.25,0.00), the 3/2 approximant at (0.25,0.02), and the quasi-
crystal at (0.25,0.04) are shown in Fig. 6. A fourth simulation
snapshot at parameters marked by an asterisk at (0.3,0.09)
corresponding to msq is shown in Fig. 8.

We make two further observations: first, in the absence of a
substrate, the phase transformation from the 2/1 approximant
to the QC was continuous via a series of q/p approximants. This
continuous behavior is not sustained towards finite e. Instead,
higher-order approximants are generally suppressed. Specifi-
cally, we identify the low-order approximants 2/1 and 3/2
repeatedly in our snapshots for e 4 0 but no other approx-
imants. Second, there remain significant phason mode fluctua-
tions in the 3/2 approximant at elevated temperatures. Such
phason mode fluctuations are apparent when comparing
Fig. 6(b)-left, which shows a simulation snapshot, to Fig. 6(b)-
right, which shows the ideal tiling of the 3/2 approximant
obtained after slow relaxation to T = 0 to remove phason
fluctuations. Notice the similarity of the diffraction patterns
calculated for both snapshots (two halves in Fig. 6(b)-middle).
Apparently, the 3/2 approximant behaves like a random tiling
in that it permits phason mode fluctuations in thermodynamic
equilibrium. This means we must rely on characterization of

average crystallographic order by identification of diffraction
spots in the diffraction pattern to distinguish the approximants
in the generation of the assembly diagram.

The presence of phason mode fluctuations in an approx-
imant is unexpected and to the best of our knowledge has not
been reported. It is unclear whether such behavior is related to
the dimensionality of our system and can also occur in three
dimensions. We observe random tiling behavior only in suffi-
ciently complex approximants. For example, in the 2/1 approx-
imant, there are no square tiles (green squares in Fig. 6) except
if connected to structural defects. This means phason flips
cannot occur inside a 2/1 approximant but must be initiated
from the surface or from a grain boundary. In contrast, the 3/2
approximant has many square tiles and thus readily supports
phason mode fluctuations.

3.2 Incommensurate–commensurate transition

While the unperturbed (i.e., in the absence of a substrate) 2/1
approximant transforms into the dodecagonal QC continuously
via a series of hexagonal approximants, all approximants except
2/1 and 3/2 quickly disappear when the substrate is turned on
(Fig. 5). Why is this the case? To understand the disappearance
of higher-order approximants, we resort to free energy calcula-
tions. We calculate free energies for a well-relaxed QC and
a number of low-order approximants. Recall that hexagonal
approximants are labeled by two integers as q/p withffiffiffi

3
p
þ 1

� ��
2 � 1:37o q=po 2. Without loss of generality, we

can require q and p to be coprime. Finally, q and p should be
small such that the approximants have small unit cells. The
simplest such approximants are 2/1 = 2, 9/5 = 1.8, 5/3 E 1.67,
3/2 = 1.5, and 7/5 = 1.4. We arrange the approximants in
decreasing order of the q/p ratio from the 2/1 approximant,
which is the energetic ground state, to the QC, which is the
equilibrium state at intermediate temperature.

Fig. 7 depicts the phase diagram predicted by free energy
calculations. In the absence of a substrate, e = 0, the phase
diagram cycles through the approximants 2/1, 9/5, 5/3, 3/2, 7/5,
and QC in correct (that is, in q/p decreasing) order with
temperature. We also confirm the disappearance of all approxi-
mants except 2/1 and 3/2 with increasing e. Note that we did not
include in the free energy calculations the square lattice and its
modulation and the liquid. Besides this omission, there is good
agreement of the phase diagram in Fig. 7 with the assembly
diagram obtained from MD in Fig. 5.

Situations where the competition of two length scales domi-
nates phase behavior have long been studied in the field of
modulated crystals.52 Because the two length scales are of diff-
erent physical or chemical origins, their ratio is not expected to
be any special number and typically will be irrational. The
requirement of the system to satisfy both length scales simulta-
neously then causes the emergence of structural complexity in
the form of modulated crystals. One distinguishes two cases:
incommensurately modulated crystals are aperiodic crystals
where both length scales are realized without compromise.
The dodecagonal QC in our system can be interpreted as an

Fig. 5 Assembly diagram of the LJG potential in the T–e parameter plane.
Each data point corresponds to the dominant structure observed in the
final simulation snapshot after long relaxation. The ordered structures are
modulated square lattice (msq), square lattice (sq), 2/1 approximant (2/1),
3/2 approximant (3/2), dodecagonal QC (QC), and chiral structure (cqc).
Snapshots at the parameter position indicated by four asterisks are shown
in Fig. 6 and 8.
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incommensurately modulated crystal. A related example is
Moiré patterns, where not a competition of length scales but
the competition of crystallographic orientations and translation
generates interference effects. Incommensurately modulated
crystals are accompanied by phason modes in thermodynamic
equilibrium. In contrast, commensurately modulated crystals
are periodic crystals with large unit cells. The lattice constants
of commensurately modulated crystals simultaneously approxi-
mate integer multiples of both length scales. Commensurately

modulated crystals result from a lock-in transition where the
irrational ratio of the two length scales locks into a rational
approximation. q/p approximants are examples of commensu-
rately modulated crystals.

Phase diagrams that include modulated crystals are usually
studied as a function of length scale ratio and coupling
strength. The first parameter, the length scale ratio, is often
controlled indirectly by changing the composition or local
structure. In our system, the length scale ratio is linked to the

Fig. 6 Snapshots from MD simulations at T = 0.25 and at three substrate potential depths e. Nearest neighbor bonds are shown only, with the particles
omitted. Triangle tiles are shown in red, square tiles in green. (a) 2/1 approximant at e = 0.00. (b) 3/2 approximant at e = 0.02. (c) QC at e = 0.04. Snapshots
are shown in direct space obtained from simulation (left column) and from representative ideal tilings (right column). Diffraction patterns (middle column)
are calculated and compared for both snapshots (left and right halves). The reciprocal lattice of diffraction spots in reciprocal space is mapped onto
characteristic lattice vectors in direct space as indicated by blue lines in (a) and (b). Notice the presence of significant phason mode fluctuations in the
simulation snapshot of the 3/2 approximant (b, left). Despite these phason mode fluctuations, its diffraction image (b, left half of middle) is highly similar to
the diffraction image of the ideal tiling of the 3/2 approximant without any phason mode fluctuations (b, right half of middle).
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temperature T because temperature affects tile energy and thus
the tile type that is dominant. The second parameter, the
coupling strength, is measured relative to thermal energy. In
our system, the coupling strength is given by substrate
potential depth e. With these identifications, we can compare
our phase diagram to past phase diagrams of modulated
crystals. The comparison shows that Fig. 7 closely resembles
the mean field phase diagram for the 3D Ising model with
competing interactions (Fig. 24 in ref. 53) and the FVdM model
as suggested by Aubry (Fig. 25 in ref. 53). Such characteristic
phase diagrams of incommensurate–commensurate transitions
have been called the Devils flower phenomenon by Bak.54 Our
results confirm that the increase of substrate strength locks
modulated crystals into certain approximants and drives new
complex phase behavior as expected from the Devil’s flower
phenomenon.

The appearance of the Devil’s flower in our phase diagram
helps us interpret the observed stabilization mechanism and
particle dynamics. In the absence of a substrate in the tem-
perature range 0.24 o T o 0.36, the system is incommensu-
rately modulated. Phason modes are unlocked and critical for
thermodynamic stabilization because they contribute to the
free energy. As substrate potential depth increases, phason
modes may still be present (see Fig. 6) but gradually disappear.
Eventually, the system locks into the 2/1 and 3/2 approximants.
To the best of our knowledge, Fig. 7 is the first report of an
incommensurate–commensurate transition in any two-dimensional
system of freely moving particles.

3.3 Square lattice and its variants

The presence of the substrate drives the incommensurate–
commensurate transition at low substrate potential depth
e o 0.03. For e 4 0.03, the square lattice (sq) and its variants

appear dominantly in the phase diagram (Fig. 5). For inter-
mediate substrate potentials, a novel modulated square lattice
(msq) is observed (Fig. 8(a) and (b)). For a high substrate
potential, e c 1.0, above the range covered in Fig. 5, a
coexistence of grains with rectangular lattice (rec) and hexago-
nal lattice is eventually observed (Fig. 8(c) and (d)). All of these
phenomena are yet other examples of commensurate–incom-
mensurate transitions induced by the competition of the length
scales imparted by the LJG interaction potential with the unit
cell of the substrate.

Msq and rec are typically polycrystalline with individual
grains locking into one of three distinct orientations. This
locking is a consequence of the six-fold symmetry of the
substrate. Diffraction patterns confirm the global six-fold
symmetry. In the diffraction pattern of msq (inset in
Fig. 8(a)), isolated peaks (circled) are present for each grain.
Besides the locking of grain orientations, individual grains
are only weakly affected by the substrate (see modulations
discussed below). In the diffraction pattern of rec (inset
in Fig. 8(c)), some peak triplets merge into single peaks
(indicated by black hexagons in Fig. 8(a) and (c)). The merging
is caused by a stretching of squares into rectangles to improve
compatibility with the substrate. This means that the four-fold
symmetry is already lost in individual grains of rec and
the system is closer to six-fold symmetry than msq. While
small patches of triangles are sometimes already present in
rec (central part of Fig. 8(c) labelled ‘4’), only very high e
transforms the system completely into a hexagonal crystal
(not shown).

A zoom-in on grain ‘2’ of rec is shown in Fig. 8(d). We plot
the substrate potential in the background to visualize particle
locations (red) relative to maxima (yellow) and minima
(green) of the potential. Potential maxima form a hexagonal

Fig. 7 (a) Phase diagram of the LJG potential with substrate from free energy calculations of the approximants 2/1, 9/5, 5/3, 3/2, 7/5, and the QC as
candidates. (b) Zoom in on the region with weak substrate potential. The continuous transformation of the 2/1 approximant into the QC transitions
disappears as e increases. This phenomenon resembles the Devil’s flower phenomenon known in modulated crystals where spontaneous phase-locking
takes place.
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lattice separated by channels of low potential that trace the
nearest–neighbor bond network of a honeycomb lattice. The
stretching of squares into rectangles can now be understood.
Recall that the nearest–neighbor distance is rNN E 1.0, and the
substrate periodicity is chosen as l = 0.5. A lattice constant
lx = 2l allows particles to retain their preferred nearest–neigh-
bor distance without penalty. And a slight adjustment of the

lattice constant to ly ¼
ffiffiffiffiffiffiffiffi
4=3

p
lx � 1:15lx ensures commensur-

ability with the substrate also in the y-direction.
A zoom-in on grain ‘2’ of msq is shown in Fig. 8(b). Just like

before, a lattice constant lx = 2l allows particles to retain their
preferred nearest–neighbor distance without penalty. The y-direction

is again more complicated. A lattice constant ly = lx now guarantees
four-fold symmetry in the diffraction pattern but can do so only on
average and by allowing positional modulations along the y-axis.
A close inspection reveals the presence of this modulation in the form
of weak satellite peaks in the diffraction pattern (inset in Fig. 8(b)).
The separation of satellite peaks from the central peaks corresponds
to a superstructure periodicity of ls E 0.20. Analysis of other snap-
shots suggests that ls is not unique but is a function of T and e. We
also observe that particles are unusually mobile in channels along the
y-direction (purple in Fig. 8(b)). This high mobility can be directly
associated with a phason mode. All evidence combined demonstrates
that msq is an incommensurately modulated crystal.

Fig. 8 Variations of the square lattice at higher substrate potential depth e and intermediate temperature T. (a) and (b) Modulated square lattice (msq) at
e = 0.039 and T = 0.3 for 10 000 particles. (c) and (d) Coexistence of small grains with rectangular lattice (rec) and hexagonal lattice at e = 1.0 and T = 0.4
for 1024 particles. (a) and (c) Particle configurations showing nearest neighbor bonds only, with the particles omitted. Triangle tiles are shown in red,
square tiles in green. There coexist grains in three orientations (labelled ‘1’, ‘2’, ‘3’) and a region dominated by triangles (labelled ‘4’ in (d)). Diffraction
patterns are shown as bottom right insets with diffraction peaks encircled and colored according to the grain orientation they correspond to. (b) and (d)
Zoom ins on the grain ‘2’. Particles are shown as small red disks overlaid on the substrate potential. In (b) light blue color indicates the channels the
particles move in. A diffraction pattern is shown as the top left inset.
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4 Conclusions

Research in this paper was originally motivated by the discovery
of approximants in the thin-film perovskites (Ba, Sc)TiO3 on
solid metal substrates. Importantly, experiments demonstrated
that the type of approximant changes as a function of substrate
interaction and periodicity. Our findings reproduce and explain
aspects of these experimental observations. Our findings also
highlight a number of new phenomena, not yet seen in experi-
ments or simulations.

The new phenomena we observed and that we believe could
be general consequences of the competition between a QC and
a periodic substrate, are as follows:

1. Existence of incommensurate–commensurate phase tran-
sitions. In these phase transitions, the QC locks into one or
several approximants. We observed the stabilization of the 3/2
approximant via a lock-in transition.

2. Approximants with phason fluctuations. We observed that
the 3/2 approximant resembles a random tiling rather than an
ideal crystal despite having a well-defined periodicity as indi-
cated by the presence of a reciprocal lattice.

3. Enhanced stability of the QC. Counter-intuitively, the
substrate enhanced the thermodynamic stability of the dode-
cagonal quasicrystal for some parameter values.

4. Incommensurately modulated crystals, where the modu-
lation is a consequence of competition between two length
scales. We observed the modulated square lattice.

5. Novel structures commensurate with the substrate that
are not approximants. We observed the rectangular lattice.

While observation 1 is similar to that in thin-film perovs-
kites and observation 3 could explain the existence of perovs-
kite QCs, the other observations have not yet been reported
in the experimental system. It will be interesting to search
for them.

Generally, we see a trend that the competition between the
inherent symmetry of the model system, i.e., the crystal struc-
ture that the system prefers to form in the absence of a
substrate, and the imposed symmetry of the substrate can
occur in multiple steps involving both commensurate and
incommensurate phases. We find in our system, as we increase
the strength of the substrate potential, at T = 0.25 (see Fig. 5), a
complex sequence of phase transformation alternating between
commensurate and incommensurate: from (i) 2/1 approximant
(crystal) to (ii) 3/2 approximant (commensurate) to (iii) quasi-
crystal (incommensurate) to (iv) modulated square lattice
(incommensurate) to (v) rectangle lattice (commensurate) to
(vi) hexagonal lattice (substrate).

Future work should further expand this research by testing
more parameters or conducting similar studies in more realis-
tic systems. An important parameter that should be varied, but
was not in this work, is the substrate periodicity. Varying this
parameter, it should be possible to target desired crystal
structures and approximants by inverse design. Given that
many recent model systems of quasicrystals have been found
in soft matter systems and the fact that such systems are highly
tunable and thus ideally suited for parameter studies, we

believe that soft matter quasicrystals are ideal candidates to
test many of the discoveries reported in this work.
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