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Adsorption of semiflexible wormlike polymers to a
bar and their double-chain complex formation

A. N. Semenov * and I. A. Nyrkova

We theoretically study pairing (double-strand complexation) of semiflexible wormlike chains (WLC) due to

their side-to-side attraction. Considering binding of two WLCs of high stiffness we start with the case of

infinite stiffness of one chain which is replaced with a straight bar. A combination of the quantitative

transfer matrix approach with scaling arguments in terms of trains, loops of different sizes, tails and

supertrains allowed us to characterize all the regimes of semiflexible chain adsorption on a bar. In

particular, we predict a self-similar monomer concentration profile c(r) p r�10/3 near the bar (at distances

r below the chain Kuhn length l) at the critical point for adsorption. Such localized critical profile leads to a

sharp adsorption transition. Furthermore, we found that supertrains serve as the basic structural elements

in WLC complexes leading to bridging, network formation and condensation of semiflexible polymers in

dilute solutions. Polymer collapse (precipitation) and redissolution on increasing attraction strength are

predicted in qualitative agreement with experiments on aqueous solutions of DNA and F-actin.

1 Introduction

A semiflexible macromolecule is characterized by high stiffness
of its chemical backbone: its persistence length lp greatly
exceeds its thickness d, lp c d. On the other hand, the total
contour length L of the chain can be much larger than lp.
Examples of such polymers range from Kevlar and other aro-
matic polyamides or synthetic polymers like derivatives of
cellulose to helical polymers like poly-g-benzyl-L-glutamate, sur-
factant micelles, supramolecular polymers,1,2 self-assembling
peptide tapes and fibrils,3 and biological macromolecules like
double-strand DNA, microtubules, F-actin and other protein
filaments. High backbone rigidity facilitates adsorption of such
polymers on solid surfaces and membranes.4–8 On the other
hand, side-to-side attraction of semiflexible macromolecules can
drive their aggregation (mutual ‘adsorption’) leading to for-
mation of linear double-chain or triple-chain complexes,9,10

supramolecular fibrils and bundles.11–16

A similar mechanism underlies formation of polyelectrolyte
complexes (PECs) in binary solutions of oppositely charged
macromolecules (say, A and B).17–23 Attraction between A and
B segments has electrostatic nature in this case; it can be
relatively short-range if sufficient amount of salt is added. At
high polymer concentrations the two polyelectrolytes (PEs) can
form complex coacervate phases,24,25 while at low concentra-
tions the PECs emerge as finite-size (colloidal) gel particles.26,27

For example, chitosan, which is a semiflexible polycationic

biopolymer of high stiffness, forms PECs with polyanions like
polysaccharides and proteins. Such complexes play important role
in biological processes and pharmaceutical applications.26 It was
also argued that highly stiff PEs should tend to form double-strand
complexes in the case of strong enough attraction (Fig. 1).17,18,28–31

Another example of polymer complexes is provided by
heteroassociative polymers bearing many functional groups
(stickers) that are able to form reversible bonds (like H-bonds
or metal–ligand bonds) between parallel A and B segments
(Fig. 1c).32 The transient crosslinks in associative polymer
systems enable stimuli-responsiveness of their viscoelastic
and rheological behavior, and numerous other remarkable
dynamical and processing properties serving as a basis for
many industrial and biological applications.33–35

In the present paper we consider complexation of semiflexible
polymer chains using a rather generic and simple Kratky–Porod
model (known also as worm-like chain, WLC, model) assuming
that polymer conformation can be defined by its backbone
trajectory and that the total interaction energy of two chains comes
as a sum of short-range interactions of their length elements. The
elements do not interact if their distance exceeds the interaction
range D, D{ l (here l = 2lp is Kuhn segment of the chain). Such a
formally isotropic local interaction nevertheless leads to strong
orientational effects due to polymer chain stiffness. The model can
roughly mimic the screened Coulomb interactions of oppositely
charged polyelectrolytes. It can also describe the effect of physical
bonds between associating groups if the latter are sufficiently
flexible, weak and numerous (many stickers per Kuhn segment).

In the next Section 2.1 we define the model in more
mathematical terms and show that to a certain extent (at
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length-scales shorter than l) a pairwise complexation of two
WLCs is equivalent to adsorption of an effective WLC on a
straight bar (standing for the second WLC in the fully stretched
conformation). In Sections 2.2 and 2.3 we derive the master
equation for position (�R) and orientation (�t) dependent parti-
tion function c of a semiflexible chain near the bar (at r { l)
and obtain this function at the adsorption threshold (corres-
ponding to the critical strength of attractive interaction, u = u*).
The distribution of polymer segments in the (�R, �t)-space at u =
u* is found as well (Section 2.3). The fractal nature of this
distribution is revealed using an alternative approach applied
both near the bar (Sections 3.1 and 3.2) and far from it (Section
3.3). The segment distributions both below and above u* are
considered in Sections 3.4 and 3.5, respectively; the free energy
of complexation is analysed in Section 3.5 as well. The main
results are discussed and generalized in Section 4. We first
highlight the crucial aspects of the adopted approach and the
obtained results (Discussion points D1–D5), and then apply
them to study the salient features of complexation between two
or more semiflexible macromolecules including gelation (net-
work formation), coil-to-globule transition and phase separa-
tion in the dilute solution regime (points D6–D9). In particular,
we show that the presence of double-strand complexes can lead
to a reentrant transition as solvent quality decreases (u grows):
from homogeneous polymer solution to a condensed gel phase
which then dissolves as the side-to-side attraction (u) gets even

stronger (see points D8, D9 of the Discussion). This effect
highlights the non-trivial boundary nature of the bundling
phenomenon. The results are summarized in the last Section 5.

2 Theoretical methods and basic results
2.1 The model and the theoretical problem

Below we recall some basic properties of stiff WLCs and
introduce a theoretical framework to consider their pairwise
complexation.

The lowest energy state of a wormlike chain (WLC) is a
straight line. The free energy penalty for a deviation from this
conformation is due to the chain bending:

Fbend ¼ Tlp=2
� �ð

dt=dsð Þ2ds ¼ Tl=4ð Þ
ð
d2R=ds2
� �2

ds (1)

where t ¼ tðsÞ ¼ dR

ds
is unit vector tangent to the chain at point s

(here s is the curvilinear distance along the chain), �R(s) is
position of point s, lp = l/2 is the chain persistence length,
and T is the thermal energy (temperature in energy units).
Eqn (1) corresponds to the Kratky–Porod model,36 which is
widely used to study statistical properties of stiff and semiflex-
ible polymer chains.5–7,37,38 The ideal WLC model is adopted in
the present study. Note that intra-chain interactions are
neglected here in most cases since for d { l the intra-chain
contacts are rare.

Eqn (1) implies that at equilibrium (and in the absence of
any constraints)

tðsþ s0Þ � tðs0Þh i ¼ exp �s=lp
� �

(2)

It means that the typical bending angle of a short segment
(of length s { l) is y B (s/l)1/2, and its lateral deviation from a
straight line is

r B ys B s3/2/l1/2 (3)

Let us turn to the system of two WLCs, A and B, which tend
to form a complex due to side-to-side attraction between A and
B segments (Fig. 1a). If the attraction is sufficiently strong, the
typical lateral distance r between the chains should be relatively
small, r { l, so that locally the two chains have to stay nearly
parallel to each other (Fig. 2a). The relevant correlation length l
along the chain can be defined by the condition that the typical
lateral deviation of a l-segment (with fixed position and orien-
tation of its starting monomer unit) is Br: l B r2/3l1/3 (see
eqn (3)), hence l { l. The paired chains can be considered as a
sequence of nearly straight segments of intermediate length
DL, l { DL { l (see Fig. 2a). In each such segment one can
choose the axis z along the chains (cf. Fig. 2b), so that locally the
curvilinear distance s can be replaced by z-coordinate and
conformations of both chains can be described by the vector
functions �rA(z) and �rB(z), where �ri (i = A, B) are 2-dimensional
projections of position vectors onto xy plane perpendicular to
z-axis. In terms of the lateral displacement vector, �r(z) = �rA(z) �
�rB(z), and the mean trajectory, �rm(z) = [�rA(z) + �rB(z)]/2, the

Fig. 1 Double-strand complexes of mutually attracting semiflexible
chains: (a) two similar worm-like chains, A and B; D is the range of
attractive interactions between A and B monomers (the potential well
around the black chain B is shown with yellow color); d is the range of their
hard-core interactions. (b) Two oppositely charged polyelectrolytes (rD

is the Debye screening length). (c) Two chains with complementary
associative groups forming reversible bonds (see ladder segment in the
middle). The effective rigidity of the chains is characterized by their Kuhn
segment l (persistent length lp = l/2); d o D{ l. The chain pairing (binding)
is stabilized by contact regions (‘trains’) which alternate with ‘loops’; s is the
length of a loop and r is its transverse size.
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bending energy of both chains reads (cf. eqn (1) and Fig. 2):

Fbend ’ Tl=2ð Þ
ð
d2rm=dz

2
� �2

dzþ Tl=8ð Þ
ð
d2r=dz2
� �2

dz (4)

Obviously the energy of local interactions between the chains
depends on the lateral distance |�r(z)|, but is nearly independent
of�rm(z). Hence fluctuations of�r(z) and�rm(z) must be decoupled
and therefore, as long as we are interested in the statistics of

�r(z), the first term in eqn (4) can be considered as irrelevant and
omitted. The remaining term shows that the statistics of�r(z) for
two closely paired wormlike chains is equivalent to that for one
WLC with effective Kuhn length l* = l/2 near a straight bar
attracting the WLC.† This analogy is exact in the limit l/l - 0
(that is, for r { l). For a finite l/l { 1 the relative error of this
approximation is about l/l since the main relative inaccuracy of
eqn (4) is proportional to y2 where y B (l/l)1/2 is the typical
angle between the two chains (see the text above eqn (3) and
Fig. 2b).

Thus, instead of an original complex of two tightly coupled
WLCs it is appropriate to consider a simpler problem of
adsorption of one effective WLC (A* with effective l*) onto an
infinite straight bar (Fig. 2c). Below we present a theoretical
approach to obtain the polymer concentration distribution

within the latter complex as well as its energy, free energy
and other properties. Note that the problem of adsorption of a
flexible (ideal Gaussian) chain onto an infinitely thin attractive
bar is exactly solvable using the ground-state dominance
approximation39–41 and can be interpreted in terms of length
distributions of loops and tails.42

2.2 The transfer-matrix approach

Let us consider an ideal semirigid WLC of length L with one
end (at s = 0) free and the second end (at s = L) having
orientation �t and position �R = (x, y, z) near a straight bar
coinciding with z-axis (here s is curvilinear distance along the
chain contour). In the presence of an arbitrary external
potential field U(�R) (such that the total potential energy of the

chain is E ¼
Ð L
0U RðsÞð Þds) the chain partition function is C =

C(�R,�t, L). This function in normalized in such a way that c = 1
in the case of no field. The obvious initial condition is then

C(�R, �t, 0) = 1

Variation of C as L increases can be deduced using the transfer-
matrix approach42,43 leading to the generalized Edwards equa-
tion:5–7,43,44

@C
@L
¼ 1

l
rt

2C� t � rRC�UðRÞC=T (5)

wherer
�t
2 is the Laplacian in the orientational space (�t), andr

�R

is the gradient in �R-space (here and below we drop ‘*’ after l).
The potential U(�R) is actually due to interactions between the
chain and the bar. For uniform and axially isotropic bar it
therefore depends only on the distance r between a short chain
segment (of length ds) and z-axis: the potential energy con-
tribution of such segment is U(r)ds. We assume that this
interaction is short range: U(r) = 0 for r 4 D, where D is much
shorter than the Kuhn segment, D { l. An example of U(r) is
shown in Fig. 3a reflecting the usual trends: attraction at r
below D and hard-core repulsion at shorter r, r o r0 = d/2; here
the repulsion range r0 is assumed to be comparable with D.

Eqn (5) allows to describe adsorption of the WLC on the bar.
It can be rewritten using components of�t = (tx, ty, tz) and taking
into account that the system is uniform in z-direction
(since U(�R) is independent of z), so C is also independent of
z: C(�R, �t, L) = c(�r, �t, L), where �r = (x, y) is the two-dimensional
projection of �R on the xy plane. This leads to

@c
@L
¼ 1

l
rt

2c� tx
@c
@x
� ty

@c
@y
�UðrÞ

T
c (6)

where r = |�r|. Furthermore, making use of cylindrical coordi-
nates, �r = (r cosj, r sinj) with polar angle j, and defining the
radial (tr) and azimuthal (tj) components of the tangent vector�t
(cf. Fig. 3b),

tr = tx cosj + ty sinj, tj = ty cosj�tx sinj (7)

we transform eqn (6) as

@c
@L
¼ 1

l
rt

2c� tr
@c
@r
� tj

r
tj
@c
@tr
� tr

@c
@tj

� �
�UðrÞ

T
c (8)

Fig. 2 The paired semiflexible chains, A (green) and B (violet) (global view
(a), and local view (b)). Their mean trajectory is shown in (a) as a chain of
black segments of length DL (only one segment of the mean chain is shown
in (b) where it coincides with z-axis). l is Kuhn segment of both chains; �r is
the local lateral displacement vector between the chains, r { l; lB r2/3l1/3 is
the relevant longitudinal correlation length; the angle y between tangent
vectors �tA and �tB is small. In (c) an effective WLC (A*, cyan) with Kuhn
segment l* = l/2 is adsorbed onto a straight bar of thickness d (red) with
attractive zone (yellow) of radius D around it. The origin of the reference
frame is marked in (b) and (c) with white point and sign ‘0’.

† In the general case of different chain stiffness, l1 and l2, l* is defined in
eqn (106).

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
/2

1/
20

26
 6

:2
2:

55
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00188e


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 4366–4388 |  4369

where c = c(r, tr, tj, L). Here we took into account that the
system is axially symmetric hence c is independent of the angle

j:
@c
@j

� �
r;tr;tj

¼ 0.

For r { l eqn (8) can be further simplified by taking into
account that the chain must be nearly parallel to the z-axis due
to its strong attraction to the bar (cf. the previous section), so
that the tangent vector �t = (tr, tj, tz) makes a small angle with
z-axis: |tr| { 1, |tj| { 1, tz C 1. As both tr and tj are small, the
orientational Laplacian can be written as

rt
2 ’ @2

@tr2
þ @2

@tj2
(9)

As a result, the master eqn (8) becomes

@c
@L
¼ 1

l

@2c
@tr2
þ @

2c
@tj2

� �
� tr

@c
@r

� tj

r
tj
@c
@tr
� tr

@c
@tj

� �
�UðrÞ

T
c; r� l

(10)

Returning to eqn (8), note that as its r.h.s. does not explicitly
depend on L, its general solution can be written as a sum of
terms like

c ¼
X
i

cðiÞ r; tr; tj
� �

eEiL (11)

where c(i), Ei are eigenfunctions and eigenvalues corresponding
to eqn (8). At large L the function c is dominated by the term
with the largest E ¼ maxi Eif g corresponding to the ground-state
function c(0)(r, tr, tj) satisfying the eigenvalue equation (the
superscript ‘0’ is omitted below):

1

l
rt

2c� tr
@c
@r
� tj

r
tj
@c
@tr
� tr

@c
@tj

� �
�UðrÞ

T
c ¼ Ec (12)

Note that eqn (12) is valid generally, and not only for r { l. An
advantage of our approach to consider a WLC near a straight
bar is that the adopted approximations are valid for however

long chains (in particular, for L c l). As mentioned above the
partition function of a long enough chain located near the bar
is dominated by the ground state contribution (the ground-
state dominance approach39):

c / eEL (13)

At low attraction strength, u = |min U(r)|/T (see Fig. 3a), c does
not grow with L, so E ¼ 0. In this case c is close to the partition
function of a free chain, cfree, which is constant independent of
L, as follows from eqn (5) with U(�R) � 0. On the other hand, if u
is sufficiently large, u 4 u*, the ground-state eigenvalue is
positive, E4 0; meaning that a long chain is trapped near the
bar (i.e. that the relevant solution of eqn (12) is localized, cf.
Section 3.5) and its free energy per length,

F=L ¼ �T lnc=L ’ �TE (14)

is negative. Thus, the chain is always adsorbed on the bar for E4 0

and the critical adsorption point (separating delocalized and
adsorbed chain regimes) must correspond to u = u* where E
vanishes first as u is decreased from the regime of strong attraction.

2.3 Adsorption of WLC on a bar at E ¼ 0: quantitative
approach for r { l

As mentioned above the chain adsorption (localization near
the bar) is driven by its short-range attraction to the bar of
strength u (u = |minU(r)|/T, cf. Fig. 3a). Let us first focus on
the critical regime (with E ¼ 0, cf. eqn (12) and (14)) corres-
ponding to the attraction threshold for the adsorption, u = u*.
For r 4 D the interaction potential U(r) just vanishes, so
eqn (12) defining the ground-state eigenfunction c(r, tr, tj)
can be simplified as

1

l
rt

2c� tr
@c
@r
� tj

r
tj
@c
@tr
� tr

@c
@tj

� �
¼ 0 (15)

On using eqn (9) for r { l we arrive at‡

1

l

@2c
@tr2
þ @

2c
@tj2

� �
� tr

@c
@r
� tj

r
tj
@c
@tr
� tr

@c
@tj

� �
¼ 0 (16)

Note that the only parameter entering eqn (16) is l, so all
r-dependencies should scale with r/l. Benefiting from an ana-
logy between adsorption onto a bar and on a flat surface,6,7 it is
natural to assume a self-similar dependence of c on the
distance r for l c r c D:

c(r, tr, tj) = (r/l)ag(Z, x), (17)

where

Z � tr/Y(r/l), x = tj/Y(r/l) (18)

Here the exponent a is a constant to be determined, g(Z, x) is a
function to be found, and an appropriate function Y(r/l) can be
deduced from the structure of eqn (16) leading to:

Y(r/l) = (r/l)1/3 (19)

Fig. 3 (a) The polymer/bar interaction model: U(r) is interaction energy
per contour length of WLC, r is the distance between a WLC element and
the central axis of the bar, D is attraction range, d � 2r0 is hard-core
diameter; the effective strength of the attraction can be characterized by
u = Um/T, Um � |min U(r)|. (b) A view along the bar axis: �r(z) = (x, y) is
projection of the monomer position vector �R = (x, y, z) onto the xy-plane
(perpendicular to the bar axis z); j is polar angle of�r, x = r cosj, y = r sinj;

�t> is projection of the WLC tangent vector�t = (tx, ty, tz) onto the xy-plane,

�t> = (tx, ty, 0); tr and tj are radial and azimuthal components of �t> in the
cylindrical coordinates (r, j), cf. eqn (7).

‡ The physical meaning of the arguments, r, tr, tj, is clarified in Fig. 3b. Both tr

and tj are small for r { l.
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Eqn (19) is in agreement with the results of ref. 6 and 7. Using
eqn (16), (17) and (19) we derive the following equation for g(Z, x):

Lg ¼ 0;

L � @2

@Z2
þ @2

@x2
þ Z
3

Z
@

@Z
þ x

@

@x

� �
þ x Z

@

@x
� x

@

@Z

� �
� aZ

(20)

To solve this equation we need boundary conditions. As discussed
below (cf. Section 3.5) in the adsorbed state (u 4 u*) most
segments are located close to the bar, being nearly parallel to it.
If a segment of length l { l bends away from the bar, its typical
deviation r from the bar and the angle y its end makes with
the bar can be estimated as r B l3/2/l1/2, y B (l/l)1/2 { 1
(see Section 2.1, eqn (3)). Excluding l from these 2 equations we
arrive again at eqn (19) suggesting that chain segments near the
bar are aligned almost parallel to it (since Y = 0 and hence tr = tj =
0 at r/l = 0; note that here we consider the limit D/l - 0). A much
larger angle at a distance r, y c Y(r/l), would require a strong
bending of the l-segment leading to a high elastic energy penalty
and, therefore, low probability of such a large angle. Hence,
the function g(Z, x) is expected to strongly decrease at large

W �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ x2

p
:§

g(Z, x) - 0 at W - N (21)

Eqn (20) (with boundary condition, eqn (21)) could possibly
be solved analytically in terms of generalized multivariable
hypergeometric functions. However, we have got an impression
that mathematical theory of such functions is not yet suffi-
ciently developed.45 So, we opted to solve eqn (20) numerically
using a relaxation method. The relaxation equation associated
with eqn (20) is

@g

@t
¼ Lg (22)

where t is an additional variable (fictitious time). At sufficiently
long t the ground mode wins and the t-dependence readily
becomes exponential, g / expðKtÞ (compare this behavior with
eqn (13)). We found that Ko 0 for a0 4 a4 a1, while K ¼ 0 and
therefore eqn (20) is satisfied at a = a0 and a = a1. The
numerically obtained critical exponents are:

a0 = 0 � 5 � 10�5, a1 = �2 � 5 � 10�4 (23)

What about the dependence of g on angular variables Z and x in
the critical states (a0, a1)? For a = 0 the distribution is simply
constant, g(Z, x) = const. However, it is non-trivial (and localized
around the origin) for a E �2. The typical profiles of g are
shown in Fig. 4 (Z-profiles (a) and x-profiles (b) for a = �2.0001).
Note that x-profiles are always symmetric, g(Z, x) = g(Z, �x),
since the system is achiral. By contrast, the Z-profiles are
somewhat shifted towards positive Z reflecting the fact that
conformations (and statistical weights c, cf. eqn (17)) with
positive and negative tr are not equivalent: for a given r 4 D
it is more favorable to have tr 4 0 since in this case the end

fragment of the chain (with s o L near s = L) is closer to
the attractive bar thus increasing the probability of contacts
with it.

For large W the function g(Z, x) can be obtained analytically
by a simple asymptotic analysis of eqn (20). Indeed, let us
assume that g(Z, x) C g̃(W)� W�x for Wc 1, cf. eqn (21). Then the
first term in L, eqn (20), is negligible (CW�x�2) with respect to
the second term (CW�x+1), while the third term is exactly zero
for g = g̃(W). The remaining second and the forth terms in L
dictate that x = � 3a. Hence the result is

g(Z, x) p W3a, W c 1 (24)

Interestingly, a similar behavior (but with different exponents a)
was obtained for WLCs adsorbed onto a permeable membrane.7

The monomer density distribution, c(�r,�t), in the full space of
monomer position �R and orientation �t is6,7,42,43

c(�R, �t) = c(r, tr, tj) = constc(r, tr, tj)c†(r, tr, tj), (25)

where c†(r, tr, tj) = c(r, �tr, tj) is the conjugated function. The
above eqn (25) is valid in the ground-state dominance (GSD)
regime. Note that both c and c depend on just one spacial
variable r (i.e. these functions are independent of both z and j)

Fig. 4 The distribution of reduced angles Z = tr/Y, x = tj/Y corresponding
to the components (tr, tj) of the chain-end tangent vector �t in the critical
regime (cf. eqn (16)–(20)): (a) g(Z, x) vs. Z for x = � 1.6 (red), 0 (black), 1.2
(blue); (b) g(Z, x) vs. x for Z =�3.3 (green),�1.6 (red), 0 (black), 1.2 (blue), 2.9
(magenta).

§ A weaker asymptotic boundary condition like |g(Z,x)| o C (with some positive
C 4 0) seems to be enough to get a unique solution as suggested by our
numerical results.
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since the system is axially symmetric and uniform along the
z-axis, cf. Fig. 2c. Using eqn (17) we get

c(r, tr, tj) = const r2ag(Z, x)g(�Z, x) (26)

For large reduced angles, Wc 1 (cf. eqn (21), i.e. for t> cY(r/l)),
cf. Fig. 3b, we find from eqn (26) and (24) that (somewhat
surprisingly) the c-function does not depend on r:

c(r, tr, tj) p (tr
2 + tj

2)3a, 1 c tr
2 + tj

2
c (r/l)2/3 (27)

The significance and the physical meaning of these results are
discussed in the next section.

3 Critical regimes of WLC adsorption
on a bar
3.1 General concepts

As we mentioned before, the present problem of polymer
adsorption on a bar is rather similar to single-chain adsorption
on a flat surface. The latter phenomenon is well-studied.6–8,46–48

For polymer adsorption (of both flexible and semirigid chains)
one can distinguish two basic regimes with algebraic depen-
dence of polymer concentration c on the distance x to the
surface, c(x) p x�b: (i) a non-adsorbed state with b = b0 r 0
(corresponding to the case of a purely repulsive surface) and (ii)
critically adsorbed state, b = b1 Z 0. The number of contacts with
the surface for a chain of N units located within its own size R p

Nn from the surface is nc p Nf, where f is the so-called crossover
exponent46–48 related to b: f = 1� n(1� b) if bo 1. For example,
adsorption of ideal flexible chains with n = 0.5 (say, from a theta-
solvent) is characterized by the critically adsorbed state with b1 =
0, f1 = 0.5, and the non-adsorbed state (for a repulsive wall) with
b0 = �2, f0 = �0.5 (no polymer contacts with the surface).

Returning to adsorption of a long WLC onto a bar, the
general scaling picture described above applies also in this
case (with a trivial replacement of distance x with r). It is then
natural and tempting to associate the exponents a0 and a1

(cf. eqn (23)) with the non-adsorbed (u = 0) and the critically
adsorbed (u = u*) states, respectively, and to check if the scaling
cpr�b holds. To obtain c(r), eqn (26) must be integrated over
the ‘angles’ tr and tj. For a = a0 = 0 the result is c(r) pra = const,
hence b0 = 0. (Note that the angular factor g(Z, x) for a = 0 is not
only constant asymptotically, but it is also identically constant:
g = const is the exact solution of eqn (20) and (15) in this case.)¶
By contrast, the angular integration in eqn (26) for a = a1 = �2
provides an important factorð

gðZ; xÞgð�Z; xÞdtrdtj � r2=3 (28)

(cf. eqn (18) and (19)) leading to the critical exponent b1 = 10/3:

c(r) p r2a+2/3 = r�10/3 (29)

Below we present an alternative derivation of the above law
based on a scaling argument.

3.2 Self-similar structure of loops in the proximal layer at u = u*

To begin with let us estimate the attraction strength threshold
u* for the critical adsorption of a long WLC (L c l). To fully
benefit from attraction to the bar (cf. Fig. 3a) a chain segment of
length l should be located in the attraction region r o D. The
entropic cost for such confinement is B1 per segment of length
l* whose lateral displacement r is small, r t D. Using
eqn (3) we get

l* B (D2l)1/3 (30)

The energy gain (in units of thermal energy T) due to attraction
of a l*-segment to the bar is ul*, so the attraction gain
dominates the entropy loss if ul* \ 1. Hence, the WLC
adsorption is favorable for

u 4 u* B (D2l)�1/3 (31)

An analogous scaling argument was used before to obtain a
similar estimate of u* for adsorption on a flat solid surface or a
membrane.5–7,49

The typical angle y* between the tangent vector of an
adsorbed l*-segment of the WLC and the bar is small:

y* B (l*/l)1/2 B (D/l)1/3 (32)

Such a segment is called a ‘train’ below (cf. Fig. 5).
Considering the critical point u = u*, we note that the free

energies of adsorbed and non-adsorbed chains must be
balanced since E ¼ 0 at this point. Therefore, the typical con-
formation of a long critically adsorbed chain should include
‘loops’ of different sizes in addition to ‘trains’ (see Fig. 5). Note
that the attraction energy of one train is Etrain CTu*l* B T. The
partition function of a loop of length s c l* is Zl(s). To find it
we recall that the lateral size of such a loop is (cf. eqn (3))

r(s) B s3/2/l1/2, (33)

so the fraction fD of its segments in the D-region is negligible,
fD B D2/r(s)2 B (l*/s)3 { 1 and fDs { l*, so its interaction
energy E with the bar is small, E { Etrain B T. Therefore, the loop
can be considered as a virtually free fragment with the only
condition that its second end must be near the bar and oriented
nearly parallel to it (within the angle By*). The corresponding
probability, ploop B (D/r(s))2(y*/y(s))2, where y(s) B (s/l)1/2, pro-
vides the partition function of a loop of length s:

Zl(s) = ploop B (l*/s)4 (34)

The number N(s) of such loops with length equal exactly to s is
proportional to Zl(s) since any chain fragment can form a loop
with probability ploop. Hence the number of monomer units in
all loops of size Bs (say, between s/2 and s) is NðsÞ / s2ZlðsÞ.
Most of these monomers are located at the distance Br(s) from
the bar, the corresponding area in the transverse (xy) plane is

¶ Therefore a0 = 0 is an exact result. Moreover, a1 = �2 also rigorously comes from
eqn (20), Lg ¼ 0, where the operator L ¼ LðaÞ depends on the parameter a. The
reason is that the operators Lð0Þ and Lð�2Þ have exactly the same eigenvalue
spectrum since, as follows from the definition of L, the second eqn (20), Lð�2Þ
equals to Lyð0Þ with variable Z replaced by �Z, where Ly is the transpose of L
(being real, Ly is also conjugated to L).
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A(s) B r(s)2. Therefore, polymer concentration at r B r(s) is
c / NðsÞ=AðsÞ / 1= s2r2

� �
. Recalling eqn (33) we thus get

c(r) p r�10/3 for l c r c D (35)

in agreement with eqn (29). This way we not only justify the
transfer matrix approach (Sections 2.2 and 2.3), but also show
that the critical exponent a = a1 (cf. eqn (23)) must be exactly
equal to �2. A similar argument to get the critical exponent was
proposed for a WLC near an attractive membrane.6,7 8

It is natural to expect that c(r) is roughly constant at r0 o r B D.
Therefore, a significant fraction p(D,l) of polymer (in the region
r t l where the chain stiffness does matter)

pðD; lÞ ¼
ðD
0

cðrÞrdr
�ðl

0

cðrÞrdr (36)

is concentrated in the D-region near the bar: p(D,l) B 1/2 sinceÐ l
0cðrÞrdr is dominated by the contribution from r B D. The above

argument shows that at the critical adsorption point, u = u*, the
adsorbed structure in the proximal region Do r o l can be viewed
as a system of loops with fractal size distribution (cf. eqn (34) and
(35)). A similar conclusion was drawn for adsorption of WLCs onto
membranes.6,7

3.3 Distal layer

Let us turn to the adsorption regime above the critical point,
u Z u*, where E 	 0. At r c l a long WLC (with L c l) can form a
distal layer in addition to the proximal (cylindrical) layer at l c
r 4 D studied in the previous section. In the distal zone (r c l)
the chain rigidity does not matter and, hence, the angular
dependence of the partition function c can be neglected:
c(�r, �t) Cc(�r), where c(�r) satisfies (in the GSD approximation
valid for L - N)** the classical equation for ideal flexible
polymers:6,7

l

6
rr

2c ¼ Ec (37)

Here r
�r

2 is Laplacian in the xy plane, �r = (x, y). For axially

symmetric ground state c = c(r) andrr
2c ¼ 1

r

@

@r
r
@c
@r

� �
. Hence

for E4 0 the only solution of eqn (37) that does not increase
exponentially at r - N is

cðrÞ ¼ const K0ðr=hÞ; h ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l=ð6EÞ

p
(38)

where h is the terminal size of the layer, and K0 is the
MacDonald function. Using K0(z) C ln(1/z) at z { 1, we find
for r/h { 1:

c(r) C const ln(h/r), h c r c l (39)

At the adsorption threshold u � u* = 0+ the adsorption free
energy vanishes E¼ 0þð Þ formally implying that h - N. To
avoid this singularity (which simply means that at u r u* the
chain can go away from the bar) we restrict the chain con-
formational space by demanding that the chain end is located
not farther than the coil size, Rcoil, from the bar: r o Rcoil (here

Rcoil ¼
ffiffiffiffiffi
Ll
p

for L c l). This condition implies that if h is larger
than Rcoil, it must be replaced with Rcoil in eqn (39).

Let us now consider the subcritical regime, u o u*. As
discussed in point D2 of Section 4, at u = 0 the function c =
c(�r,�t) is nearly independent of both position�r and orientation�t
in the distal region, r c l (i.e. the presence of the bar does not
affect c in this region). On using eqn (25) we find that the same
is true for the concentration distribution:

c(�r, �t) = c(r, tr, tj) C const, r c l, u = 0 (40)

We are now ready to describe the functions c(�r,�t) and c(�r,�t)
for both critically adsorbed (u = u*, c = c1 with a = a1, see
eqn (23)) and non-adsorbed (u = 0, c = c0 with a = a0) states.
Using eqn (24), (17) and (39) with a = a1 = �2 and assuming a
smooth crossover between proximal and distal regimes (see
point D4 of Section 4 for a more detailed discussion) we get c =
c1 at u = u*:

c1ðr; tÞ �

y�6; D� r� l; y \ r=lð Þ1=3

l=rð Þ2; D� r� l; y t r=lð Þ1=3

lnðh=rÞ; l t r� h

8>>><
>>>:

(41)

Fig. 5 Polymer chain adsorbed onto a bar: trains, loops and tails. Train is a chain section located near the bar (at r t D) which is locally directed along the
bar (y t y* B (D/l)1/3); loop is a chain fragment between two trains; 0-tail is the chain section between the left end and the first train, L-tail is the section
between the last train and the right end.

8 Note that the scaling law of eqn (34) is asymptotically valid for short loops of
length s, l* { s { l. Furthermore, eqn (35), which follows from eqn (34), defines
the contribution of such loops to the concentration profile. No logarithmic
prefactors are omitted in these equations; small (vanishing) corrections to these
scaling laws decay algebraically rather than logarithmically.
** Note that in the general case c(�r) is defined in eqn (42).
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where h = Rcoil and y ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2 þ tj2

p
is the angle between the

tangent vector �t (of the chain end) and z-axis. ††
The position-dependent partition function c(�r) results from

orientational averaging of c(�r, �t):

cðrÞ ¼
ð
cðr; tÞd2t= 4pð Þ (42)

where d2t is the steric angle element. Using eqn (41) we find

c1(r) B (l/r)4/3, D t r { l (43)

in the proximal region, and

c1(r) B ln(h/r) for h c r \ l (44)

in the distal region (see also Discussion point D4).
Turning to the distribution c(�r, �t) at u = u*, it is approxi-

mately given by c(�r,�t) B constc(�r,�t)
2 (cf. eqn (25) and (41) and

note an agreement of the resultant c(�r, �t) with eqn (27) for the
proximal regime). Integrating c(�r, �t) over orientations we get
(using eqn (41))

cðrÞ � c0 �
ðr=lÞ�10=3; D� r� l

ln 2ðh=rÞ; h
 r \ l

(
(45)

where c0 is a constant. Eqn (45) is in agreement with eqn (29)
for a = �2 (see also Discussion point D3).

The functions c = c0(�r, �t) and c(r) for the non-trapped case,
u = 0, a = a0 = 0, can be obtained in a similar way. Using
eqn (24), (17) and (40) we get:

c0(�r, �t) C 1, c(r) B c0, D { r t h (46)

in agreement with conclusions drawn above eqn (28) (see also
point D2 of Section 4).

3.4 Concentration profile below the critical point, at 0 o u o u*

The natural next question is how the functions c and c evolve as
u is decreased from u* to the athermal point u = 0, that is, for
any t, 0 o t o 1, where

t � (u* � u)/u* (47)

measures the deviation from the critical point. Here it is
important to note that both limiting functions, c = c0 (for
u = 0) and c = c1 (for u = u*), satisfy the same master eqn (15)
outside the bar, in the region r 4 D where U(r) � 0. Although,
strictly speaking, the general solution of eqn (15) in this region

is a linear combination of an infinite spectrum of independent
c-functions, the two functions, c0 and c1, play a special role
below the critical point (u o u*) as stated in ref. 6: the actual
solution, c, of eqn (15) in this regime can be approximated as a
linear combination of the two basic functions, c r; tð Þ ¼
1

1þ C
c1 r; tð Þ þ Cc0 r; tð Þ½ �; where C = C(t) is defined by the

effective boundary condition at r = D (i.e. at the boundary of
the region where eqn (15) applies) which, in turn, is defined by
the potential U(r) in the interaction zone r o D. ‡‡ It is natural to
assume that C is linear in the potential strength u, and therefore
is proportional to the deviation t from the critical value:

C C kt, t { 1

Thus

c r; tð Þ ’ c0 r; tð Þ þ 1

1þ kt
c0 r; tð Þ (48)

where

c0 r; tð Þ � c1 r; tð Þ � c0 r; tð Þ (49)

c1(�r,�t) is partition function for critical adsorption, and c0(�r,�t) C
1 is the contribution of non-adsorbed chain conformations which
do not involve any trains, cf. eqn (46). (As argued in point D2 of
Section 4, c0 is not affected by the presence of the bar under weak
conditions specified there.) The parameter k is important; it is
calculated using a different approach (which also validates
eqn (48) at 0 o t r 1) in point D5 of Section 4: k B (l/D)2. From
eqn (48) it is then clear that c Cc1 at low t { tc where

tc � 1/k B (D/l)2 (50)

At t B tc the function c is roughly an arithmetic average of c0

and c1 and therefore c is dominated by the critical contribution
c1 since c1 c c0 at r { h (cp. eqn (41) and (46)). A similar
domination applies to the concentration profile c(r) at t t tc.
Thus, in this regime both c(r,t) and c(r) are approximately
defined by eqn (41) and (45) and the critical self-similar structure
of loops for r { l (described in Section 3.2) stays intact.

For tc tc the end-partition function is isotropic for r \ L�
t�1/2D (note that L B l(tc/t)1/2 { l in this regime):

c ’ 1þ tc=tð Þ �
ln h=rð Þ; h \ r \ l

ln h=lð Þ; l \ r \ L

(
(51)

as follows from eqn (41), (46), (48) and (49). (Note that h = Rcoil

for u r u*). The behavior of c at shorter distances, D { r { L,

†† Note that c1 B 1 for r B h. This feature can be also deduced from the fact that
the chain behaves ‘flexibly’ at r c l, hence the results for flexible chains in the
presence of a localized attractive potential are applicable.42 More precisely, we
can solve eqn (5) in the form of eqn (11): cðR; t;LÞ ¼

P
cðiÞðR; tÞ exp eiLð Þ, and

note that c(0)(�R, ��t) is orthogonal to all c(i)(�R,�t) with i 4 0 (the latter statement is
a generalization of a well-known fact that eigenvectors of a Hermitian operator
are mutually orthogonal). Noting also that c(�R,�t, 0) = 1 and that c(0) and e(0) must
correspond to c(0) C c1(r) (at r c l), and e(0) = 0+ at the critical point, we getð

c1ðrÞd2r ’
ð
c1ðrÞ2d2r

Eqn (39) suggests that both integrals above are dominated by the region r B h, so
the above equation demands that const in eqn (39) is nearly equal to 1.

‡‡ The prefactor
1

1þ C
here comes from the notion that c B 1 at r B h = Rcoil for

any u r u*: this is obviously true for u = u* (see the last line in eqn (41)), and for
u = 0. Note that while c ’ 1 in the latter case (u = 0) comes from eqn (46), it can be
also deduced from the fact that the probability that any segment of the chain
(whose end is located at a distance r B h = Rcoil from the bar) comes close to the
bar (within a distance Bl) is logarithmically small as follows from the Gaussian
(flexible chain) statistics which is applicable in this case since all relevant length-
scales here are larger than the persistence length lp = l/2.
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is described below based on eqn (48), (41) and (46):

c �

tc=tð Þ l=rð Þ2; r� L; y t r=lð Þ1=3

tc=tð Þy�6; r� L; r=lð Þ1=3 t y t tc=tð Þ1=6

1þ tc=tð Þ ln h=lð Þ; r� L; y \ tc=tð Þ1=6

8>>>><
>>>>:

(52)

The monomer density distribution in the (�r,�t) space is c(�r,�t)
B constc(�r, �t)

2 (see text above eqn (45)). Integrating over
orientations �t we get the concentration profile (a constant
common prefactor is omitted):

cðrÞ � l

r

� �10=3

þ ln 2 h=rð Þ þ t
tc

� �2

(53)

where h = Rcoil. Obviously, the total concentration profile
reflects the adsorbed self-similar structure at short r (cf.
eqn (29)) and isotropic non-adsorbed virtually free state (corres-
ponding to the last term in eqn (53)) at larger distances
(cf. eqn (46)). The polymer concentration strongly increases at
short r. The proximal fractal region of aligned loops is pre-
served, but gets thinner at t c tc: c(r) p r�10/3 is valid only for
D { r { l(tc/t)3/5 { L, where L = t�1/2D { l.

Eqn (53) also shows that for t t tc = (D/l)2 the polymer mass
in a cylindrical region of radius r* B l(l/D)2/3 well-exceeding l,
r* c l, is dominated by the adsorbed segments located very
close to the bar, at r t D.

3.5 Concentration profile above the adsorption threshold,
u 4 u* (s o 0)

In the adsorption regime, u 4 u* (where t o 0) the chain gets
trapped in a region r t h near the bar. The localization length h
depends on u but is independent of the chain length L if it is
long enough (Rcoil c h). The cut-off length h is related to the
adsorption free energy per length, ET , which is positive for u 4
u*. In the regime of long chains, EL
 1, considered below the
WLC is really trapped near the bar, so the chain can be
considered basically as a sequence of loops and trains (cf.
Fig. 5). While at u = u* loops of any size are allowed, at u 4
u* a loop of length s costs the free energy DFðsÞ ’ sET which is
the penalty for desorption of an s-segment from the bar (cf. ref.
6, 7 and eqn (14)), so the statistical weight of a loop, eqn (34), is

reduced by the Boltzmann factor e�DFðsÞ=T ’ e�Es suppressing
the loops of length s
 1=E. The cut-off length h ¼ hðEÞ can be
estimated as the lateral size rl of the largest loops of length s ¼
sm � 1=E (the size of its projection onto the xy plane). This size
depends on s according to eqn (33) at s t l, and shows the
standard Gaussian chain behavior in the semiflexible regime,
s c l:

rlðsÞ �
s3=2l�1=2; s t lffiffiffiffi
sl
p

; s \ l

(
(54)

Therefore

h ’
3

16
E�3=2l�1=2; El 
 1

6�1=2E�1=2l1=2; El � 1

8><
>: (55)

where the numerical factors are chosen for consistency with
more precise results considered below (cf. eqn (56) and (57)).

For El � 1 (moderate adsorption with sm c l) both h and
c(r) can be obtained in a different way. First we note that c(r)
at r t l is not affected by such small E since self-similar
structure in this region consists of short loops with s t l
for which the additional factor e�Es is close to 1. Therefore
c(r) is given by eqn (43) for r t l. Furthermore, c(r) for r c l
can be found using eqn (37) whose solution is given in
eqn (38), hence h for El � 1 is indeed defined by the second
line in eqn (55). Using asymptotic behavior of K0 in
eqn (38) we get

cðrÞ � lnðh=rÞ; h
 r
 l;

cðrÞ �
ffiffiffiffiffiffiffi
h=r

p
expð�r=hÞ; r \ h (56)

For stronger adsorption, El 
 1, the distal layer (r \ l)
essentially disappears (it gets exponentially weak), while the
proximal cylindrical layer becomes reduced due to suppression
of aligned loops with length s �4 1=E. The resultant c(r) in this
regime is given by eqn (43) with the exponential cut-off factor
established in ref. 6 and 7

cðrÞ � l=rð Þ4=3exp � r=hð Þ1=2
� 	

; D �o r �o h; El 
 1 (57)

where h is defined by the first line in eqn (55), h { l. The
argument of the exponent here comes from a balance between
the elastic deformation energy of a half-loop and its desorption
free energy ETs=2 (cf. eqn (14)).6,7

The concentration profiles of polymer segments can be
obtained based on eqn (38) and (57) using also eqn (25) and
noting that at r { l the orientational (�t) dependence of the
function c(�r, �t) is concentrated within a small steric angle
BY(r/l)2 = (r/l)2/3 (and that the tail of orientational distribution
of c at y c Y(r/l) is unimportant for both c(r) and c(r)). The
result for El � 1 is (cf. eqn (45)):

cðrÞ � c0 �
ðl=rÞ10=3; D� r� l

K0ðr=hÞ½ �2; h \ r \ l

8<
: (58)

An alternative way to obtain the concentration profile c(r) is
presented in the Discussion point D3 (cf. eqn (80)). For El 
 1

it reads

c(r) B c0(l/r)10/3 exp(�2(r/h)1/2), D o r t h (59)

In all the cases the distributions are suppressed beyond the cut-
off length h, eqn (55).

It is of interest to obtain the fraction p of adsorbed segments
(trains), which is equal to the probability that a segment of the
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adsorbed chain is located at r o D:

p � pðD;1Þ ¼
ðD
0

cðrÞr dr
�ð1

0

cðrÞr dr (60)

(cf. eqn (36)). Using eqn (58) and (55) for El � 1: we get

p � 1 for E \ E1;

p � El
l

D

� �4=3

þD
2

l2
ln

1

ED

� �2
" #

for E t E1 (61)

where

E1 �
1

l

D
l

� �4=3

; E1l � 1 (62)

It remains to establish how the free energy E (and h) depend
on the adsorption strength u, u 4 u*. The following relation
coming from the theorem on small variations50 is useful here
(recall that t � 1 � u/u*, t o 0 here):

@F

@t
¼ @E

@t


 �
(63)

where E ¼
Ð
cðrÞUðrÞd2r is the total energy of polymer/bar

interactions for a given conformation (here c(�r) is normalized
in such a way that c(�r)d2r is the total length of chain segments
inside the area element d2r), h�i means conformational average
(for equilibrium distribution), and F ’ �TEL is the adsorption
free energy (cf. eqn (14)). Taking into account that
@E=@t ¼

Ð
cðrÞ @UðrÞ=@t½ �d2r,

@UðrÞ
@t

� u�T at roD; @UðrÞ=@t ¼ 0 at r4D

and using eqn (63) we obtain (cf. ref. 6 and 7)

@E
@t
� �u�p (64)

where p is defined in eqn (60). Let us consider first the regime
E t E1. In this case eqn (64) and (61) lead to

@E
@t
’ �CE l

D

� �2

1þ D
l

� �10=3

ln2
1

ED

� �" #
(65)

where C is a numerical constant depending on the shape of the
attraction potential U(r), cf. Fig. 3a (C is related to the numerical
factors omitted in eqn (64) and (61)). It is important to remind
here that all the above equations are valid for EL \ 1. If
EL t 1, the system is nearly critical, hence, in particular, c(r)
is approximately given by eqn (45) with h = Rcoil (valid for u =
u*), leading (after integration in eqn (60)) to p B (l/L)(l/D)4/3 �
p0 in formal agreement with the second line in eqn (61) for
E � 1=L. Thus

p � p0 for E t 1=L (66)

and p is defined by eqn (61) for larger E. Then the second term
in square brackets of eqn (65) is never important unless L is
exponentially large which must not be the case (as discussed in
point D2 of Section 4).

Using eqn (64) and (66) with ‘initial’ condition E ¼ 0 at t = 0
we get E � 1=L for |t| B tc. Applying then the differential
eqn (65) in the region t o 0, |t| \ tc we get

E � L�1 exp tj j=tcð Þ; t1 4 tj j4 tc (67)

where tc ¼
1

C
D=lð Þ2 (cf. eqn (50)) and t1 is defined by the

condition E � E1 (cf. eqn (62)):

t1 Ctc ln(tcL/l*) (68)

For E \ E1 (i.e. for |t| \ t1) the polymer is mostly concentrated
near the bar, so eqn (64) and (61) give p B 1 and

E � tc þ tj j � t1ð Þ=l�; tj j4 t1 (69)

(recall that 1/l* B u*). Thus, the adsorbed chain partition
function c / eEL (cf. eqn (13))§§ changes in the region u 4 u*
(t o 0) as

c �
eexp tj j=tcð Þ; tj jo t1

e L=l�ð Þ tc�t1þ tj jð Þ; tj j4 t1

(
(70)

Note double exponential increase of c at low |t| and its further
strong exponential increase beyond t1.

Now, using eqn (67), (69) and (55) we get the dependence of
the terminal length, h = h(t), for t o 0:

h �

ffiffiffiffiffi
Ll
p

exp � tj j=2tcð Þ; tc t tj jo t1

l D=lð Þ1=3 tc þ tj j � t1ð Þ�1=2; t1 o tj jo t�

D= tj j3=2; 14 tj j4 t�

D; tj j \ 1

8>>>>>>><
>>>>>>>:

(71)

where

t* = (D/l)2/3 B l*/l (72)

corresponds to the crossover, El � 1 (cf. eqn (69)). Eqn (71) says
that the cut-off length h is decreasing with |t| (i.e. with u) above
the critical point u*. Exponential decrease of h from Rcoil to
l(l/D)2/3 is predicted for tc t |t| o t1, followed by power-
law decreases from l(l/D)2/3 to l (for t1 o |t| o t*) and
from l to D for t* o |t| o 1. Therefore, the distal layer gets
totally suppressed (h t l) at |t| 4 t*. The concentration profile,
c(r), is defined in eqn (58) for |t| o t* and eqn (59) for
1 4 |t| 4 t*.

The t-dependence of the fraction p of trains can be found
based on eqn (61), (66), (67) and (69):

p �

1; �t4 t1

p0 exp tj j=tcð Þ; 0o � to t1

l�tc=Lð Þ= tþ tcð Þ2; 0o to 1

8>>><
>>>:

(73)

where

p0 = (l/L)(l/D)4/3 (74)

§§ Note that this exponential factor, which is most important for u 4 u*, equals 1
for u r u*, so it was omitted in the previous sections.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
/2

1/
20

26
 6

:2
2:

55
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00188e


4376 |  Soft Matter, 2024, 20, 4366–4388 This journal is © The Royal Society of Chemistry 2024

To obtain the last line in the above equation we assumed
(as before) that the chain is confined within the coil size from
the bar and used the relation p B hmil*/L, where hmi is the mean
number of train segments obtained in the next section (see
eqn (101)) and l* is the mean train length (thus, hmi l* is the
mean total length of all segments in contact with the bar).

4 Discussion
D1. Critical adsorption threshold u*

In the previous sections we considered adsorption of an ideal stiff
semiflexible macromolecule (WLC of diameter d1) onto a straight
bar (of diameter d2) assuming that the Kuhn segment l = l1 of the
WLC is much larger than the range D of their attractive interac-
tions, l c D. Just for simplicity we also assumed that the
repulsion range d = d1 + d2 is comparable with D.

Generally, to compensate for the hard-core repulsion from
the bar (at r o d B D) an attractive potential of magnitude ui B
1/D may seems to be needed if the typical angle y between the
bar and the interacting polymer segment is yB 1 (cf. Fig. 3a).¶¶
However, the actual critical adsorption threshold u* is much
lower, u* { ui (cf. eqn (31)) meaning that isotropic attraction
(at y B 1) can be neglected. The reason is that at the critical
point the hard-core repulsion is balanced by a strongly aniso-
tropic attraction with typical y B (D/l)1/3 { 1 (cf. eqn (19) with
r B D) leading to u* B y/D B 1/l*. It is due to such a balance
between repulsion and attraction that both c(�r, �t) and c(�r, �t)
become self-similar at the critical point in the proximal region
D { r { l.

D2. Athermal case of purely repulsive bar, u = 0

In Section 3.3 we found that at the adsorption threshold, u = u*,
the c-function (providing the chain-end distribution)
follows the logarithmic law far from the bar, r c l. Let us
consider the case of no attraction, u = 0. As long as we are
interested in large distances, r c l, the WLC can be considered
as ‘flexible’, that is, as a chain of N = L/l c 1 Kuhn segments
with one end located at a distance r \ l from the bar. Let us
estimate the upper bound of the chain free energy increment,
DF, due to repulsion interactions with the bar. Then DF is
proportional to the mean number of contacts, nc, between
chain segments and the bar: DF B Tnc (by a contact we mean
that an l-segment comes close to the bar within a distance BD).
Obviously,

nc ¼
ðN
0

pðnÞdn (75)

where p(n) is the probability that the n-th segment (counted

from the fixed end) encounters a contact. Here p(n) can be
factorized as p(n) B pl(n)D/l, where pl(n) is the probability that
the n-th l-segment gets within a distance Bl to the bar, and D/l
is the conditional probability that in this case the minimal
distance between the segment and the bar is BD. By virtue of
the Gaussian statistics of an ideal chain in 2 dimensions pl(n) is
negligible if nl2 { r2, and for nl2

\ r2 (i.e. n \ n0 B r2/l2) the
probability pl(n) B 1/n. Thus we get using eqn (75):

nc �
ðN
n0

D
l

dn

n
� D

l
ln

Nl2

r2

� �
(76)

Recalling that the partition function c = e�DF/T, we get

cðrÞ � e�nc � r2

Nl2

� �CD=l

¼ const exp 2C ln r=Rcoilð ÞD=lð Þ

where C is numerical constant. Since D/l { 1 and r is not
exponentially large, the exponent above can be expanded lead-
ing to c = c0,

c0(r) B 1 + 2C(D/l)ln(r/Rcoil), l { r t Rcoil (77)

Eqn (76) implies that nc { 1, so that the partition function of a
semiflexible loop is not really affected by interactions with the
bar. In other words, long polymer loops around the bar show a
nearly ideal statistics.

Note that the first term in the above equation corresponds to
the partition function of a free chain with no interactions with
the bar, cfree(r) = 1, while the second term reflects rare contacts
with the bar. As D/l { 1 is our main small parameter, the
second term is small and can be neglected unless Rcoil is
exponentially large. The condition is: ln(Rcoil/l) { l/D. To
simplify the theory we choose to assume that the chain length
is not exponentially large, i.e. that the above condition is
satisfied. Hence c = c0(r) C 1 for u = 0 at r c D.

D3. Fractal structure of weakly to moderately adsorbed chains

In Section 3.2 we considered the fractal distribution of loops in
the proximal layer at the critical point, u = u*. Below we show
that a similar concept can be used to obtain the concentration
profile in the distal region, and to study the statistics of trains.

Let us consider the system just slightly above the adsorption
point (u = u*) so that the reduced adsorption free energy E is
positive and small El � 1ð Þ. In this case the proximal adsorbed
structure (at r t l) is virtually the same as at the critical point: it
involves trains close to the bar (at r t D) and aligned loops (of
length s, D t s t l) with self-similar length distribution:

Np(s) p s�4 (78)

where Np(s) is the number of aligned loops of length s (cf.
eqn (34)). The distal region r \ l involves longer loops with s \
l. Their length distribution Nd(s) is also self-similar (for l { s {
1/e), but with a different exponent reflecting their flexible
nature:

NdðsÞ / s�1e�Es (79)

for s c l. Here EsT is free energy penalty for desorption of a

¶¶ Such estimate of ui is hinged on the second virial coefficient, B2, for
interaction of two (nearly) straight l-segments of the WLC and the bar, D { l
{ l: B2 should be negative for attraction to dominate. For a given angle y a simple
calculation gives (omitting numerical factors): B2 B l2 sin y[d + D(1� eU/T)], where
the first term in square brackets corresponds to the excluded volume, and the
second term - to attraction between segments. Here U B TuD/sin y is the typical
attraction energy. The condition B2 = 0 for y B 1 and D B d then leads to U B T

and ui B 1/D.
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loop of length s (see text above eqn (54)). The factor 1/s in
eqn (79) reflects the probability that a 2D Gaussian chain of s
units forms a loop.

Matching the two distributions at s B l, Np(l) B Nd(l), and
applying the argument of Section 3.2 to obtain the polymer
concentration profile c(r) also in the distal region (r \ l) based
on Np(s), Nd(s) we get

cðrÞ � c0
l

r

� �10=3

; D �o r� l; cðrÞ � c0 ln
2ðh=rÞ; l �o r� h

(80)

where h �
ffiffiffiffiffiffi
l=E

p
is the cut-off length (the terminal lateral size of

the adsorbed chain), h c l. Note that eqn (80) are in agreement
with eqn (58).

Both short and long loops must have both ends adjacent to
train sections which serve as starting and end points for loops.
Eqn (78) shows that most loops are short. The typical size of the
shortest loops and trains is s B l* (cf. eqn (30) and the text
below eqn (32)). The trains connected by short aligned loops
(of length s o l) can be combined together to get a supertrain
whose ends are always adjacent with long loops (with s 4 l). On
the other hand, each long loop is located between two super-
trains along the chain contour. Thus, a supertrain is a contin-
uous chain section oriented as a whole along the bar and
located close to it (in the proximal layer).

Let us estimate the mean contour length, Lst, of one super-
train and their number, Nst. Obviously, the total number of long
loops, Nll, must be close to Nst (strictly, Nst = Nll + 1). The
terminal length of a long loop is sm B h2/l B 1/e. Furthermore,
eqn (79) shows that

Nll �
ðsm
l

NdðsÞds (81)

Let L(r1, r2) be the total polymer length in the region r1 o r o r2.
Each long loop of length s 4 2l contributes a length B l ln(s/l)
in the near-proximal region l o r o 2l (the log-factor here
comes from returns of internal l-segments of the loop into the
near-proximal zone), hence

Lðl; 2lÞ �
ðsm
l

l ln s=lð ÞNdðsÞds (82)

Using eqn (79), (81) and (82) we get

L(l,2l) B l ln(h/l)Nll (83)

As short loops (with s B D) and trains dominate by mass in the
proximal region, L(0, D) must be close to NstLst C NllLst: L(0, D)
B NllLst. The above relations allow us to estimate Lst:

Lst � l ln h=lð ÞLð0;DÞ=Lðl; 2lÞ

� l ln h=lð Þ
ðD
0

cðrÞrdr
�ð2l

l

cðrÞrdr (84)

Using eqn (84) and (80) we then get the supertrain length:

Lst B l(l/D)4/3/ln(h/l) (85)

As follows from the scaling law, eqn (29), the masses of trains
and supertrains are nearly the same (in particular, close to the

critical point), hence the supertrain mass fraction is Bp
(see eqn (60) for the definition of p). At a very low E (E� E1
that is for 0 o u/u* � 1 t t1) it is given by the second eqn (61):

p � l

D

� �4=3

l2=h2 (86)

The number of supertrains therefore is

Nst � pL=Lst � ln
h

l

� �
Ll

h2
(87)

This number Nst � LE ln
h

l

� �
is nearly proportional to the total

adsorption free energy Fa ¼ �TLE, so that the free energy gain
per supertrain is BT. By contrast, the potential (attraction)
energy of a supertrain, E, is much larger by magnitude than its
adsorption free energy Fa (near the critical point u = u*): E B
�Tu*Lst B �T(l/D)2 (cf. eqn (31) and (85)), hence |E| c T.
Therefore, the adsorption free energy Fa comes from a subtle
balance of the adsorption energy E and confinement entropy of
train sections and short loops.

Exactly at the critical point the cut-off length h is replaced by

the chain size, Rcoil (see text below eqn (39)): h ¼ Rcoil ¼
ffiffiffiffiffi
Ll
p

for
L c l, hence (by virtue of eqn (86) and (87))

p � l

D

� �4=3

l=L; Nst � ln
L

l

� �
at u ¼ u�; (88)

i.e. the critical adsorption involves just a few supertrains per
chain. Note that the supertrain length Lst B l(l/D)4/3 (here we
omitted the log-factor in eqn (85)) is much longer than the Kuhn
segment l. Such a chain fragment would adopt an isotropic coil
conformation in the free state. By contrast, a supertrain at the
critical point is highly stretched along the bar: the ratio of its
longitudinal size to lateral size is Lst/l B (l/D)4/3

c 1.
The argument used above to obtain Lst can be applied also

beyond the critical point, at u 4 u*. It shows that eqn (85) stays
valid also for to 0, |t| t t* B (D/l)2/3 corresponding to et 1/l:
the mean length of a supertrain in this case is

Lst B l(l/D)4/3/ln(h/l), 0 o �t t t* (89)

where h = h(t) is defined in eqn (71). Thus Lst just slightly
(logarithmically) grows as |t| increases from 0 to t* reaching

Lst � 1=E1 � l l=Dð Þ4=3 at |t| B t* where E � 1=l (cf. eqn (69)).
The number of supertrains Nst = pL/Lst (cf. eqn (87)) changes
with t in a more complicated way: the fraction p of segments in
the proximal (r t l) or contact (r t D) layer is (cf. eqn (61)
where the second term in square brackets can be neglected):

p � 1þ E1=Eð Þ�1 (90)

where E1 is defined in eqn (62). Using the above equations
(including eqn (89)) and h2 � l=E we get

Nst �
LE1

1þ E1h2=l
ln h=lð Þ; E t 1=l

Recalling also the t-dependence of h defined in eqn (71) we
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finally obtain

Nst �

lnðL=lÞ; 0o � t t tc

exp tj j=tcð Þ ln h=lð Þ; tc t � to t1

L=lð Þ D=lð Þ4=3ln h=lð Þ; t1 o � t t t�

8>>><
>>>:

(91)

where tc B (D/l)2 and t1 is defined in eqn (68). Thus Nst

exponentially increases from Nst B ln(L/l) at |t| t tc to the
absolute maximum, Nst B (L/l)(D/l)4/3 ln(l/D) at |t| B t1, and
then it slightly decreases down to Nst B (L/l)(D/l)4/3 at |t| B t*.

The evolution of the trapped chain conformation as the
attraction strength is increased (at u Z u*) is illustrated in
Fig. 6 for three characteristic regimes. At the critical point u =
u* (Fig. 6a) the large loops forming the distal region dominate
by mass; the mean contour length of a large loop is Lll B L/Nll,
where the number of large loops Nll is close to the number of
supertrains per chain, Nll CNst B ln(L/l), which is just

logarithmic in L. The length of one supertrain is Lst B l(l/D)4/3/
ln(L/l), see eqn (85), and the total length of all adsorbed
segments LD = pL CNstLst B l(l/D)4/3 { L, cf. eqn (85) and
(88). Furthermore, the average number of trains in the chain is
hmi C LD/l* B (l/D)2

c 1 (cf. eqn (96)), hence each supertrain
typically contains many (mst C hmi/Nst c 1) trains. While the
fraction of adsorbed segments p � p(D,N) B (l/L)(l/D)4/3 { 1
(cf. eqn (88)) is extremely low, the fraction of adsorbed seg-
ments within each supertrain is p(D,l) B 1/2, cf. eqn (35) and
(36). In the case of moderate adsorption strength (see Fig. 6b),
t1 t u/u*� 1 t t*, where t1 is defined in eqn (68) and t* =
(D/l)2/3, the cut-off distance h (for long loops) corresponds to the
2nd line of eqn (71), hence h decreases from h B l(l/D)2/3 at u/u*
� 1 B t1 to h C l at u/u* � 1 B t*. The mean contour length
of a long loop, Lll, is Lll B (h2/l)/ln(h/l); it decreases from Lll B
l(l/D)4/3/ln(L/l) to Lll B l at u/u* � 1 B t*. Noteworthily, the
statistics of the chain for s t l is practically not affected by
the change u* - u = u*(1 + t*), see the text above eqn (78). In
the regime of strong adsorption (see Fig. 6c), u/u* � 1 c t*
(where El 
 1, h { l) the number of supertrains shows an
exponential decrease (while the mean supertrain length expo-
nentially increases to keep LstNst C L) rapidly reaching the
minimal number Nst C 1 and the maximum length Lst C L.
Note that for 0 o u/u* � 1 t 1 both the typical train length and
the typical length of a short loop (with s t l) are always
comparable to l* (since it is the shortest loops of length Bl*
that dominate by number and by weight in accordance with
eqn (34) and (35)).

D4. Chain-end partition function w for critical adsorption, u = u*

In the previous point D3 we harnessed the size distribution of
loops to obtain the concentration profile c(r) (eqn (80)). The
partition function c(r) at the critical point, u = u*, can be obtained
is a similar way. It can be written as (cf. eqn (48) at t = 0)

cðrÞ ¼ c0ðrÞ þ c0ðrÞ (92)

where c0(r) C 1 is the statistical weight of non-adsorbed states
with no trains (c0 for r c D is also approximately equal to the
statistical weight of conformations with no intersections at all
between the chain and the interaction zone, r o D, cf. eqn (77)),
and c0(r) is the statistical weight for conformations with at least
one train.

Let us find c0(r) at u = u*. Generally, the WLC conformations
relevant for c0 involve trains, loops and two tails (cf. Fig. 5).
By definition, c0(�r) must be proportional to the probability
density r(�r) that the end of the second tail (L-tail) is located
at point�r. The function r(�r) can be deduced from the tail-length
distribution P(s) (P(s)ds is the probability that the tail length is
between s and s + ds). A tail does not significantly interact with
the bar: the interaction energy per tail, Et, is small, |Et| t T,
since the return probability pr that a given tail segment
(of length l* located at the curvilinear distance s0 = l*n0 from the
tail root, cf. Fig. 7) intersects the interaction zone, r t D, is rapidly

decaying with s0: pr � D2
ffiffiffiffi
n0
p

=rðs0Þ2 � l�=s0ð Þ2:5¼ n0ð Þ�2:5 (cf.

eqn (3) and (33); note that the factor
ffiffiffiffi
n0
p

accounts for an increase

Fig. 6 Fractal structure of semiflexible chain adsorbed onto a bar: (a) at
the critical attraction point u = u* (t = 0, E ¼ 0); (b) above it, for moderate
excess attraction strength u = u*(1 � t), t o 0, t1 t |t| t t* = (D/l)2/3,
E1 t E t 1=l; and (c) for strong attraction, |t| c t*, El 
 1. The main zones
around the bar axis: steric repulsion zone of width d = 2r0 (shown in red);
attraction zone (yellow); proximal region involving short aligned loops, r t
l (grey); and distal zone extended to the terminal size h of the adsorbed

chain, l t r t h (within the light-green bars). Here h ’ Rcoil �
ffiffiffiffiffi
Ll
p

for part
(a), l t h t Rcoil for (b) and h { l for (c), cf. eqn (71). The chain can be
viewed as an interlacing sequence of supertrains (shown as violet curve
parts) and long loops of length s \ l (black parts) between the two tails
(shown in green only in (a)). Each supertrain is a sequence of trains
(of length s B l* with y t y* B (D/l)1/3) connected with short aligned
loops of length s, l* t s t l. The trains and short loops are marked
respectively with red and blue arrows.
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of the typical intersection angle with n0). Summing pr for all l*-

segments with n0 4 n we get prtot ¼
P

n04 n

n0ð Þ�2:5� n�1:5. Therefore,

the total return probability prtot is small for large n, prtot { 1 for
n c 1, hence a tail can be viewed as being virtually free (obeying
the ideal statistics) leading to P(s) = const at l* { s { L. More
generally the tail statistical weight is proportional to e�Es which,
however, equals 1 at the critical point where E ¼ 0.

Taking into account that the typical lateral size of a tail, r(s),
is (cf. eqn (33))

rðsÞ � s3=2l�1=2; l� t s t l; rðsÞ �
ffiffiffiffi
sl
p

; s \ l (93)

we find

c0ðrÞ / rðrÞ

/ l

ð
rðsÞ �4 r

PðsÞ
rðsÞ2ds �

l

r

� �4=3

þ ln
h

l
; D t r t l

ln
h

r
; l t r t h

8>><
>>: (94)

where h � Rcoil ¼
ffiffiffiffiffi
Ll
p

and the condition r(s) \ r accounts for
the fact that short tails with r(s) { r do not contribute to the
statistical weight c0(r) (more precisely, their contribution is
negligible being exponentially small). The first term in the
upper line in the r.h.s. of eqn (94) is due to short tails (s t l)
which contribute to the proximal layer (r t l), and the second
term comes from long tails (s c l) contributing everywhere
(both proximal and distal layers). Eqn (94) is obviously in
agreement with eqn (43) and (44). It shows that matching the
asymptotics of c0(r) at r { l and r c l assuming a crossover
exactly at r B l is not really accurate for the system we study: it
is the long-tail contribution that always dominates c0(r) at
r B l, the contribution of short tails is weaker by a log-factor
formally shifting the crossover to shorter r.

This effect is due to nearly ideal-chain statistics of loops and
tails for WLC with l c D (see text above eqn (93)). The situation
is different in the case of a flexible (Gaussian) chain adsorption
onto a bar. The statistics of loops and tails is altered there due
to excluded-volume interactions with the bar: a loop or a tail by
definition must not enter the volume of the bar. As a result the
statistical weights of both loops and tails decrease by log-

factors: ZloopðsÞ /
1

s ln sð Þ2
, ZtailðsÞ /

1

ln s
(these dependencies

come from obvious convolution relations between statistical
weights of ideal loops and tails with no interactions with the
bar, and Zloop, Ztail with excluded volume of the bar). These
log-factors for Gaussian chains compensate (in the eventual
profiles c(r), c(r)) for the analogous factors coming from the
self-similar distributions of unperturbed loops and tails.

Note also that using eqn (25) and (94) and taking into
account that the short-tail part of c(�r,�t) is concentrated within
a steric angle BY(r/l)2 at r t l (cf. eqn (19) and (41)) we come to
the concentration profile c(r) in agreement with eqn (45), (80)
and (58). Here again we encounter the same effect: the con-
tribution of long loops dominates c(r) at r B l. Thus, generally,
the correct way to establish the proper crossover between
proximal (r { l) and distal (r c l) regimes for both c(r) and
c(r) is to match the short-loop and long-loop branches of loop-
length distribution at s B l.

D5. Trains and supertrains below the critical adsorption
strength, u r u*

Let us turn to the chain statistics at u r u*. Generally we can
classify the WLC states near the bar according to the number m
of train segments, m = Ltt/l*, where Ltt is the total length of all
trains and l* is the average length of a train segment (whose
typical energy of interaction with the bar is BT at u B u*). The
mean Ltt (at a given u) is equal to hLtti = pL (cf. eqn (60)). At u =
u* it is equal to

Ltt ¼ pL � l

D

� �4=3

l (95)

(cf. eqn (88)) corresponding to the mean number of train
segments (of length Bl*, cf. eqn (30))

m0 � hmi = pL/l* B (l/D)2 (96)

Therefore m0 is large, but, on the other hand, it is much smaller
than the maximum number of such segments in the chain,
m0 { L/l* (here we consider adsorption of a sufficiently long
chain, L c Ltt).

Fig. 7 A tail of length s and its inner point at the curvilinear distance s0 o s from its root (the last train and a part of the last loop are also shown). The
curvilinear coordinates along the chain are marked in cyan: the tail root corresponds to L � s, its inner point to L � s + s0 and its free end to L.
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Let us find the probability distribution of m first at u = u*,
namely, the probability p0(m) for the chain to have exactly
m Z 1 train segments. Below we argue that this distribution
is exponential. Indeed, it is clear that if a l*-segment ending at
point L � s is adsorbed, one of the next segments (along the
chain) would be also adsorbed with high probability, so that the
probability q that no further segment is adsorbed is small, q { 1.
Moreover, to demand that there are no trains beyond the point
L � s is equivalent to saying that the segment (L � s,L) is a tail
(cf. Fig. 7). The tail probability is independent of its length s
(provided that s c l*; cf. point D4), which means that q is
constant: it does not depend on s. Moreover, q is obviously
independent of whatever is the chain conformation prior to the
point L � s. Therefore, the process is Markovian and p0(m) p

(1 � q)m leading to

p0(m) C (1/m0)exp(�m/m0) (97)

The partition function c(r) can be therefore written as

cðrÞ ’ 1þ
X
m	1

c0ðrÞp0ðmÞ (98)

where the term ‘1’ stands for c0(r) C 1, the partition function
with no trains (cf. text below eqn (49)), and c0ðrÞ ’ c1ðrÞ � 1, cf.
eqn (49), is the partition function reflecting all conformations
involving adsorbed segments (trains).88

The chain potential energy in the state m is Em = �Tuml*
(omitting a numerical prefactor). At t 4 0 the Boltzmann
weights, Wm, of m-states (Wm = e�Em/T = euml* = e(1�t)m since
u*l* = 1, see eqn (30) and (31)) change due to the additional
factor e�tm destabilizing the states with longer trains and
leading to a lower total statistical weight

cðrÞ ’ 1þ
X
m	1

c0ðrÞp0ðmÞe�tm ¼ 1þ c0ðrÞ= 1þ tm0ð Þ (99)

The last equation is equivalent to eqn (48) where k should be
identified with m0 defined in eqn (96). Eqn (48) is justified
this way.

The probability to have exactly m Z 1 train segments is

pðmjrÞ ¼ c0ðrÞp0ðmÞe�tm=cðrÞ

where the numerator in the r.h.s. is the statistical weight of the
m-state (cf. eqn (99)). As the chain is delocalized at t4 0 (i.e. its
segments are mostly located far from the bar, at r B Rcoil),
averaging of p(m|r) over r (to get the averaged distribution p(m))
is equivalent to setting r B Rcoil. Eqn (49) and (41) then give
c0ðrÞ � cðrÞ � 1, so

p(m) B p0(m)e�tm, m Z 1 (100)

Hence (cf. eqn (97))

mh i ¼
X
m

mpðmÞ � m0= 1þ tm0ð Þ2 (101)

Thus hmi decreases from hmi B m0 at t t (D/l)2 to hmi B 1 at
tB D/l and to hmiB 1/m0 at tB 1. The latter result means that

at t B 1 just a single train segment (of length Bl*) is formed
with low probability p1 B (D/l)2. This probability can be
obtained independently and more directly as

p1 B Ntpt (102)

where Nt B L/l* is the number of l*-segments in the chain, and
pt is probability that a chosen segment is in the train state, so
that it is located within distance D from the bar and oriented
parallel to it (within the deviation angle y*): pt B (D2/Rcoil

2)(y*)2

B D2(y*)2/(Ll). Using eqn (102), (30) and (32) we then get again
p1 B (D/l)2.

Note that in eqn (101) the averaging is done over all
conformations including those with no train at all. By contrast,
the mean number of train segments, %m, averaged over only
those conformations that involve a train is

�m ¼
X
m	1

mpðmÞ
,X

m	1
pðmÞ ’ m0

1þ tm0
(103)

Thus hmi B %m B m0 at t = 0.
More generally, eqn (101) and (103) mean that a few super-

trains of B %m l*-segments are formed with probability
pst ’

P
m	1

pðmÞ ¼ hmi= �m. (Note that the number Nst of super-

trains is just logarithmic at u = u*, cf. eqn (88); this number is
even lower at u o u* since formation of yet another supertrain
must be obviously less probable with a weaker attraction. This
argument backs the idea of zero or a few supertrains per chain.)
Thus, if a supertrain is formed (which is equivalent to demand-
ing that m Z 1), its mean length is:

Lst(t) B l* %m B l(l/D)4/3/(1 + t/tc), 1 Z t Z 0 (104)

and the probability to have at least one supertrain is

pst(t) B 1/(1 + t/tc) (105)

For t = 0 the above equations give pst(0) B 1 and Lst(0) B l(l/D)4/3

in agreement with eqn (85) (recall that the log-factor is neglected
in eqn (104)), while for t = 1 we get Lst(1) B l*, pst(1) B (D/l)2.

Note that the mean potential energy is E = hEmi B �T hmi
(1 � t) B �T(1 � t)m0/(1 + tm0)2. This energy is large, |E| c T,
for t { D/l, i.e. close to the critical point.

D6. Two WLCs instead of WLC + straight ‘bar’

Having considered WLC adsorption on a bar, let us return to
the original problem of two WLCs (A and B chains of length
L c l) with local attractive interactions (cf. Fig. 1 and 2). As
before here and below (to the end of Discussion section) we
assume that attraction is effective only between segments of
different chains. As stated in Section 2.1 this problem is
equivalent to one WLC with effective Kuhn segment l* near a
bar as long as we are interested in distances r { l*. In the
general case of two chains with different Kuhn segments, l1 and
l2, the length l* is defined by the relation

1/l* = 1/l1 + 1/l2 (106)

The condition r { l � l* points to the adsorption regime, u 4
u*, El 
 1 which corresponds to t o 0, |t| c t* (cf. eqn (72)).

88 Note that c0(r) is related to the tail-length distribution (see point D4) which is
independent of m since ml* { L (cf. text below eqn (96)).
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In this case the chains should form a double-chain complex
wherein the chain trajectories are nearly parallel to each other
and their lateral separation r is limited by h, r t h, where h B
D/|t|3/2 { l (cf. the 3rd line of eqn (71)). Moreover, for |t| c t*
the typical distance r is even shorter, r t D, while the mass
fraction of ‘loops’ of larger lateral size (r c D) is small. Short
loops (of length s { l*/|t|) must show the self-similar size
distribution (in the range D { r { h): the mass fraction of
loops with lateral size B r is

p(r) p r�4/3 (107)

(cf. eqn (29), (45) and (59) and note that p(r) p r2c(r)). Hence it
is the shortest loops of length Bl* with r B D that dominate
by mass.

Generally, the double-chain complex is stable if LE
 1,
where E is defined in eqn (67) and (69). In particular, the
stability criterion for �t B t* = (D/l)2/3 is L c l.

D7. Branching of double chains and gelation at �s c s*

Let us consider formation of double-chain complex in the
regime of strong attraction, El 
 1, when the distal layer is
suppressed (cf. Section 3.5) and almost all polymer fragments
are involved in the supertrain structure whose total length
tends to L. Only short ‘proximal’ loops (with s { l) are allowed
within this mostly double-chain structure (cf. Fig. 1a). Their
length distribution is defined in eqn (78). The number of loops
with length Bs is Nloop(s) p sNp(s), so

Nloop(s) B Nloop(l*)(l*/s)3, s t l (108)

where Nloop(l*) B L/l* is the reference number of the shortest
loops of size s B l*.

If two double-chain fragments pass close by, they can form a
branching point by chain exchange29 as shown in Fig. 8. An
exchange occurs when 2 short loops (11) and (33) transform
into 2 transmuted loops (13) and (31) (cf. Fig. 8b). For loops of
length B s the exchange probability is significant if both loops
are aligned similarly (within the angle y B y(s) B (s/l)1/2) and
overlap in space (occupy the same volume vov B sr(s)2, where
r(s) is defined in eqn (33)). The above conditions imply that the
two double chains involved in the exchange must intersect at a

small angle By(s). The probability of exchange for two arbi-
trarily chosen s-loops is therefore

pex B vovy
2/V (109)

where V is the total volume occupied by the double-chain.
Eqn (108) and (109) lead to the following number, Nex(s), of
exchange bridges of length Bs:

NexðsÞ � pexNloopðsÞ2 �
L2

V

l�4

l2s
(110)

Clearly, it is the shortest ‘bridging’ loops of s B l* that
dominate by number, Nex B Nex(l*):

Nex B nl(D/l)2 (111)

where

nl = L2l/V (112)

is the typical number of overlapping l-segments in the double
chain. Each exchange (branching) point brings about the factor
B2 in the partition function of the system (thus decreasing the
total free energy by BT), so the total exchange free energy is

Fex = �T ln Zex B �TNex B �Tnl(D/l)2 (113)

The free energy Fex due to exchange branching is equivalent to a
weak effective attraction of polymer segments (within the
second virial approximation) which, just like formation of
reversible bonds in solutions of associative polymers,51 can
cause phase separation. The excluded-volume repulsion of
double-chain segments results in analogous positive free
energy contribution

Frep B Tnl(D/l) (114)

where D/l stands for B/l3, B B l2D being the second virial
coefficient for steric interaction of 2 segments of length l.***
Obviously Frep dominates over Fex, so the double chain remains
in the expanded (coil) state for El \ 1 (that is, for �t \ t*). For
l { L t (l/D)2l = Lm (i.e. in the regime of a Gaussian coil which

Fig. 8 Branching by strand exchange between two paired complementary chains (cf. Fig. 1): 1 + 2 and 3 + 4 pairs virtually intersect each other. The red
strands (2 and 4) stay intact during exchange; their attractive zones (for the other two chains) are shown in pink and yellow. The exchange involves
fragments (11*) and (33*) of length s making a small angle y B (s/l)1/2 with each other. The strands 1 and 3 break and recombine in a different way during
the exchange: the initial fragments (11*) and (33*) in (a) and (b) are converted into (13*) and (31*) in (c) and (d). The new branching point is marked with
grey circle.

*** Recall that we consider a long double-chain, L c l, where double-chain
fragments pass by each other at arbitrary angles.
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is not really swollen by repulsive steric interactions) the coil
volume V B Rcoil

3 = (Ll)3/2, so we find

Nex B (L/l)1/2(D/l)2 { 1 (115)

The exchange branching therefore can be neglected in this
regime (see Fig. 9a).

However, the situation may be different in the case of a
semidilute solution of WLCs, c 4 c*, where c is the number of
Kuhn segments per volume, and c* B N/Rcoil

3 B L�1/2l�5/2 is the

coil overlap concentration (N = L/l, Rcoil ¼
ffiffiffiffiffi
Ll
p

). In this case the
total number of Kuhn segments is cV, so the mean number of
overlapping l-segments is nl B (cV)2l3/V = c2Vl3, hence, by virtue of
eqn (111), Nex B c2VlD2, and the number of junctions per double-
chain is n = NexL/(cVl) B cLD2. A gel (cf. Fig. 9f) is formed in the
solution if n4 1 (as follows from the Flory theory52 in the case of
high functionality corresponding to a large number of short loops
per chain in the present case) leading to the gelation criterion

c 4 cg B 1/(LD2) (116)

Note that the ratio cg/c* B l5/2D�2L�1/2
c 1 is large (if L t Lm)

and that the polymer volume fraction at the gelation point,
fg B cgD

2l B l/L, is small since L c l (semiflexible polymers).
Moreover, taking into account that nematic transition in WLC
solutions takes place at53

fin B 10D/l (117)

we conclude that the gelation is predicted in the isotropic state
if L \ l2/(10D), while at shorter L it should occur in the nematic
regime, f 4 fin.

D8. Globule formation at �s { s*

Let us turn to the regime of weaker attraction, where El � 1 and
the terminal separation h between interacting chains exceeds the
Kuhn segment, h c l. Here the double-chain structure is less
perfect: it involves defects like large loops of size c l (Fig. 9b) with
two strands (subloops) of length s1 c l and s2 c l (cf. Fig. 10a).
The partition function of such a loop, Zloop p (s1 + s2)�3/2, reflects
its 3-dimensional and flexible nature. Integrating Zloop over s1 and
s2 with s1 + s2 B s we get the number of loops of length Bs,

Nll(s) B Zloops2
p s1/2, sm \ s \ l (118)

Here

sm B 1/e (119)

is the terminal loop length (see Section 3.5). Matching eqn (108)
and (118) at s B l we get

NllðsÞ �
Ll�2

l3
s=lð Þ1=2; sm �4 s �4 l (120)

for a double-chain of length L. The length fraction of all long
loops is

j � 1

L

ðsm
l

sNllðsÞds=s � l�2s3=2m l�7=2 (121)

Fig. 9 Internal structure of a complex of two complementary semiflexible
chains, A (red) and B (blue), for various mutual attractions u, �t � u/u* � 1:
(a) strong attraction (�t \ t* � (D/l)2/3, cf. sect. D7), (b) moderate
attraction (t�c t � t� t�; t�c � ðD=lÞ14=9, cf. sect. D8), and (c) weak attrac-
tion (t 4 0, cf. sect. D9). In (d) and (e) two distinct modes of branching are
shown: by exchange between short loops dominating for�tc tloops� (D/
l)14/15 (d), and by chain exchange involving long loops valid for �t t tloops

(e), cf. eqn (131). For |t| t (D/l)4/3 the exchange of long loops leads to
collapse of the complex (cf. eqn (132) and (141)). Part (f) shows a gel
formed at polymer volume fraction f 4 fg B l/L for strong attraction
(�t \ t*), cf. eqn (116). The branching points are indicated with circles. All
A-chains are equivalent, as well as all B-chains, different shades of red and
blue are used for clarity.

Fig. 10 (a) A double chain with a ‘molten’ fragment involving two sub-
loops, s1 and s2. (b) Two complementary chains passing by each other at a
minimal distance r B l. (c) An alternative paired state of the chains involving
a supertrain of size Rst.
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Let us assume for simplicity that the tightly paired double-
chain fragments (with separation r { l) dominate by mass, so
that j t 0.5. On using eqn (121) and (119) this condition
leads to

sm t l(l/D)8/9, el \ (D/l)8/9 (122)

On the other hand, using also eqn (64) with p C 1 � j B 1
(where p is the fraction of paired segments) and noting that
E ¼ 0 at t = 0 we get by integration

El � �t=t� (123)

(cf. eqn (72)), so that the regime we study, (D/l)8/9 t el { 1,
corresponds to

t�c �o �t� t� (124)

where

t�c ¼ D=lð Þ14=9 (125)

Eqn (123) ensures that sm B 1/e is large: sm B lt*/|t| c l. From
eqn (120) it is clear that the total number of large loops Nll is
dominated by the largest loops of length s B sm whose
number is

Nll B L(l*)2l�3(t*/|t|)1/2 (126)

The above equation ensures that Nll c 1 if L c l(l/D)4/3. The
latter condition essentially says that the chain length L must be
much larger than the typical supertrain length (cf. eqn (85)); it
was already adopted in point D5 (see text below eqn (96)).

Long flexible loops (of length s B sm) provide an additional
channel for crosslinking (branching) of double chain fragments
(Fig. 9e). The dominant contribution to the number of junc-
tions (exchange points) due to long loops, Nex(ll), comes from
exchanges between overlapping loops (cf. eqn (110)):

Nex(ll) B Nll
2vll/V (127)

where

vll B (sml)3/2 (128)

is the effective (accessible) volume occupied by a long loop, and
vll/V is the overlap probability for any pair of such loops. Using
the above two equations and eqn (126) we get

Nex(ll) B nl(t*/|t|)5/2(D/l)8/3 (129)

where nl is defined in eqn (112). Summing the contributions of
short and long loops (cf. eqn (111) and (129)) we get the total
number of junctions

NexðtotÞ � nl
D
l

� �2

1þ t�7=2= tj j5=2
� 	

; Fex � �TNexðtotÞ (130)

Obviously, long loops become more important if (recall that
t* = (D/l)2/3)

�t t (D/l)14/15 � tloops { t* (131)

(cf. Fig. 9e). Comparing the exchange free energy Fex

(cf. eqn (130)) with the repulsion energy, eqn (114), we find
that exchange attraction dominates if

�t t (D/l)4/3 � tg (132)

In the regime of eqn (132) the total second virial coefficient
becomes negative leading to collapse and gelation of the
double-chain polymer coil, that is, to formation of a crosslinked
globular complex. The junctions are mostly due to long loops in
this regime (cf. eqn (132) and (131)). The collapse stops once all
long loops become paired, the corresponding condition is
Nex(ll) B Nll leading to V B vllNll (note that Nll \ LD/l2

c 1 at
�t t tg, cf. eqn (126), and vll B l3(t*/|t|)3/2, cf. eqn (128)). The
concentration of the globular complex (and the corresponding
volume fraction) therefore are

c B L/(lV) B l�3(|t|/tg)2, f B cD2l B (D/l)2(|t|/tg)2

(133)

Obviously c is independent of the total chain length L and c t
l�3 in the regime of eqn (132). Hence polymer volume fraction
f t (D/l)2 is low, f { fin (cf. eqn (117)), so the globule is
predicted to remain isotropic.

Interestingly and somewhat paradoxically, the collapse is
predicted here as attraction of polymer chains gets weaker. The
reason is that for strong attraction a double-strand (ladder)
structure is most favorable (note that we assume a strictly
monodisperse system). The double chain complexes do not
aggregate further as all attractive interactions (bonds) are
already saturated in the paired state (cf. Fig. 1c).

D9. Bridging by double-chain fragments and collapse near
and below u*

Let us first consider a pair of long WLCs at the critical point,
u = u*, in a volume V. We assume that V t Vcoil = Rcoil

3 = (Ll)3/2.
In the case of WLC adsorption on a straight bar we have shown
(see point D3) that the typical length of paired (supertrain)
fragments is

Lst B l(l/D)4/3
c l (134)

(see eqn (85) where we omit the log-factor). It is reasonable to
assume (as verified below) that for L c Lst the mass fraction of
paired fragments is small (see Fig. 9c). The pairing occurs
readily once two l-segments (belonging to different chains)
come to each other closer than their size, r B l (cf. Fig. 10b).
Indeed, as follows from eqn (41) (last line), in this case the
statistical weight of a paired state (supertrain in Fig. 10c),
c0 ’ c1 � c0 � lnðRcoil=lÞ, gets larger than the statistical weight
c0 of the state with no contacts between the chains, c0 C 1.
Such c0 leads to double-strand (supertrain) formation with
probability p ¼ c0= c0 þ c0ð Þ �4 1=2.

Let us find the total number of double-strand bridges. To
this end it is useful to consider a WLC as a sequence of N = L/Lst

supertrain fragments and to find the number n of such over-
lapping fragments:

n B N2Rst
3/V (135)

where Rst B (lLst)
1/2 is the supertrain size (by virtue of Gaussian

statistics of chain fragments at length-scales \l). Obviously
each pair of overlapping Lst-fragments must give rise to
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formation (with high probability p) of a double-strand fragment
(of length B Lst) bridging the WLCs. The number of bridges is
therefore nbr B n, and the corresponding free energy is (in
analogy with eqn (113))

Fbr B �Tnbr (136)

The mass fraction of paired fragments is fpf B Lstnbr/L. For
V B Rcoil

3 and nbr B n we thus get (using eqn (135))

fpf B (Lst/L)1/2

meaning that fpf { 1 for L c Lst as stated above.
Using eqn (134) and (135) we get

nbr B n B nl(D/l)2/3 (137)

where nl is defined in eqn (112). Comparing eqn (136) and (137)
with eqn (114) for the free energy Frep due to steric repulsion we
find that bridging attraction always wins (|Fbr| c Frep) leading
to a collapse of the bridged WLCs, that is, formation of a
globule with finite density (volume fraction f = LD2/V). The
equilibrium f can be estimated using the condition that the
maximum number of bridges is attained, i.e. that the bridged
double-chain fragments occupy most of the chain, nbr B N,
leading to

f B (D/l)8/3 (138)

Note that the globule remains isotropic since the nematic
transition occurs at a much larger concentration, fin B 10D/
l.53 For a binary solution of semiflexible polymers with stoichio-
metric 1 : 1 composition and with attraction only between
segments of different kind (A and B), eqn (138) also defines
the density of polymer precipitate at u = u* (t = 0).

The obtained results remain valid also slightly below u*, at
0 o t t tc B (D/l)2 (cf. eqn (50)) where the supertrain length
remains nearly the same (cf. eqn (104)). Moreover, the approach
outlined above can be applied also at t \ tc. As t increases
above tc the bridging gets weaker. At t c tc the statistical
weight for supertrain formation (in the case of a mild overlap of
two mutually attracting l-segments, r B l) decreases from c0 ’
c� 1 � 1 to c� 1 = cbr B tc/t (we neglect log-factors here; cf.
eqn (51) and (99)). The typical supertrain length decreases in
parallel (cf. point D5 of Section 4, eqn (104)),

Lst(t) = Lsttc/t (139)

where Lst is defined in eqn (134).
The argument used above to estimate the number of bridges

remains valid provided that Lst is replaced with Lst(t). We must
also take into account that now the number of bridges is
smaller than n: nbr B cbrn since bridges are now formed with
low probability cbr/(1 +cbr) C cbr, where cbr B tc/t { 1. As a
result we get: Rst(t) B (lLst(t))1/2 B l(l/D)2/3(tc/t)1/2 and

n � L

LstðtÞ

� �2
RstðtÞ3

V
� nll

RstðtÞ
� nl

D
l

� �2=3 t
tc

� �1=2

;

nbr � nl
D
l

� �2=3 tc
t

� 	1=2 (140)

Eqn (140) are valid as long as Lst(t) 4 l, that is, tt t* B (D/l)2/3

and, in addition, t \ tc. The free energy of bridging,
Fbr B �Tnbr (see eqn (136) and (140)) dominates the repulsion
energy Frep (eqn (114)) if

t o tgl B (D/l)4/3 (141)

Obviously tc { tgl { t*. Thus, we predict that the A/B polymer
complex forms a globule at u o u* for 0 o t t tgl. Polymer
concentration f in the globule can be obtained using the same
criterion as before, i.e. by demanding that the length fraction of
bridges, nbrLst(t)/L, is about 1/2 (that is, it is close to the
maximum value). It leads to

f B (D/l)8/3(t/tc)3/2, tc t t t tgl (142)

In the above t-range the volume fraction f is still below the
nematic transition threshold, fin B 10D/l; moreover, the third-
virial term (due to steric repulsion of polymer segments)
remains always negligible here. Note that for 0 o t t tc the
volume concentration f in the globule is given in eqn (138).

At t 4 tgl the bridging attraction is weak, so polymer chains
always stay in the coil conformation (in particular, a globular
complex is not expected in the case of just 2 chains, A and B,
considered above). Turning to the case of a dilute or semidilute
binary polymer solution (with stoichiometric A/B composition)
we predict that the system should stay homogeneous at t 4 tgl,
but phase separate at lower t (higher u) if its initial concen-
tration is below the threshold defined in eqn (138) and (142).

Thus, we predict that the chains are not paired in dilute
solution at t 4 tgl (that is, for low attraction strength, u o u1 =
u*(1 � tgl)). The chain gyration radius Rg in this regime is

therefore close to that of an ideal WLC, Rg 
 Rg0 �
ffiffiffiffiffi
Ll
p

(for L c

l; the condition L t Lm is also assumed). At u just above u1 the
bridging attraction leads to globule formation in the regime of
extreme dilution. In this case the gyration radius strongly
decreases to the globule size which comes from the condition
fRg

3 B LD2, where f is defined in eqn (142) with t B tgl. Hence
Rg B L1/3l5/9D1/9 at u = u1+ 0 (note that here Rg { Rg0 since L c

l*). Finally, at u = u2 = u*(1 + tg), where tg is defined in eqn (132),
the globules get destabilized leading to chain expansion to

Rg �
ffiffiffi
2
p

Rg0, where the factor
ffiffiffi
2
p

accounts for enhanced rigidity
of double-strand (ladder) complexes dominating at u 4 u2.

D10. Bundle vs. elastic beam

Let us return to the regime of strong attraction, �tc t*. In this
case the terminal separation h between WLCs in the double-
chain complex is small, h { l (more precisely, h B s3/2l�1/2,
where s is the typical loop length, s � 1=E � l�= tj j, so that h B
l(t*/|t|)3/2), hence the double-chain can be considered as a fibril
with effective Kuhn length l2 C 2l1 (cf. the first term in eqn (4)),
where l1 is Kuhn length of one WLC. Thus, the rigidity is
additive here. For a bundle of n chains the result would be
ln C nl1 in the regime h { l. By contrast, the elastic beam
theory applied to bundles predicts a stronger dependence ln B
n2l1 in the limit of strong interactions of constituent chains.54

The difference comes from the fact that the beam theory
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assumes a solid-like bundle with permanent bonds between the
chains, while our model allows for a quasi-free gliding of the
chains along their contours (due to a quasi-continuous distri-
bution of interacting sites along the chains). The gliding
mechanism should involve exchanges between trains and loops
(in particular, consumption of some trains by loops and reverse
moves) leading to reptation-like dynamics of chain fragments
along the bundle.

D11. The role of tails

Returning to adsorption onto a bar: a typical conformation of
an adsorbed chain involves many loops and only 2 tails. Just
this notion suggests that the contribution of tails in the
segmental concentration profile is not large. To neglect the
tails we can demand EL
 1 (this condition is equivalent to
u/u* � 1 c tc B (D/l)2, cf. Section 3.5): in this case the terminal
tail/loop length is sm � 1=E� L. The adsorbed chain can be
roughly considered as a system of blobs (of size sm for
sm \ l*/tc), the number of internal blobs corresponding to
loops, nbi B L/sm B El 
 1, being much larger than just two
end-blobs corresponding to tails. The tail contribution can be
therefore safely neglected at all scales (up to the terminal
distance h from the bar, cf. eqn (55)).

However, even at the critical point u = u* (t = 0) the tail
contribution is not so important: in fact, the tail-length (s)
distribution is nearly uniform at l* { s { L (cf. point D4), from
which we immediately deduce that the mean masses of all
loops and all tails are comparable. More precisely, the tail-
length distribution at t = 0 can be generated just by randomly
choosing two points (A and B) on the WLC of length L. (This
procedure comes from the notion that at t = 0 the statistical
weight of a tail is independent of its length, and the same is
true for the middle segment AB involving loops and trains.) As a
result we find that the mean length of each tail, Lt, is Lt E L/3,
which is also nearly equal to the length of all loops (corres-
ponding to the segment AB; note that the contribution of trains
to its length is negligible if L c Ltt, cf. point D5).†††

Turning to the distribution of the loop and tail segments
around the bar, note that the terminal distance h is defined by

the coil size at t = 0, h � Rcoil �
ffiffiffiffiffi
Ll
p

, so h is large for long chains
and most of the loop and tail segments are located at r B h. The
distribution of loop segments cl(r) is defined in eqn (45) (the tail
contribution is neglected in this equation). As for segments of
the tails, their distribution ct(r) (with scaling accuracy) is similar
to the free-end distribution given in eqn (94): ctðrÞ / c0ðrÞ, as
follows from the ideal WLC statistics of the tails (also note that it
is long tails of length s B L that provide the dominant contribu-
tion to ct(r) for all r t h). Recalling that loop and tail masses are
comparable we find that:

cl(r) B ct(r) for r B h

Noting also that cl(r) increases faster than ct(r) as r is decreased
in the region r { h (cf. eqn (45) and (94)), we can conclude that

cl(r) c ct(r) in this region, so tails are subdominant at t = 0 in
the whole range of major interest, r { h.

5 Summary and conclusions

We theoretically studied association of two semiflexible worm-
like chains (A and B) driven by mutual short-range attraction of
their segments (the interaction energy vanishes at r 4 D) in the
case of high chain stiffness, when the chain persistence length
lp = l/2 is much longer than the interaction range D. The chains
tend to align parallel to each other forming a double-strand
complex due to their side-to-side attraction (defined by the
parameter u equal to the depth of the interaction potential well
divided by the thermal energy T, cf. Fig. 3a). It is shown that the
local structure of such complex (at length scales r { lp) is
identical to that of a semiflexible WLC (chain A* with renorma-
lized stiffness defined in eqn (106)) adsorbed onto a straight
bar (replacing the second chain B).

We found that the critical strength of attraction, u = u*,
corresponding to the adsorption threshold (such that the A*-
chain becomes trapped in the vicinity of the bar beyond the
threshold, at u 4 u*) scales as u* B (D2l)�1/3 (see eqn (31)). A
similar u* was predicted for adsorption of a WLC onto a solid
surface or membrane.5–7,49

At u = u* the adsorbed structure involves 3 regions: the
contact region (at the distance r o D from the bar), the
proximal cylindrical layer (at D o r { l) and the distal corona
layer (r c l). At the critical point the contact layer consists of
train segments (of typical length s B l*, l* B (lD2)1/3) inter-
acting with the bar and aligned parallel to it: the typical angle
between a train and the bar is y B D/l* B (D/l)1/3. Using a
scaling argument we established that the proximal layer shows
a fractal structure of aligned loops (connecting the trains)
implying an algebraic decay of polymer concentration, c(r) p

r�10/3 there. Moreover, using the transfer matrix approach (see
eqn (20)) we obtained the orientational distribution of A-chain
end segments in the proximal layer: it follows a universal law in
terms of the reduced variables Z, x defined with the r-dependent
reference (typical) tilt angle with respect to the bar, Y(r/l) = (r/l)1/3

(cf. eqn (17) and (19)). The asymptotically exact orientational
distribution profiles are shown in Fig. 4. As for the distal layer, it
consists of long ‘isotropic’ loops characterized by another self-
similar length distribution (cp. eqn (78) and (79) for E ¼ 0).

Above the critical threshold, at u 4 u*, the polymer gets
trapped by the bar. Depending on the attraction strength u the
polymer mass is then dominated by either long loops (for u/u*
� 1 t (D/l)2) or by the shortest loops and trains (at u/u* � 1 c

(D/l)2 ln(L/Lst)), where Lst B l(l/D)4/3 is the typical supertrain
length (see Fig. 6b and c). The loops of intermediate length s
(l* { s { l) are never dominant, i.e. the loops are segregated
spatially in two classes according to their sizes. This effect is
reminiscent of segregation of chromatin loops between com-
partments in folded chromosomes.55

The net free energy gain on adsorption of a single WLC of
length L, eLT, becomes positive at u 4 u*. At small u/u* � 1 it

††† A more general argument to obtain the tail-length distribution at u = u* is
given in Section 7.3 of ref. 7.
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increases in an exponential fashion e p exp(S(u/u* � 1)) with
high steepness S B (l/D)2, cf. eqn (67). The fraction p of train
sections increases in parallel, it changes from almost zero at u =
u* to p B 1 in a narrow region 0 o u/u*� 1 t (D/l)2 (see Fig. 11
and eqn (73)). Therefore, although the condensation of the
A*-chain is continuous, it becomes similar to a first-order phase
transition for high stiffness, l c D. Similar p-jumps (but with
lower steepness) were predicted for adsorption of semiflexible
chains onto solid surfaces (S B (l/D)4/3) and permeable mem-
branes (S B (l/D)2/3).6,7 A qualitatively similar ‘rounded phase
transition’ was also predicted for linker-induced aggregation of
two semiflexible polyelectrolytes.31 Furthermore, we established
that the distal layer is suppressed at u/u* � 1 \ (D/l)2/3 = t*. A
further increase of the interaction parameter u leads to a
shrinkage of the proximal region whose cut-off radius decreases
as D/(u/u* � 1)3/2 (see eqn (71)).

Replacing the bar with the second WLC we analysed
the equilibrium structure of double-strand complexes and the
properties of (dilute or semidilute) binary solutions of the
WLCs. In a dilute binary solution at stoichiometric conditions
the chains tend to form complexes if monomer attraction is
strong enough, u 4 u*. Moreover, if u/u* � 1 c t*, the paired
chains are always nearly parallel to each other in a double-strand
complex (cf. Fig. 9a) and their separation r does not exceed l being
typically very short, r B D. The double-strand chain remains in
the coil state if all attractive interactions (bonds) are already
saturated in the paired structure (cf. ladder segment in Fig. 1c).
However, at higher concentrations (in the semidilute regime, c 4
c*) branching of double-chains by strand exchange (cf. Fig. 8 and
Discussion point D7) becomes important leading to gelation of
the system (cf. Fig. 9f) above some concentration cg defined in
eqn (116). We also found that strand exchange becomes even
more important at weaker attraction, u/u*� 1 o t* (cf. Fig. 9d and
e), leading to a collapse of double chains already in the dilute
solution regime if u/u* � 1 t (D/l)4/3 (cf. eqn (132)). More
generally we established that double-strand complexes form
globules or phase separate (in dilute or semidilute regimes) within
a finite range of attraction strength u around the critical point:

� (D/l)4/3 t u/u* � 1 t (D/l)4/3 (143)

(see Discussion points D8, D9). Thus, as u increases the
polymer component is predicted to first precipitate at u 4 u1

and then redissolve at u 4 u2, where u1, u2 can be deduced
from eqn (143). Such a reentrant transition to the solution
phase (induced by an increase of the attraction strength u) is
reminiscent of redissolution of aggregated semirigid macro-
molecules (like DNA and F-actin) in aqueous solution upon
adding high amounts of multivalent ions which normally
promote interchain attraction.56,57

The side-to-side attraction of stiff polymer chains in solution
can generally lead to their precipitation due to formation of a
dense phase with chains aligned nearly parallel to each other.
However, in some cases such transition does not occur directly,
but rather is preempted by formation of finite bundles of
aligned chains. The simplest bundle is a double-chain consid-
ered in the present paper. Such pairing is expected, for exam-
ple, if the attraction is provided by transient saturating
bonds,58 like H-bonds or other directional interactions. The
theory of double-chain complexes emerging as solvent quality is
decreased and their structural properties elucidated here can
provide a useful basis for correct interpretation of scattering
experiments on WLC polymer systems.

We thus provide a theoretical framework to study lateral
association of dissolved semiflexible polymers with short-range
attractive interactions. The obtained results can be applied to
study aggregation, bundling and network formation in solu-
tions of synthetic polymers and biopolymers with rigid back-
bone (like DNA, F-actin59 and other protein bio-filaments).
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