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Spontaneous oscillation of an active filament
under viscosity gradients†

Zhaorong Liu, a Youchuang Chao, b Zhijun Zheng c and Lailai Zhu *a

We investigate the effects of uniform viscosity gradients on the spontaneous oscillations of an elastic,

active filament in viscous fluids. Combining numerical simulations and linear stability analysis, we

demonstrate that a viscosity gradient increasing from the filament’s base to tip destabilises the system,

facilitating its self-oscillation. This effect is elucidated through a reduced-order model, highlighting the

delicate balance between destabilising active forces and stabilising viscous forces. Additionally, we reveal

that while a perpendicular viscosity gradient to the filament’s orientation minimally affects instability, it

induces asymmetric ciliary beating, thus generating a net flow along the gradient. Our findings offer new

insights into the complex behaviours of biological and artificial filaments in complex fluid environments,

contributing to the broader understanding of filament dynamics in heterogeneous viscous media.

1 Introduction

Motile cilia, or interchangeably, flagella, are hair-like, flexible
filaments protruding from a wide range of cells. Their oscilla-
tory motion facilitates various biological processes, such as
propulsion of flagellated algae that can capture CO2

1,2 and that
of planktonic ciliates important in aquatic ecosystems,3 and
feeding of marine invertebrates. In mammals,4 flagellar move-
ment is essential for sperm locomotion, while ciliary beating in
the airways helps expel mucus and is crucial for transporting
oocytes and embryos in the oviduct. Ciliary dysfunction in
humans causes up to 35 diseases known as ciliopathies5

including male infertility owing to weakened sperm motility,
female infertility due to impaired oviductal cilia, and chronic
bronchitis resulting from defective clearance of respiratory
mucus. Besides its biological significance, the behaviour of
ciliary beating has inspired the design of active filamentous
structures for applications in adaptive materials, microfluidics,
and drug delivery.6–9

Motivated by its fundamental importance and broad applica-
tion prospects, a substantial amount of research has been dedi-
cated to examining ciliary oscillation in diverse contexts.10 It is
established that a biological filament oscillates spontaneously,

typically driven by its internal structure—the central axoneme
comprising microtubule doublets and dynein molecular
motors. A variety of models have been proposed to elucidate
the mechanisms of how dynein motors power spontaneous ciliary
oscillation.11–22 Despite these efforts to achieve mechanistic
understanding, the proposed models have also facilitated the
investigation on synchronisation of two active filaments23–25 and
the emergence of metachronal waves generated by multiple
filaments,26,27 focusing on inter-filament interactions. More
recently, motivated by the typically non-Newtonian bodily fluids
hosting cilia and flagella, research has been conducted on a
spontaneously oscillating filament in viscoelastic28 or shear-
thinning/thickening fluids.29

Besides these recognised rheological complexities, hetero-
geneity is also a notable characteristic in bodily fluids, often
manifesting as spatially varying viscosity. A key question is how
will the viscosity gradient affect ciliary oscillation? In this work,
we will address this question, but before that, let us mention
the biological relevance of this scenario. It is relevant to the
beating of pulmonary cilia in the airway surface liquid (ASL)
that is essential for mucociliary clearance. Overlaying the air-
way epithelium, the ASL comprises two distinct layers: a gel-like
mucus layer above a periciliary layer (PCL), as depicted in Fig. 1.

Both layers contain mucins—large macromolecules forming
networks31—but differ in their types and, consequently, in fluid
viscosities; the PCL is less viscous than the superficial gel layer. In
addition to such a viscosity patchiness in the ASL, the PCL---typically
as deep as cilia, presents its own viscosity heterogeneity. Specifically,
the cilia immersed in the PCL are rich in transmembrane mucins,
producing a glycan meshwork with a density that increases towards
the airway surface.30 This density gradient, in turn, results in a
viscosity variation parallel to the ciliary orientation.
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Inspired by the picture depicted above, this study explores
the spontaneous oscillation of an active elastic filament in
viscous fluids exhibiting viscosity heterogeneity. Simulations
are conducted in the creeping flow regime to examine the
influence of uniform viscosity gradients on the emergence of
oscillatory instability. These numerical findings are corrobo-
rated by stability analysis. We then employ a reduced-order
model to further clarify the underlying mechanisms by which
viscosity gradients affect the instability.

2 Problem setup

We consider a slender, inextensible filament undergoing spon-
taneous oscillation in a quiescent creeping flow of Newtonian
fluid with spatially varying viscosity. The filament of length L
features a circular cross-section with diameter b { L, leading to
a vanishing slenderness b = b/L { 1. Its profile is described by
the centerline coordinates r̃(s̃, t̃) as functions of arc length s̃ A
[0, L] and time t̃. From hereinafter, dimensional variables (but
not constant values) are indicated by a tilde.

The filament is vertically clamped at its base (s̃ = 0) and, in
its undeformed, relaxed state, aligns along the vertical (ex)
direction (see Fig. 2). To emulate the active force exerted by
the molecular motors, we employ the follower force
approach,17,32 applying a compressive force density uniformly
distributed along the filament centerline, aligned with its
tangent everywhere. For a related configuration featuring a
point follower force of constant magnitude at the tip (s̃ = L),
the results, exhibiting trends similar to those for the distrib-
uted force, are given in the ESI.† A sufficiently strong follower
force or force density can induce the filament to self-oscillate,
simultaneously driving the surrounding flow.20,32,33

The motion of the filament is restricted to the xy plane,
see Fig. 2. Consequently, its profile remains planar, and is
determined by the angle y(s̃, t̃) between the tangent vector

t(s̃, t̃) = cos yex + sin yey and the ex axis. The associated normal
vector is n(s̃, t̃) = �sin yex + cos yey.

To probe the influence of the viscosity gradient, we prescribe
a viscosity ~m(x̃, ỹ) linearly changing in one direction—either
vertically (ex) or horizontally (ey). Choosing a reference viscosity
m0 measured at the middle (L/2,0)x̃ỹ of the undeformed fila-
ment, we express the viscosity as ~m(x̃, ỹ) = m0g(x̃, ỹ). Hence, g(x̃, ỹ)
represents a scaled viscosity profile, which features two forms
depending on the viscosity gradient direction:

gð~x; ~yÞ ¼
1þ gð2~x=L� 1Þ ðvertical gradientÞ;

1þ 2g~y=L ðhorizontal gradientÞ;

(
(1)

where g signifies a dimensionless viscosity gradient magnitude.

3 Elasto-hydrodynamics at a low
Reynolds number

Here, we describe the low-Reynolds-number elasto-hydrodynamics
in the Stokes flow limit. Instantaneous balance between the
active force, elastic force, and hydrodynamic force holds every-
where on the filament centerline. The active force density (per
unit length) �ft, imposed anti-parallel to the tangent vector t,
possesses a constant magnitude f. The internal elastic force
density f̃e = ~tt + Ñn consists of a tangential tension component
~t and a normal component Ñ = �Ays̃s̃, where A is the bending
modulus of the filament (see the ESI,† Section S1) and
the subscript s̃ denotes differentiation with respect to the arc-
length.

The hydrodynamic force on slender filaments in Stokesian
fluids with a constant viscosity is typically addressed using
the resistive force theory—the leading order slender-body
theory.34–38 Kamal and Lauga39 recently extended the classical
theories to incorporate a constant viscosity gradient in fluids.
At the leading order of filament slenderness b, the hydro-
dynamic force aligns with the classical theories for fluids with

Fig. 1 Schematic of pulmonary cilia in the airway surface liquid adapted
from ref. 30 with permission from Elsevier. This liquid consists of a more
viscous gel layer on top of a less viscous periciliary layer (PCL). The PCL
approximately contains the cilia and features a growing density of glycan
from top to bottom, thus leading to a viscosity gradient.

Fig. 2 Schematic of an elastic filament submerged in a fluid with a vertical
viscosity gradient. The filament is anchored at one end and free at its tip. Its
shape is characterised by the tangent angle y(s̃, t̃), where s̃ represents the
arc length. The local tangent and normal vectors are denoted as t(s̃, t̃) and
n(s̃, t̃), respectively. The filament experiences a distributed active force with
density �ft along its centerline.
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a uniform viscosity, except that the viscosity everywhere takes
its locally non-constant value. At the next order of b, non-local
terms emerge. Here, we address solely the leading-order effects,
and consequently, the hydrodynamic force density reads

~fh ¼ � ~xkð~rÞttþ ~x?ð~rÞnn
� �

� @~r
@~t
; (2)

where ~x>(r̃) and ~x8(r̃) denote the viscous resistance coefficients
that linearly scale with the local viscosity ~m(r̃) measured at r̃(s̃).
Based on this linear relationship, we obtain ~x>(x̃, ỹ) = g(x̃, ỹ)x>,0

and ~x8(x̃, ỹ) = g(x̃, ỹ)x8,0. Here, x>,0 = 4pm0/(�ln b + 1/2) indicates
the resistance coefficient defined at the reference position
(L/2,0)x̃ỹ, and x>,0/x8,0 = 2 as we take the limit of b - 0
throughout this study. Accordingly, ~x>(x̃, ỹ)/~x8(x̃, ỹ) = 2.

4 Governing equations and
nondimensionalisation

The equations governing the dynamics of the filament can be
derived by imposing force and torque balances along the
filament, as elaborated in Section S1 of the ESI.†

Scaling forces with A/L2, lengths with L, and time with x>,0L4/
A, we obtain the following dimensionless governing equations:

@y
@t
þ yssss � tysð Þs�2ys ts þ ysyss � sð Þ

þ G tys � ysssð Þ ¼ 0;

(3a)

tss þ ysyssð Þs�
1

2
ys tys � ysssð Þ � G ts þ ysyss � sð Þ ¼ 0; (3b)

where G(x, y) = gs/g indicates the relative change of viscosity over
the filament arc length, and s = fL3/A represents
the dimensionless active force scaled by elastic forces. In the
absence of viscosity gradients, G = 0, eqn (3) recovers to the
governing equations in ref. 33. Imposing a vertical viscosity
gradient defined in eqn (1),

G x; yð Þ ¼ 1

g

@g

@x

@x

@s
¼ 2g

1þ gð2x� 1Þ cos y; (4)

where we have employed x sð Þ ¼
Ð s
0cos y s0ð Þds0 to compute qx/qs.

Similarly, for a horizontal viscosity gradient, we derive

G x; yð Þ ¼ 2g
1þ 2gy

sin y: (5)

Eqn (3) is solved with boundary conditions (BCs). At the
filament tip (s = 1), force- and torque-free conditions hold,
corresponding to:

s = 1: t = ys = yss = 0. (6)

At the clamped end (s = 0), the BCs are:

s ¼ 0: tys � ysss ¼ ts þ ysyss � s ¼ @y
@t
¼ 0: (7)

We adopt a Chebyshev spectral method to discretize the
governing equations in space, combining an implicit–explicit
temporal scheme, as detailed in Section S2 of the ESI.†

5 Linearisation of the governing
equations

Subject to a sufficient small active force, the filament maintains
a stationary and straight equilibrium state. To investigate its
stability, we linearise the governing equations eqn (3) around
this equilibrium. Assuming small filament deformation, we
adopt a linear expansion: y = y(0) + ey(1)(s, t) and t = t(0)(s) +
et(1)(s, t), where (y(0), t(0)) and (y(1), t(1)) denote the zero-th and
first order solutions, respectively, with e { 1 being a small
parameter.

Upon linearisation, we obtain y(0) = 0 and

t(0)
ss � G(0)(t(0)

s � s) = 0, (8)

with

Gð0Þ ¼
2g= 1þ gð2x� 1Þ½ � ðvertical gradientÞ;

0 ðhorizontal gradientÞ:

(
(9)

From eqn (8) and the BCs, we obtain t(0) = s(s � 1).
Knowing the base state, we derive the governing equation

for y(1),

@yð1Þ

@t
þ yð1Þssss � syð1Þs � sðs� 1Þyð1Þss

þ Gð0Þ sðs� 1Þyð1Þs � yð1Þsss

h i
¼ 0;

(10)

where y(1) and t(1) have been decoupled. Considering eqn (9)
and (10) together, we recognise that the horizontal viscosity
gradient does not affect the linear stability because of the
vanishing G(0), but only the vertical gradient does.

The linearised BCs for y(1) are:

s ¼ 0: syð1Þs þ yð1Þsss ¼
@yð1Þ

@t
¼ 0; (11a)

s = 1: y(1)
s = y(1)

ss = 0. (11b)

Employing the normal form y(1)(s, t) = ŷ(s)exp(ot) with o the
complex growth rate, we arrive at a classical eigenvalue
problem,

oŷ + ŷssss � sŷs � s(s � 1)ŷss + G(0)[s(s � 1)ŷs � ŷsss] = 0.
(12)

The leading (most unstable) eigenvalue and its associated
eigenmode can be obtained by numerically solving eqn (12)
using the same spectral discretization as for solving eqn (3), see
the ESI,† Section S2.

6 Results: nonlinear simulations and
linear stability analysis

We numerically solve eqn (3) to examine the effect of viscosity
gradient on the spontaneous filament oscillation, particularly
focusing on the instability threshold. These nonlinear simulations
are corroborated by linear stability analysis (LSA). We then employ
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a reduced-order bead-spring model to seek deeper insights into
the instability mechanism modulated by the viscosity gradient.
The effects of vertical and horizontal viscosity gradients will be
demonstrated separately below, starting from the former.

6.1 Filament in a vertical viscosity gradient

Fig. 3(a) shows how the complex growth rate o of perturbation
depends on the dimensionless active force s and the vertical
viscosity gradient g A [�0.6, 0.6]. The vertical dashed lines
represent the critical active force sc, beyond which spontaneous
filament oscillation emerges due to instability. Close to this
threshold, the values of s predicted by LSA and nonlinear
simulations show excellent agreement.

More importantly, a negative correlation between the instability
threshold sc and the gradient g is clearly observed. This trend is

further revealed in Fig. 3(b), showing that both sc and the frequency
of the corresponding most unstable eigenmode Im(oc)/2p at the
onset decrease with g monotonically. This suggests that a viscosity
profile increasing from the base to the tip of the filament destabi-
lises the system, thereby promoting its self-oscillation.

6.2 Filament in a horizontal viscosity gradient

The scenario of linear instability is independent of the hor-
izontal viscosity gradient, as indicated by eqn (9). This inde-
pendence near the onset of instability is confirmed by the
numerically computed o versus s (see the ESI,† Section S4).
Notably, even when s substantially exceeds the threshold, the
influence of the viscosity gradient on o remains marginal.

The horizontal viscosity gradient breaks the left-right sym-
metry in a forced fashion; hence, the filament exhibits asym-
metric beating as expected. However, this asymmetry remains
mild even at a substantial gradient level of g = 0.6, as illustrated
by the bottom panel of Fig. 4(a). Intuitively, the asymmetric
beating resembling the recover-and-stroke pattern of a natural
cilium would pump the fluid horizontally. To characterise this
pumping effect, we calculate the average volume flow rate over
one oscillation period T = 2p/Im(o):40,41

Q ¼ x?;0L
pm0A

� 1

T

ðT
0

ð1
0

x fh � ey
� �

g
dsdt: (13)

As evidenced in Fig. 4(b), the flow rate Q exhibits an almost
linear increase with the dimensionless active force s above the
threshold. The fluid is propagated along the viscosity gradient.
Moreover, the net flow rate grows with the viscosity gradient g,
following an approximately linear relationship, as illustrated in
Fig. 4(c).

7 Reduced-order model

In the preceding section, we show the significant effect of vertical
viscosity gradient on the onset of instability. In this section, we
examine this effect further based on a reduced-order minimal
model. Similar models have been employed by other studies on
the behaviour of flexible structures in viscous fluids.32,42–50

As shown in Fig. 5, this model comprises two beads numbered
1 and 2 sequentially connected to two links of length L/2. Akin to
the full model, only planar motion restricted to the xy plane is
considered. To incorporate elasticity, the links are joined by a
torsional spring of stiffness k. Besides, the lower link is attached
to the base using a similar spring. The i-th (i = 1, 2) bead is centred
at r̃i. The angles y1 and y2 represent the orientation of the lower
and upper links, respectively, relative to the ex axis.

A follower force F̃a =�Fa(cosy2, siny2) is imposed on bead 2 to
represent the active force, persistently opposite to the tangent of
the upper link. The hydrodynamic force exerted on bead i takes
the form F̃h,i = �~ziqr̃i/qt̃, with ~zi indicating the drag coefficient of
bead i. Considering the vertical viscosity gradient, ~zi/z0 = 1 + g(2r̃i�
ex/L � 1). Here, z0 represents the reference drag coefficient.

Employing the principle of virtual work, or the Euler–Lagrangian
equations detailed in the Appendix, we derive the dimensionless

Fig. 3 Comparison between the LSA (lines) and numerical results (sym-
bols) for an active filament. (a) The real part (growth rate of the perturba-
tion) of the most unstable eigenvalues, and corresponding frequency of
oscillation (imaginary part divided by 2p), versus the dimensionless active
force s for different g. The vertical dashed lines indicate the critical sc

corresponding to the onset of instability. (b) Critical sc and oscillation
frequency Im(oc)/(2p) as a function of g.
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governing equations for the reduced-order model:

S sin y1 � y2ð Þ � 2y1 þ y2 � 1� gþ g cos y1ð Þ _y1

� 1� gþ g cos y1 þ cos y2ð Þ½ � _y1 þ _y2 cos y2 � y1ð Þ
h i

¼ 0;

(14a)

y1 � y2 � [1 � g + g(cos y1 + cos y2)][ _y2 + _y1 cos(y2 � y1)] = 0,
(14b)

where S = FaL/2k represents the dimensionless active force.
Here, we have chosen z0L2/4k as the characteristic time scale,
and the overdot denotes taking a derivative with respect to
time. Linearising eqn (14) about the equilibrium configuration
y1 = y2 = 0, we examine the stability. Using the normal mode
approach, we substitute y1,2 = ŷ1,2 exp(ot) in the linearised
equation and obtain,

S(ŷ1 � ŷ2) � 2ŷ1 + ŷ2 � o[(2 + g)ŷ1 + (1 + g)ŷ2] = 0, (15a)

ŷ1 � ŷ2 � o(1 + g)(ŷ1 + ŷ2) = 0. (15b)

Non-trivial solutions to eqn (15) exist when the determinant of
the system is zero, i.e., 1 + [6 + g(5 � 2S) � 2S]o + (1 + g)o2 = 0,
leading to the complex growth rate:

o� ¼ S� 5

2
� 1

2
ð1þ gÞ�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S� 5

2
� 1

2
ð1þ gÞ�1

� �2
�ð1þ gÞ�1

s
:

(16)

The complex growth rate o implies five stability regimes
depending on S and g:

1. Stable, when S � 5

2
þ 1

2
ð1þ gÞ�1 � ð1þ gÞ�

1
2:

Re(o�) o 0 and Im(o�) = 0, corresponding to a stable state.

2. Decaying oscillations, when
5

2
þ 1

2
ð1þ gÞ�1 � ð1þ gÞ�

1
2 o

So
5

2
þ 1

2
ð1þ gÞ�1:

Re(o�) o 0 and Im(o�) a 0, indicating decaying
oscillations.

3. Stable periodic oscillations, when S ¼ 5

2
þ 1

2
ð1þ gÞ�1:

Fig. 4 (a) Time-lapse of filament waveforms over one beating cycle for two viscosity gradients g = 0 (top panel) and g = 0.6 (bottom panel) at a dimensionless
active force s = 130. The black and white background suggests the fluid viscosity, where black corresponds to a higher viscosity. Arrows indicate the instantaneous
velocities of the filament’s centerline. (b) Average volume flow rate Q versus s at varying viscosity gradients g. (c) Dependence of Q on g when s = 130.

Fig. 5 The reduced-order model comprises two torsional springs and
two beads, encapsulating the minimal physical ingredients of elasto-
hydrodynamics: elastic torques generated by the springs and hydrody-
namic forces exerted on the moving beads.
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Re(o�) = 0 and Imðo�Þ ¼ �ð1þ gÞ�
1
2, and the system oscil-

lates with a constant amplitude. Besides, increasing g decreases
Sc and the oscillation frequency.

4. Exponentially growing oscillations, when
5

2
þ 1

2
ð1þ gÞ�1 oSo

5

2
þ 1

2
ð1þ gÞ�1 þ ð1þ gÞ�

1
2:

Re(o�) 4 0 and Im(o�) a 0, indicating exponentially
growing oscillations.

5. Unstable, when S � 5

2
þ 1

2
ð1þ gÞ�1 þ ð1þ gÞ�

1
2:

Re(o�) 4 0 and Im(o�) = 0, the amplitude grows without
bound, indicating an unstable system that diverges.

As illustrated in Fig. 6, the complex growth rate o versus S
and g reveals the first four regimes discussed above. Moreover,
the trend qualitatively agrees with that of the continuum
filament model shown in Fig. 3(a). Based on the capacity of
the reduced-order model to capture the characteristic beha-
viours of the full model, we will further exploit the model to
understand the physical mechanisms underlying the destabili-
sation of the vertical viscosity gradient.

7.1 Physical mechanisms of destabilising vertical viscosity
gradient

Upon applying a vertical viscosity gradient g 4 0, the fluid
surrounding bead 2 (upper) becomes more viscous, whereas the
viscosity around bead 1 (lower) remains unchanged, because
bead 1 stays near its equilibrium state close to the reference
position ỹ = L/2. Naturally, we may wonder whether the stabi-
lisation results from an overall viscosity enhancement. Intrigu-
ingly, owing to the independence of S on the viscosity,
increasing the viscosity homogeneously by the same factor
(thus eliminating the gradient) does not alter the onset Sc of
instability. A uniform viscosity enhancement merely affects the
oscillation frequency. Consequently, we deduce that it is the
gradient of viscosity, rather than its overall magnitude, that
affects the stability, as we will explain below based on an
energetic point of view.

In the Stokes flow regime, the energy of the bead-spring
system comprises the elastic energy, E, of the springs, because
the kinetic energy of the beads vanishes. The temporal growth
rate of E is powered by the active force and simultaneously
dissipated by the viscous force, namely,

Ė = Pa � Pv, (17)

where Pa denotes the power of active force, and Pv the viscous
dissipation rate. They take the form

Pa = S sin(y1 � y2) _y1, (18a)

Pv ¼ 2F; (18b)

where F is the dissipation function derived in the Appendix.
Near the equilibrium where y1 E y2 { 1, they can be
approximated by

Pa E (1 + g)S( _y1 + _y2) _y1, (19a)

Pv E _y1
2 + (1 + g)( _y1 + _y2)2. (19b)

Eqn (19) allows us to analyse the linear stability from the
energetic perspective. Evidently, Pv is always positive, indicating
the consistent stabilisation due to the viscous dissipation. On
the other hand, the active power Pa can generally switch sign,
with Pa 4 0 corresponding to the destabilisation triggered by
the active force. Furthermore, eqn (19) implies that the active
force is the only destabiliser in this system, as indeed aligning
with the physical intuition.

The viscosity gradient g affects the stability by modulating
the (1 + g) – dependent Pa and Pv. In both cases, (1 + g) appears
as a prefactor of active force strength S in the former, and of a
portion of the viscous power in the latter. Hence, a positive
gradient g amplifies both Pa and Pv, whereas a negative g
decreases both.

In the limit of g - �1, the active power reduces to zero
whereas the viscous dissipation rate remains finite. This leads
to a stable system, irrespective of the active force strength. This
picture delineates the stabilising effect of a decreasing g,
particularly when it approaches its lower limit. However,
beyond this limit, eqn (19) fails to explicitly elucidate the
consequences of altering g on the system’s power balance and
stability. To address this gap, we analyse the numerical data for
S = 3 at g = �0.01, 0, and 0.01. Our findings, presented in Fig. 7,
depict the impact of varying g on the temporal evolution of Pa

and �Pv, as well as their summation Ė. Notably, increasing g
leads to a more pronounced amplification of the active power
Pa compared to the negative viscous dissipation rate �Pv, and

Fig. 6 Real and imaginary parts of the complex growth rate o versus the
dimensionless active force S with varying viscosity gradients g, obtained
from LSA (symbols) and simulations (lines) for the bead-spring model.
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concomitantly more intense oscillations in Ė. This observation
reflects, semi-phenomenologically, the destabilising effect of a
larger g.

8 Conclusions and discussion

In this work, we have numerically studied the spontaneous
oscillation of an anchored active filament in viscous fluids with
a linearly varying viscosity. The activity of the filament is
modelled by a point follower force or a uniformly distributed
force density. In both scenarios, our simulations reveal that a
positive viscosity gradient, extending from the filament’s base
to tip, facilitates its self-oscillation, namely, decreasing the
minimum activity required to trigger the elasto-hydrodynamic
instability. On the other hand, the viscosity gradient orthogonal
to the orientation of the filament does not alter the onset of
instability. However, by introducing forced symmetry breaking,
this orthogonal gradient enables asymmetric beating of the
filament, consequently generating a net fluid pumping along
the gradient.

The numerically demonstrated effects of viscosity gradients
on the self-oscillatory stability of the active filament are sup-
ported by our LSA. Numerical results and predictions of LSA
agree excellently near the instability threshold. To better under-
stand how viscosity gradients affect the instability, we have
used a reduced-order model. This model reproduces the var-
ious stability regimes identified in the original filament model
and provides analytical insights into the interplay between
the destabilising active force and the stabilising viscous dissipa-
tion. Specifically, by increasing the vertical viscosity gradient, we
observe an enhanced temporal oscillation in both the active
power and the viscous dissipation rate. This enhancement is
more pronounced for the former than for the latter, resulting in
a more intense oscillation of the elastic energy’s growth.

While our study is inspired by respiratory cilia in hetero-
geneous bodily fluids, it does not delve into the biological
implications within this specific context. As a highly complex

fluid, ASL is not only heterogeneous and layered,51 but also
features viscoelasticity52 and potentially shear-thinning
properties.53 The rheological behaviour of ASL is substantially
more complex compared to the Newtonian fluid model with
uniform viscosity gradient used here. Notably, a similar New-
tonian model with spatial viscosity variation has been
employed in the investigation of mucociliary clearance enabled
by beating cilia.53

To investigate the effects of viscosity gradients on ciliary
oscillation, we have employed the simplified follower force
approach, which may lack realism. For a deeper, biologically
pertinent understanding, future work should explore models of
ciliary oscillation driven by dynein motors.11–22

It is worth noting that this study resonates with the recent
investigations on microswimmers’ self-propelling in viscous
fluids with viscosity gradients.54–61 Consequently, a pertinent
inquiry is the behaviour of a spontaneously beating flagellum,
with or without a cell body, in environments featuring contin-
uous or sharp viscosity gradients. In the absence of the gradi-
ent, a single flagellum is expected to swim along a
spontaneously emerging direction depending on its initial
orientation. We hypothesise that introducing an external visc-
osity gradient could direct the flagellum to move along a
preferential direction. This hypothesis will be tested in our
future studies.
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Appendix
Dynamics of the bead-spring system

The governing equations of the bead-spring model are derived
based on the Euler–Lagrangian framework:62

d

d~t

@ ~L

@ _yi

	 

� @

~L

@yi
þ @

~F

@ _yi
¼ ~Qi; ði ¼ 1; 2Þ: (20)

Here, ~L represents the Lagrangian of the system ~L ¼ ~Tkin � ~V;

where T̃kin and Ṽ denote the kinetic and potential energies,
respectively. The generalised forces Q̃i are expressed as:

~Qi 	 ~Fa �
@~r2
@yi

; ði ¼ 1; 2Þ; (21)

where the follower force F̃a can be regarded as an external force
of the system.

The dissipation function ~F corresponding to eqn (20) is
defined as62

~F 	 1

2
~z1

d~r1

d~t

	 
2

þ1
2
~z2

d~r2

d~t

	 
2

¼ L2

8
~z1 _y12 þ

L2

8
~z2 _y12 þ _y22 þ 2 _y1 _y2 cos y2 � y1ð Þ
h i

:

(22)

This function remains non-negative, namely, ~F � 0; offers two
physical interpretations. Firstly, it represents the velocity-

Fig. 7 Power balance within an oscillation period T of the bead-spring
system, when the viscosity gradient g = 0.01 (dashed lines), g = 0 (solid
lines), and g = �0.01 (dotted lines) at S = 3. Here, Pa (red) and Pv (blue)
represent the active power and viscous dissipation rate, respectively.
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dependent potential, wherein the hydrodynamic force can be
computed as

~Fh;i ¼ �
@ ~F

@ _yi
; ði ¼ 1; 2Þ: (23)

Secondly, it characterises the rate of total energy dissipation,
specifically, the viscous dissipation rate P̃v in this system,

~Pv ¼ 2 ~F: (24)

Because the bead mass is neglected, the total kinetic energy

of the system is zero, T̃kin = 0. Hence, ~L ¼ � ~V ; with the
potential energy Ṽ written as:

~V ¼ 1

2
ky12 þ

1

2
k y1 � y2ð Þ2: (25)

Besides, the two generalised forces corresponding to y1 and
y2 are

~Q1 ¼ �Fa
L

2
sin y2 � y1ð Þ; (26a)

Q̃2 = 0. (26b)

In addition, the drag coefficients of both beads under the
viscosity gradient are:

~z1
z0
¼ 1� gþ g cos y1; (27a)

~z2
z0
¼ 1� gþ g cos y1 þ cos y2ð Þ: (27b)

Choosing k, 2k/L, and z0L2/4k as the characteristic energy,
force, and time, respectively, the dimensionless potential energy,
generalised force, and dissipation function are given as follows:

V ¼ 1

2
2y12 þ y22 � 2y1y2
� �

; (28a)

Q1 = S sin(y1 � y2), (28b)

F ¼ 1

2
1� gþ g cos y1ð Þ _y12 þ

1

2
1� gþ gðcos y1 þ cos y2Þ½ �

� _y12 þ _y22 þ 2 _y1 _y2 cos y2 � y1ð Þ
h i

:

(28c)

By substituting eqn (28) into the dimensionless equation of
eqn (20), we obtain eqn (14). The rate of work done by the
follower force is

Pa = Fa�
:r2 = Q1

_y1 = S sin(y1 � y2) _y1. (29)
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