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There and back again: bridging meso- and nano-
scales to understand lipid vesicle patterning†

Julie Cornet,a Nelly Coulonges,ab Weria Pezeshkian, c Maël Penissat-Mahaut,b

Hermes Desgrez-Dautet,d Siewert J. Marrink, e Nicolas Destainville,*a

Matthieu Chavent *bd and Manoel Manghi *a

We describe a complete methodology to bridge the scales between nanoscale molecular dynamics and

(micrometer) mesoscale Monte Carlo simulations in lipid membranes and vesicles undergoing phase

separation, in which curving molecular species are furthermore embedded. To go from the molecular to

the mesoscale, we notably appeal to physical renormalization arguments enabling us to rigorously infer

the mesoscale interaction parameters from its molecular counterpart. We also explain how to deal with

the physical timescales at stake at the mesoscale. Simulating the as-obtained mesoscale system enables

us to equilibrate the long wavelengths of the vesicles of interest, up to the vesicle size. Conversely, we

then backmap from the meso- to the nano-scale, which enables us to equilibrate in turn the short

wavelengths down to the molecular length-scales. By applying our approach to the specific situation of

patterning a vesicle membrane, we show that macroscopic membranes can thus be equilibrated at all

length-scales in achievable computational time offering an original strategy to address the fundamental

challenge of timescale in simulations of large bio-membrane systems.

1 Introduction

The physics of living systems is permanently confronted by the
multiplicity of the length- and time-scales of interest: from
the nanoscopic molecular scale where events occur below the
nano-second timescale, to the micrometric cellular scale where
microseconds or seconds are at stake. Different physical and
numerical techniques have been developed to study these
different scales, which are either quantum or classical, with
explicit or implicit water, including stochastic or hydrodynamics
techniques. But bridging these scales is still a difficult task as the
methods employed for each scale may not use the same physical
dynamics – e.g., molecular dynamics (MD) or Monte Carlo (MC) –
nor the same integration scheme – e.g., Newtonian or Brownian
dynamics. Thus, even though multi-scale workflows have been

developed recently,1–3 these types of approaches have been limited
in terms of the spatial/timing range they can span4 and they have
generally been constrained to ‘‘one spatial direction’’,5–8 from the
nanoscale to the meso/micro-scale or the other way around. Here,
thanks to recent advances in the field,9,10 we provide details of
and rationalize a method to fully bridge, forward and backward,
nano- and meso-scales in biomembranes (see Fig. 1).

We developed this approach in the specific context of lipidic
biomembrane patterning. With the recent in vivo, in vitro, and
in silico developments, it is now recognized that cell membrane
components are not homogeneously distributed, but are orga-
nized into functional lipid and protein sub-micrometric
domains.12–18 These nanodomains play fundamental roles in
cell biology, especially as they serve as platforms or micro-
reactors for many biological functions such as infections
(viral or bacterial), cell adhesion, transport of solutes, or signaling.
Thus, deciphering the formation and evolution of these domains
is essential to fully understand these fundamental biological
processes. Among the mechanisms proposed for their formation,
the role of spontaneous curvature induced by different membrane
constituents, with specific shapes, is the focus of particular
attention.19

For example, the glycosphingolipid GM1 has a bulky head
comprised of four monosaccharides resulting in this lipid
having an overall conical shape17,20 (see Fig. 1a). Present
predominantly in the outer cell membrane,21,22 this lipid can
act as a membrane anchor for different toxins, bacteria and
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viruses23,24 and plays important roles in several neuronal
processes and diseases, notably auto-immune ones.24,25

Although knowledge about its lateral organization remains an
active field of research,22 the properties of GM1 are thought to
be linked to its propensity to curve the membrane, ensuing
from its conical shape.21,26,27 To test this hypothesis on well-
defined model systems, giant unilamellar vesicles (GUVs) were
used to better characterize in vitro the relationship between
curvature generation and lipid domain formation.21,27–29

However, fully linking microscopy visualization, with an intrin-
sically limited resolution, to nanoscale partitioning of the
lipids, is still a challenge.

On the one hand, MD simulations are suitable tools to
understand how GM1 perturbs the lipid membrane organiza-
tion at the molecular scale, notably by curving the bilayer,30 or
by destabilizing lipid–lipid phase separation in multicompo-
nent membranes.22 On the other hand, describing the effect of
phase separation combined with intrinsic curvature at vesicular
or cellular scales makes the use of a much larger degree of
coarse-graining inevitable. Here, we illustrate how to bridge the
theoretical gap between Coarse-Grained Molecular Dynamics

(CG-MD) simulations and mesoscale (Meso for short) Monte
Carlo simulations31,32 focusing on vesicular systems, as shown
in Fig. 1. Using physically relevant concepts, we first show
which data to extract at the nanoscale, obtained with CG-MD
simulations, and how they can be used to parametrize the
mesoscale Monte Carlo model. We then go from the nano- to
meso-scale by integrating out microscopic degrees of freedom,
a non-trivial task due to renormalization issues,33 that we fully
take into account in this work. Then we show how this leads to
meaningful results for the mesoscale model, allowing one to
equilibrate membrane patterning at the scale of a whole vesicle,
and how this model can predict experimental data at micro-
metric scales. Finally, we explain how to scale back to CG
models to equilibrate the short length-scales, and decipher
the overall organization of large lipid domains down to the
nanoscale. We also discuss the feasibility of our approach and
the limitations inherent to each model when one passes from
one scale to another. This thorough approach to linking the
scales combined with careful explanations of how to extract
meaningful data will pave the way for further development of
fully integrated multiscale workflows.

Fig. 1 Principle of our multiscale modeling scheme for lipid membranes. (a) The lipid models used in the CG simulations. The GM1 model corresponds
to the monosialotetrahexosylganglioside and cholesterol model,11 the DIPC model corresponds to 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and
the DPPC model corresponds to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The most hydrophilic parts of the lipids are represented in darker colors
while the lighter colors depict the more hydrophobic parts of the models. The PO4 and GM5 beads used to define the membrane surface are outlined on
the different lipids (see the methods section). (b) From the CG molecular dynamics simulations (upper-left panel), we infer the physical parameters
required by the mesoscale Monte Carlo model (right panel) consisting of a bi-phasic tessellated vesicle. The extraction of these parameters is illustrated in
the central panels. They are: (i) two dynamical parameters relating the time-scales of lipid diffusion in the membrane plane, and transverse membrane
fluctuations; (ii) lipid domain boundary fluctuations from which is inferred the line tension between both lipid phases; (iii) the membrane thickness
difference between phases, from which bending moduli ratio can be inferred, and (iv) the spontaneous curvature of the Lo phase induced by insertion of
GM1 in the upper leaflet. Conversely, the Meso-to-CG backmapping at the full vesicle scale (lower-left) is illustrated in the lower-middle panel.
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2 Methods
2.1 Coarse-grained (MARTINI) molecular
dynamics simulations

We use the CHARMM-GUI MARTINI Maker34,35 to generate
43 � 43 nm2 lipid bilayer systems. The membrane patches
are surrounded by about 4 nm of water on each side. Ions are
added to neutralize the system. We study a mixture of C16:0
dipalmitoyl PC (DPPC), C18:2 dilinoleoyl PC (DLiPC), also
named DIPC in the MARTINI force field, and cholesterol with
a concentration ratio of 30 : 58 : 12 and with varying concentra-
tions of C(d18:1/18:0) N-stearoyl-D-erythro (GM1) in the upper
leaflet (given in mol mol�1) (see Table 1).

The CG-MD simulations are performed using the MARTINI
v2.236 force field in the NPT ensemble and run with GROMACS
2016 software.37 The temperature is set to 310 K at which Lo and
Ld phases coexist for these lipid mixtures. We use the velocity
rescaling thermostat38 coupled to a semi-isotropic Parinello–
Rahman barostat39 with a pressure of 1 bar. The standard time
step of 20 fs is used for all simulations. All systems are
equilibrated following equilibration steps as described in the
Membrane Builder workflow.40 For production, all the planar
systems are simulated for 20 ms to ensure convergence.

The analysis scripts are written in Python3 using MDAna-
lysis packages.41 In particular, we use the LeafletFinder tool
that allows identifying upper and lower leaflets.

2.2 Mesoscale model

The mesoscale model used in the present work was developed
and validated previously by one of our groups. We provide an
overview of the model in this section, and the interested reader
can refer to previously published work for further details.42,43

2.2.1 Discretization of the membrane model. We discretize
space, time, and accordingly, the calculation of the system free
energy. We consider the initial vesicle as a tessellated sphere
composed of N vertices.42 An initial icosahedron is tessellated
iteratively. This leads to accessible values for the total number
of vertices N = 10 � 4k + 2.44 Each vertex represents a small
patch of one of the two species (delineated to the Voronoı̈ cell
associated with the vertex). The real size of this patch depends
on the average vesicle radius R. In the case of weak shape
deformations, the area A0 of a patch is approximately A0 C
4pR2/N. For example, for N = 2562 sites (k = 4 iterations), in a
small vesicle of radius R = 100 nm, a patch would contain about

100 lipids. Two neighboring vertices are separated by the
average lattice spacing

a ¼ 8pffiffiffi
3
p
� �1

2 Rffiffiffiffi
N
p : (1)

2.2.2 Helfrich free energy. In the continuous case, the
Helfrich elastic free energy is

HHelf ¼
1

2

ð
kð2H � CÞ2dS þ sA (2)

where k is the (local) bending elastic modulus, s is the surface
tension and A is the total vesicle area. 2H is the total curvature,
i.e. the sum of the two principal curvatures, and C is the (local)
spontaneous curvature imposed by the molecular species. We
do not account for the Gaussian curvature in this model. Using
the Laplace–Beltrami operator45 for the curvature term, the
discrete elastic free energy reads

HHelf ¼
1

2

X
i

ki 2Hi � Ci½ �2Ai þ s
X
i

Ai (3)

where Ai is the area associated with a vertex (Ai ¼ A0 at the
start). The total curvature 2Hi is obtained as the signed norm of
the Laplace–Beltrami operator Ki

Ki ¼
1

2Ai

X
j

ðcot aij þ cot bijÞðri � rjÞ (4)

Here ri is the position of vertex i and the sum is taken over its
first neighbors j and the angles aij and bij are the angles of the
two triangles sharing the edge (ri, rj) and opposite to this
edge.42,43 Both ki and Ci might be vertex-dependent in the case
of bi- or multi-phasic systems, see below. We use the reduced
membrane tension ~s = sR2/(kBT).

The vesicle volume V is fixed close to the initial volume V0 by
a hard quadratic constraint. Hence the following energy term is
added to the Helfrich energy

HV ¼
1

2
Kv

V

V0
� 1

� �2

(5)

where Kv = 2 � 106 kBT. In contrast, the total vesicle area is
constrained by a soft constraint and controlled by the surface
tension s.

2.2.3 Species characteristics and interactions. We use the
discrete two-dimensional Ising (or lattice-gas) model to
describe the Lo/Ld binary mixture.46 The fact that membrane
lipid binary mixtures belong to the 2D Ising universality class
has been experimentally checked in ref. 13. The Ising model
Hamiltonian reads

HI ¼ �JI
X
hi;ji

sisj (6)

where si = �1 and the sum is done on nearest-neighbor vertex
pairs. The tessellation of the sphere that we use is a triangular
lattice, with each vertex having 6 neighbors, except for the 12
vertices originating from the original icosahedron, which have

Table 1 Summary of the CG systems simulated (see also Fig. 3). The
vesicle has the composition (DPPC–DIPC–Chol + 15% GM1). Durations are
in ms

System Particles Duration

DPPC–DIPC–Chol 167 409 20
DPPC–DIPC–Chol + 2.5% GM1 279 234 20
DPPC–DIPC–Chol + 5% GM1 181 285 20
DPPC–DIPC–Chol + 7.5% GM1 279 981 20
DPPC–DIPC–Chol + 10% GM1 181 756 20
DPPC–DIPC–Chol + 15% GM1 207 647 20
Vesicle 3 487 094 10
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only 5 neighbors. The lattice-gas composition, fi = 0 or 1, on
any vertex i of the tessellated lattice is related to its ‘‘spin’’ si

through fi = (1 + si)/2. The Ising constant JI 4 0 measures the
strength of short-range affinities between membrane constitu-
ents. In our case, we work at a fixed

P
i

si and thus at a fixed

concentration f ¼
P
i

fi=N and temperature T. Varying the

temperature between the different simulations of the Ising
model amounts to varying the Ising coupling JI. In our simula-
tions we chose to fix the temperature T and to tune the value of
JI. Its exact critical value where the phase transition takes place
is JI,c = (ln3/4)kBT C kBT/3.64 on an infinite triangular lattice,47

which means that if JI o JI,c (resp. JI 4 JI,c), then the system is
in the disordered (resp. ordered) phase.

The local spontaneous curvature Ci = C(fi) used in eqn (3)
depends on the local concentration fi and can take two values
in the mesoscopic model, C0 = 2/R for the Ld phase and Cvesicle

Lo+GM1

for the Lo + GM1 one (see below). Similarly, the local bending
modulus ki = k(fi) can take two values, kLd and kLo. In this
work, for simplicity, kLo does not depend on the GM1 concen-
tration in the simulations.

We used the mesoscale code developed in ref. 42 and 43 to
simulate fluctuating vesicles. At each Monte Carlo step, two
local movement attempts are applied to randomly chosen
vertices: (1) a single vertex undergoes a small radial displace-
ment dr according to the Metropolis rule, which locally modi-
fies the elastic energy; (2) the compositions fi of two
neighboring vertices are swapped, modifying the interaction
energy as well as the elastic energy through the elastic para-
meters k(fi) and C(fi) above. Since we consider a system with a
conserved order parameter f, we use the Kawasaki algorithm.48

Contrary to alternative models in the spirit of the Dynamic
Triangulated Surface (DTS) one,1,33,49–52 edge flips are not
allowed in the tessellated system and vertex moves are only
radial, and consequently no constraint on edge lengths needs
to be applied in the present model. In compensation, our
model is valid in the vesicle quasi-spherical regime only. For
more information refer to ref. 43 in which the whole simulation
scheme is described and discussed in detail.

2.3 Extraction of line tension from domain boundary fluctuations

As shown in Fig. 2, we use a new discretization of the plane, in the
form of a ‘‘dartboard’’ made of nc concentric circles, centered on
the domain geometric barycenter and separated by dr = 2 nm, as
well as na = 20 angular sectors. In each box of the as-obtained
‘‘dartboard’’, we use the same majority rule as in the square mesh
(see Section 3.1.2 below) so as to identify the boxes belonging to
the Lo domain and those belonging to the Ld surrounding phase.
Starting from the center and following the rays, we then identify
the boundary where at least two successive Ld boxes (or the last
circle) are encountered, so that small bubbles of the Ld phase are
not considered as being part of the boundary. This defines a
discrete version of the domain boundary r(y).

We then use eqn (3) from ref. 53 to directly link the power
spectrum of the boundary fluctuations to the line tension l of

the mixture. However, we use a different convention for the
Fourier coefficients:

un ¼
1

2p

ð2p
0

uðyÞe�niydy (7)

that we estimate by discretizing the integral. Here u(y) is
defined by r(y) = R0[1 + u(y)]. It can then be shown that

unj j2
D E

¼ kBT

2lpR0ðn2 � 1Þ (8)

in equilibrium, for n 4 1. The mode n = 1 corresponds to a
translation of the whole domain and its value is non-physical as it
simply reflects the error possibly made when identifying the domain
barycenter. In this equation R0 is the equivalent radius of a non-
fluctuating domain of area pR0

2. In principle, it is different from the

average domain radius hrðyÞi ¼ R0 1�
P
n4 0

hjunj2i
� �

oR0.53 In

practice, however, R0 is close to hr(y)i for the line tension values
at play here and we identify both.

2.4 Relationship between the CG extracted parameters and
the mesoscale model ones

In order to bridge the two modeling scales, the coarse-grained
and mesoscale ones, we need to establish the link between the
parameters that we measure in the CG-MD simulations with the
input parameters of the mesoscale description. This can lead to
technical difficulties, as outlined below.

Due to renormalization issues,33 the Ising parameter
depends on the coarse-graining level because it must account
for the microscopic degrees of freedom integrated out in the
coarse-graining process. We denote by
� a the simulation lattice spacing at the mesoscale, i.e. the

average length-size of the elementary tessellation triangles, see
eqn (1).
� l0 B 1 nm the typical distance between lipids at the

molecular scale,

Fig. 2 Principle of the polar discretization of the Lo domain in order to
locate its boundary (dark blue line) with a (discrete) polar function r(y). The
‘‘dartboard’’ is divided into nc = rmax/dr concentric circles and na regularly
spaced angular sectors, thus defining nc � na boxes in which the majority
rule is applied to determine whether they belong to the Lo (yellow) or the
Ld (light blue) phase.
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� JI,0 the Ising interaction parameter at the molecular scale,
of critical value JI,c. It is directly related to the Flory parameter w
of the binary mixture.54

We assume that the interaction network at the molecular
scale can be assimilated to a triangular lattice, due to the
symmetries of bidimensional liquids. Close to the critical point,
one has

JI � JI;c ¼
a

l0
JI;0 � JI;c
� �

(9)

thus relating the two scales.33 For this lattice kB(Tc � T) = (4/
ln3)(JI,0 � JI,c) close to Tc, where Tc can be measured either in
experiments or in molecular dynamics simulations. After mea-
suring the line tension l as explained in the text, we can have
access to the Ising parameter at the molecular scale. Indeed,
close to the critical point, l depends algebraically on JI,0 � JI,c

and vanishes at the critical point. Renormalization arguments
also show that both quantities are in fact proportional for the 2D
Ising model universality class. More precisely,

l ¼ 4
ffiffiffi
3
p

l0
ðJI;0 � JI;cÞ: (10)

close to JI,c. The prefactor depends on the lattice and is equal to

4
ffiffiffi
3
p

on a triangular lattice.55 Due to eqn (9), we thus also have

l ¼ 4
ffiffiffi
3
p

a
ðJI � JI;cÞ: (11)

This will enable us below to calculate the Ising parameter JI of the
mesoscale simulations through the measurement of the line
tension l in the CG simulations. Note that this relationship (11)
holds independently of the value of the Ising parameter JI,0 at
the molecular scale that we will not need to be evaluated. Its
value can be inferred from the measurement of l and eqn (10) if
needed.

The analysis of bilayer simulations at the molecular level thus
provides realistic membrane parameter values that can be
injected into the mesoscale model. In this way, the simulations
can then be tuned in order to tackle different biologically
relevant systems at large length and time scales. Note that the
bending moduli k depend only logarithmically on the scale a,56

and we thus consider them as a constant for the sake of
simplicity.

2.5 Backmapping from the mesoscale to the coarse-grained
scale

The mesoscale model can be backmapped to CG resolution
(Martini 2.2) based on the TS2CG approach of ref. 9. We follow

Fig. 3 Top view of CG-MD membrane systems with different molar concentrations of GM1 at 20 ms. The membrane phase separates in all the systems
forming a Lo domain enriched in DPPC, GM1, and cholesterol surrounded by a Ld domain enriched in DIPC. Due to the boundary conditions, the Lo
domain is sometimes visually divided into two parts but it is a visualization artefact. GM1 lipids are depicted in yellow, DPPC in red, DIPC in blue, and
cholesterol in green.
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the different steps presented in the TS2CG tutorial (https://
cgmartini.nl/index.php/2021-martini-online-workshop/tutorials/
558-9-ts2cg). Briefly, the last frame from the mesoscale model is
saved in a dynamic triangulated surface (DTS) file format read-
able by the TS2CG program. In this file, both Lo and Ld domains
were defined as well as the overall shape of the vesicle using
labeled triangles. TS2CG inputs such as lipid concentrations and
Area Per Lipid (APL) are extracted from the previous CG simula-
tion of a planar system with 15% of GM1. These values are
presented in Table 2.

We perform 1000 steps of standard energy minimization
and 5000 steps of molecular dynamics runs with lipid head-
group positions restrained to relax the lipid chains. We perform
these steps without solvent particles using the Dry Martini force
field.57 Next, the vesicle membrane is solvated by propagating
an equilibrated Martini water box in the system and removing
any water particle within a certain cutoff from the membrane
particles as done previously.58

The solvated system is then equilibrated following several
steps of equilibration as carried out for the planar systems
(see above). For these steps, the constraints beads, called Wall, are
present to keep the overall shape of the vesicle (see ref. 9 for more
details). Then, we remove the wall beads and performed 10 ms of
production using the same thermostat and barostat parameters as
for the planar systems (see above) with isotropic pressure coupling.

In equilibrated vesicles, the two leaflets do not have the same
area for geometrical reasons and thus have different molecule
numbers. In experiments on vesicles, equilibration is a rather slow
process ensured by thermally activated lipid flip-flops. Such flip-
flops cannot occur at the rapid simulation timescale, so that one
must take care of filling in each leaflet with the appropriate
molecule number. This is guaranteed by TS2CG.

3 Results
3.1 Nanoscale analysis of lipid phase separation and GM1
partitioning

We have performed CG-MD simulations of 43 � 43 nm2 bilayers
made of a DPPC–DIPC–Chol mixture with varying molar con-
centrations of GM1 molecules in the upper leaflet from 0% up to
15% (see the methods section). The duration of these simula-
tions is set to 20 ms. The DPPC–DIPC–Chol mixture allows these
systems to undergo phase separation where a phase enriched in

DPPC and cholesterol molecules called the liquid-ordered (Lo)
phase and another phase enriched in DIPC, the liquid-
disordered phase (Ld) coexist,22,59–61 as displayed in Fig. 3.

3.1.1 Convergence to equilibrium depends on GM1
concentration. In order to quantify the phase separation degree
and its evolution with time, we compute the mean number of
neighbors of the same species for each lipid throughout the
simulation and plot it over time. Indeed, in a binary mixture
controlled by short range interactions, the average energy per
molecule is directly directed to the average composition of its
immediate neighborhood. We use a cut-off distance d = 13 Å
to define the neighborhood zone, in order to have about six
neighbors per molecule in equilibrium, as in a simple two-
dimensional liquid. Without GM1, this observable reaches a
plateau shortly after 5 ms (Fig. 4a). Its value is lower than the
average number of neighbors since a finite fraction of mole-
cules have some neighbors of a different species. To compare
systems with different concentrations of GM1, we fit this curve
with a single exponential hn(t)i = A � Be�t/t as shown in Fig. 4b.
We measure relaxation times t on the order of a few ms. This

Table 2 Input parameters used by TS2CG (see also Fig. 3). APL means
Area Per Lipid, in nm2

Lipid type Upper leaflet Lower leaflet APL

Ld domain
DPPC 0.06 0.06 0.68
DIPC 0.91 0.91 0.77
CHOL 0.03 0.03 0.5

Lo domain
DPPC 0.40 0.68 0.68
DIPC 0.04 0.04 0.77
CHOL 0.28 0.28 0.5
GM1 0.28 0 0.7

Fig. 4 The mean number of neighbors and convergence to equilibrium as
a function of time. (a) The mean number of neighbors of the same species
for each lipid over simulation time in the DPPC–DIPC–Chol (30 : 58 : 12)
mixture, without GM1 (red). In green is represented the total number of
neighbors, whatever their nature. The cut-off distance d = 13 Å was used
to determine the neighbors of each lipid. (b) The mean number of
neighbors of the same species fitted with hn(t)i = A � Be�t/t. This fit allows
one to extract the typical equilibration time t. One obtains t of 2.8, 3.6, 6.6
and 5.6 ms for GM1 fractions in the upper leaflet of 0 (orange, the same as
the red curve in (a)), 5% (red), 10% (purple) and 15% (blue) respectively.
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relaxation time increases with the concentration of GM1,
suggesting that the presence of GM1 slows down the phase
separation process as observed previously.22 Thus, these results
suggest that our systems can phase separate in between 5 ms
and 10 ms as a function of the GM1 concentration.

3.1.2 Identification of Lo and Ld phases. Once phase-
separated, we can identify the different phases by discretizing
the membrane patches into a mesh of N = L � L boxes with
L = 15 (each box is then of side dx C 3 nm and contains at least
one lipid). For DIPC and DPPC lipids, each phospholipid
position is identified by the coordinates of the PO4 bead
corresponding to the phosphate group while the GM1 positions
are identified by the coordinates of the GM5 bead (Fig. 1a). The
latter is located at an average depth similar to the phosphate
groups in the upper leaflet as the two first sugar rings of GM1
can be deeply embedded in the interfacial region of the
membrane.22 The local composition of a box can then be
computed as the ratio of any molecules to the total number
of molecules in the box (Fig. 5a and b). For DPPC molecules, the
fraction of molecules in all boxes is sampled over all simulation
frames and the threshold was set to a DPPC fraction of 0.6,
where the composition distribution shows a marked minimum
(Fig. 5c). The composition ratio is then regularly computed in
each box along the course of the simulation and binarized with
the threshold defined above so that the two phases are identi-
fied (Fig. 5d). We can now compute the observables of interest
as a function of the local composition in the mesh and measure
their correlations (see the ESI,† Section D).

3.1.3 Localization of GM1. To begin with, we measure the
relative ratios of GM1 molecules that are located in the Lo and
Ld phases and at the Lo phase boundary, weighted by the
corresponding area ratios (Fig. 6). We compute for instance the
number of GM1 molecules in the Lo phase over the Lo domain
area and divide it by the total number of GM1 molecules over
the leaflet area. This confirms that in our simulations, the GM1
molecules preferentially partition into the Lo phase as observed
experimentally in ref. 26. We conduct the same measurement
for the GM1 molecules located in the Lo domain boundary zone
in order to see whether GM1 is preferentially located at the
boundary. Our results indicate that they are roughly homoge-
neously distributed in the domain (see also Fig. 3). Thereafter,
the ensuing curvature is thus assumed to be quasi-uniform in
the domain.

3.2 Calculation of parameters extracted from CG-MD
simulations to accurately design the mesoscale model

Initial calculations allow us to calculate parameters extracted
from CG simulations to be used as inputs for the mesoscale
model (see the methods section). They are:

1. The bending moduli of both phases (kLd and kLo).
2. The two dimensionless spontaneous curvatures of the Ld

and Lo + GM1 phases, denoted by RC0 and RCvesicle
Lo+GM1.

3. The Ising parameter JI (related to the line tension between
both phases).

4. The relative timescales associated with diffusion in the
membrane plane on the one hand and transverse deformation
modes on the other hand, if one is interested in dynamical
properties.

We explain below how to extract from CG simulations the
values of these parameters, which are intrinsic to the molecular
species at play (and their phase state through temperature). As
the system needs at most around 8 ms to equilibrate (see
Fig. 4b), the following measurements are performed after
8 ms, for a duration of 12 ms (unless stated otherwise) so that
phase separation is essentially reached.

Fig. 5 Lo/Ld discretisation of the CG membrane model. (a) Illustration of
the spatial distribution of the different lipid species for the last frame of the
planar CG system (see Fig. 3). Each molecule position is identified by the
position of one bead in the leaflet plane (see the text). DPPC is shown in
yellow, DIPC in blue and GM1 in green. (b) Examples of analysis performed
for a DPPC–DIPC–Chol (30 : 58 : 12) mixture with 10% GM1 in the upper
leaflet (using a different snapshot as compared to in (a)). The bilayer is
divided into a 15� 15 mesh. (c) The composition distribution (fraction of
DPPC in boxes of the bilayer, measured throughout the simulation time).
(d) The composition repartition matrix in terms of DPPC ratio is binarized in
Lo (yellow) and Ld (blue) boxes based on the composition distribution
presented in c and according to the majority rule described in the text.

Fig. 6 Relative ratios of GM1 molecules located in the Ld (blue) and Lo
(yellow) phases and at the Lo phase boundary (green) weighted by the
corresponding area ratios. DPPC–DIPC–Chol (30 : 58 : 12) mixture with
10% GM1 in the upper leaflet.
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Two other parameters are important for membrane
patterning:19,43,62

� The membrane surface tension s
� The area fraction of each phase (f is the fraction of the Lo

+ GM1 phase and 1 � f the fraction of the Ld phase, both
conserved through time)

These extrinsic parameters depend on the experimental
conditions and are not extracted from the CG simulations.

3.2.1 Determination of bending moduli of both phases jLd

and jLo. The bending modulus values of both Ld and Lo
phases, respectively kLd and kLo, must be set as parameters in
the mesoscale model.

Generically, ref. 63 has shown how the bending modulus k
of a bilayer made of a homogeneous lipid mixture can be
inferred from the spectral density of the membrane thermal
shape fluctuations in CG simulations using the Helfrich model
for membranes. In our CG simulations, the surface tension was
set to s = 0, to make the determination of k easier. However, the
continuous Helfrich model ignores short-wavelength molecular
scales where individual lipids jiggle out of the local membrane
plane, forming some ‘‘protrusions’’.64–66 Assuming that protru-
sions and Helfrich fluctuations are independent random vari-
ables, one obtains the spectral density of fluctuations in the
Fourier space67

hjĥðqÞj2i ¼ L2kBT
1

kq4
þ 1

sprq2

� �
(12)

where spr is the protrusion tension, measured to be spr B
0.1 J m�2 on simple coarse-grained numerical membrane
models.64,65 Protrusions dominate the spectral density of fluc-

tuations for wavevectors q �
ffiffiffiffiffiffiffiffiffiffiffiffi
spr=k

p
, i.e. at wavelengths 2p/q r

4 nm when kB 10 kBT. Thus one must use large enough system
sizes L to reliably measure k, as well as long simulation times to
reduce statistical errors.

We performed these measurements on our own CG simula-
tions of Ld and Lo membranes, by using the approach in
ref. 63. Fitting with eqn (12), we estimated the values of k for
both systems, kLd = 13 kBT for the Ld phase, and kLo = 25 kBT for
the Lo one (see the ESI,† Section B, for further details).

3.2.2 Determination of the spontaneous curvature of the
Lo phase. In order to compute the local curvature of the upper
leaflet for the different phases of the CG model, as the
membrane exhibits only small bending, we approximate the
total curvature by using a 2D (discrete) Laplacian ~D, using
the four nearest neighbors, applied on the height field:

~Dhk;‘ ¼
hkþ1;‘ þ hk�1;‘ þ hk;‘þ1 þ hk;‘�1 � 4hk;‘

dx2
(13)

Here hk,c is the height of the membrane on the box of integer
coordinates (k,c) on the 15 � 15 mesh defined above, endowed
with periodic boundary conditions. Note that we choose to
measure the curvature of the upper leaflet because we are
primarily interested in the curvature generated by GM1 inser-
tions in this leaflet.

The Lo phase, where GM1 molecules are mainly inserted, as
shown in Fig. 6, displays a higher curvature than the Ld one

(Fig. 7a and b). This Lo domain curvature increases with the
addition of GM1 molecules (Fig. 7c). We notice that for 0% of
GM1, the Lo domain has a weak curvature. This upper leaflet
weak curvature results from the difference in thickness in
between the Lo and Ld domains and the fact that the leaflet
position is identified through the positions of the PO4 and
GM5 beads (see above).

Note that because of the periodic boundary conditions, the
total curvature averaged on the whole system mathematically
vanishes when it is approximated by a Laplacian. Thus if the Lo
phase is curved, the Ld phase must be curved as well in the
opposite direction, so that the average curvature is zero (Fig. 7d).

To quantify how GM1 molecules affect upper leaflet curva-
ture, we plot (the absolute value of) the difference in curvature
Cplanar

Lo+GM1 between the Lo domains enriched in GM1 and the
small reference curvature (|C| C 0.0087 nm�1) of the Lo
domain without GM1 insertions (Fig. 8). The curvature values
are averaged from 10 to 20 ms on the measurements shown in
Fig. 7c to ensure that they are extracted from equilibrated
domains. We find that Cplanar

Lo+GM1 depends linearly on the GM1
fraction as

Cplanar
Lo+GM1 C 0.5 fGM1 nm�1 (14)

This linear law is in agreement with the results of ref. 30
finding a comparable slope in their MD simulations, even
though they have used another type of coarse-grained model.

Below, we want to model non-planar systems (i.e. vesicles)
with our mesoscale model. We denote using C0 the sponta-
neous curvature of the Ld phase. In the present case, C0 = 2/R is
set by the vesicle average radius R in equilibrium, to accom-
modate the area difference between both leaflets.68 We recall
that we also denote by Cvesicle

Lo+GM1 the spontaneous curvature of
the Lo + GM1 phase on a vesicle. On a vesicle, we can also
assume that before insertion of GM1, the Lo phase has the
same curvature C0 = 2/R, for the same reason as for the Ld
phase, so that the GM1 curvature comes in addition to C0 as
examined in detail in ref. 68. Thus Cvesicle

Lo+GM1 = C0 + Cplanar
Lo+GM1

where Cplanar
Lo+GM1 is given in eqn (14). A more thorough discussion

about this relationship is provided in the ESI,† Section A.
3.2.3 Determination of the Ising parameter through

measurement of the line tension. As explained in the Methods
section, one can relate the line tension l of the boundary
between the Lo and Ld phase extracted from CG-MD simula-
tions and the Ising parameter JI of the mesoscale model. This
relationship ensues from the critical behavior of the mixture
near its phase transition. Close enough to the critical value JI,c,
we have (eqn (11)):

l ¼ 4
ffiffiffi
3
p

a
ðJI � JI;cÞ (15)

from which it follows that

JI ¼ JI;c þ
al

4
ffiffiffi
3
p ¼ ln 3

4
kBT þ

al

4
ffiffiffi
3
p (16)

The measurement of l thus gives access to the mesoscale Ising
parameter JI. Note that when one goes away from JI,c, non-linear

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
15

/2
02

5 
7:

14
:4

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00089g


5006 |  Soft Matter, 2024, 20, 4998–5013 This journal is © The Royal Society of Chemistry 2024

subdominant terms come into play.33 We assume that this
approximation provides reasonable estimates of JI in the pre-
sent case. Analytical47,55 or numerical solutions can also be
used far from the critical point.

To measure the line tension l at the boundary of Lo and Ld
phases in a mixture devoid of GM1, we measure the fluctua-
tions of the Lo domain boundary. We use the same method as
the one applied to fluorescence microscopy images in ref. 53 or
in mesoscale simulations.69 We use the polar discretization
(detailed in the methods section) in order to identify the
location r(y) of the Lo + GM1 domain boundary, the origin of
coordinates being the domain barycenter. We then apply the
DPPC fraction threshold of 0.6 (Fig. 5c) to delineate the
boundary between Lo and Ld domains and calculate the Four-
ier coefficients un of u(y), defined by r(y) = R0[1 + u(y)], using a
fast Fourier transform algorithm. Finally, we use eqn (8) to
relate the power spectrum of the boundary fluctuations to the
line tension of the domain boundary h|un|2i against 1/(n2 � 1).
We fit only the first long wavelength modes to avoid discretiza-
tion effects, as shown in Fig. 9. The fitted line tension is l C 3
pN for a DPPC–DIPC–Chol (30 : 58 : 12) mixture devoid of GM1
at T = 310 K, of the same pN order of magnitude as the
experimental values.19

We also measured how l depends on the GM1 concentra-
tions, as shown in Table 3. In agreement with the CG simula-
tions in ref. 21, l decreases when the GM1 concentration
increases above 5%, resulting in an increased width of the
phase boundary, which appears less regular in Fig. 3. Indeed,
the width of the phase boundary is set by the spatial correlation
length x, itself inversely proportional to l in the 2D Ising
universality class47 where lx = kBT.

3.2.4 Determination of vertex-composition diffusion time-
scale. Here, we focus on dynamic questions that do not concern
equilibrium properties of phase separation. Indeed conver-
gence to equilibrium only relies on the detailed balance
condition,48 and not on the exact values and physical relevance

Fig. 7 The local curvature imposed by GM1 molecules. (a) The local
curvature (right, in nm�1) against the lipid phase (left). (b) The local
curvature measurement through time, averaged for the Lo and Ld phase
separately, in the upper leaflet for a DPPC–DIPC–Chol mixture with 7.5%
GM1 in the upper leaflet. (c) Curvature of the Lo phase from 0 to 10% GM1
in the upper leaflet (by increments of 2.5) from orange to purple. This
curvature is negative because of our sign convention in eqn (13). (d) Side
views of the different systems at 20 ms.

Fig. 8 The correlation between curvature and GM1 concentration. The
difference in curvature Cplanar

Lo+GM1 between the Lo domain with GM1 and the
reference Lo domain without GM1 in planar geometry. The curvature
values are averaged on the last 10 ms. The DPPC–DIPC–Chol
(30 : 58 : 12) mixture with a growing fraction of GM1 in the upper leaflet,
and the linear fit given in eqn (14) (dashed line).
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of the Monte Carlo transition rates in the simulation frame-
work. A reader interested only in equilibrium issues can skip
this section.

In the mesoscale model, the rate at which vertex-composition
flips (Kawasaki dynamics, see the methods section) are
attempted must be set by a relevant timescale dt at the length
scale a, the average lattice spacing. This is related to the
diffusion coefficient D of the minority species in the bulk of
the majority phase at this scale, through the relationship a2 =
4Ddt. Here, we also show how D can be inferred from the
measurement of the line tension l in CG-MD simulations.
However, the effective value of D also depends on the meso-
scopic length scale a, as we discuss it now. Note that D cannot
simply be set as the diffusion coefficient of molecules in the
bilayer because a membrane patch at the mesoscale can be a
collection of dozens of lipids, or even more. Its diffusive proper-
ties are the fruit of the collective behavior of its interacting
elementary constituents, themselves in interaction with the
surrounding fluid.

Domain boundary fluctuations are known to be a relevant
probe of diffusion in phase-separated membranes.53,70,71

A notorious difference can already be noticed between our
mesoscopic modeling on the one hand and MD simulations
or experiments on the other hand. While hydrodynamic inter-
actions are absent in the former due to the construction of our
MC simulations, they are intrinsically present in the latter
where the solvent is explicitly simulated (note however that
accounting for hydrodynamic interactions in Monte Carlo
simulations in general72 and in membrane modeling in parti-
cular is feasible in principle,73,74 at least as far as homogeneous
membranes are concerned). This implies different scaling laws
of the timescales as a function of the length scales.

Ref. 70 and 71 thoroughly address the role of hydrodynamic
interactions in this context, in the frame of the Saffman–
Delbruck theory. One can define a typical length, the Saffman–
Delbruck length LSD = hZm/(2Zf), where Zm and Zf are the
viscosities of the membrane and the fluid, respectively, and h
is the membrane thickness. LSD is on the order of 100 nm to 10
mm in experimental systems. On length scales below LSD, 2D
hydrodynamics inside the membrane dominates, while above
it, 3D hydrodynamics in the surrounding solvent dominates.
Considering a boundary fluctuation wavelength L, it follows that
its relaxation time scales as t(L) pL2 if Lc LSD and t(L) pL if
L{ LSD. In the ESI,† Section F, we properly define the relaxation
times and we discuss these relationships. Below, we focus on
(nanometric) values of L { LSD at the molecular scale, so that

tMDðLÞ ¼
2hZm
pl

L (17)

where l still denotes the line tension.
Our choice to set the value of D in mesoscale simulations

consists in identifying the molecular and mesoscopic time
scales at the smallest wavelength accessible in the mesoscale
model, namely L = 2a.‡ This means that we assume here that
hydrodynamic interactions are at play up to the length scale a
only. Since hydrodynamics interactions are known to enhance
dynamics75 it implies that the larger a, the faster the dynamics
at large scales, thus the larger effective D, as we quantify it now.

In the mesoscale simulations where no hydrodynamic inter-
actions are at play and where the order parameter is conserved,
it can be demonstrated76 that the relaxation time at wavelength
L is related to the diffusion coefficient D through

tMesoðLÞ ¼ A
l

DJI
L3 (18)

where A is a dimensionless constant that was determined
numerically on the triangular lattice, A C 0.1. The identity
tMD(2a) = tMeso(2a) finally sets the value of the diffusion
coefficient D, and therefore the timescale dt = a2/(4D) under
interest. Here we need the value of JI, which also depends on a.
It can be estimated through the approximation in eqn (16). We
eventually get

D ’ 2pA
l2a2

hZm

4

kBT ln 3þ al=
ffiffiffi
3
p (19)

As expected, this diffusion coefficient D in the membrane plane
depends on a. It also depends on l that can be measured using
CG-MD simulations, as explained above. We emphasize that
this relationship simply reflects our choice to get the timescales
at length scale 2a to coincide. In this expression, the line
tension l expresses the role of the interactions between the
molecular constituents.

Fig. 9 The power spectrum of the Lo–Ld boundary in a DPPC–DIPC–
Chol mixture without GM1 from which the line tension l is extracted
through a fit with eqn (8) (dashed line).

Table 3 Measured line tensions l as a function of the GM1 concentration
in the upper leaflet

% GM1 0 2.5 5 7.5 10 15
l (pN) 3.0 3.0 5.0 2.4 1.2 0.8

‡ Indeed, the circumference of a circular domain of radius R0 is discretized into
NR I 2pR/a elementary edges of the sphere tesselation. The discrete Fourier
transform of the boundary fluctuations is written with Fourier coefficients un

associated with wavelengths 2pR/n (see the methods section), n running from
�NR/2 + 1 to NR/2. Hence the smallest accessible wavelength is 2pR/(NR/2) = 2a.
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Given that dynamics are known to be significantly enhanced
in MD simulations using the MARTINI force field77–79 (see also
the ESI,† Section F), we prefer to use experimental values of Zm

rather than numerically measured ones. In the present case, we
estimate in the SI that hZm C 4 � 10�10 Pa.m.s. For instance,
for a vesicle of radius R = 30 nm as considered below, the
average tessellation edge length is a = 2.25 nm for N = 2562
vertices. With the measured value lE 0.8 pN at 15% of GM1 in
the upper leaflet, and T = 310 K, we get the numerical values
D E 3.6 mm2 s�1 and finally dt E 0.35 ms. The value of D is
lower than the lipid diffusion coefficients measured in real
model membranes, e.g. vesicles,80 although they are on the
same order of magnitude because with this value of R, the
patches are small, and each vertex represents about 6 lipid
molecules in each leaflet.

In the ESI,† Section G, the value of dt, associated with
diffusion in the membrane plane, is compared to its transverse
counterpart dtp, the physical timescale associated with (one-
dimensional) radial MC moves. With the same model
parameters as above, one obtains dtp = 90 ps, which is much
shorter than dt. This means that if one were interested in
studying realistic vesicle dynamics through kinetic Monte-Carlo
simulations,48 one would need to execute a large number of
vertex radial moves in-between two vertex-composition flips, on
the order of dt/dtp E 4000. This ratio depends on the value of
the vesicle radius R through several parameters.

3.3 Mesoscale simulation

Relying on the numerical results at the coarse-grained scale and
after the extraction of the key parameters, we perform the
mesoscale Monte Carlo simulation of a tessellated vesicle made
of two phases, one corresponding to the Ld phase, the other
one, with a higher spontaneous curvature, accounting for the
Lo phase curved by GM1 insertions. We simulate a vesicle with
N = 2562 vertices. Since our objective is to come back later to
the CG scale through backmapping, we shall focus here on a
small unilamellar vesicle (SUV). Details of the mesoscale
numerical scheme are given in ref. 42 and 43, and summarized
in the methods section.

As notably discussed in ref. 43, coarse-graining up to the
mesoscale is a quantitative process which consists in pre-
averaging the degrees of freedom at length-scales smaller than
the lattice spacing a, the physical foundations of which are
prescribed by the renormalization group theory.33,46 Conse-
quently, one expects the mesoscale model to describe correctly
the fluctuations of the real system at large scales, with the
advantage that it will reach equilibrium much faster in terms of
computational time, provided, as described just above, that
microscopic details have been correctly integrated out in the
mesoscale parameters. Note that in the same spirit, force fields
used in all-atom or CG models have already integrated out
electronic degrees of freedom, and are consequently already
approximate.

As explained above, we use the following parameter values to
simulate a vesicle of real radius R = 30 nm with the same Ld and

Lo + GM1 phases as in the bilayer with 15% of GM1 in the
upper leaflet studied above:

1. The bending moduli are set to kLo = 25 kBT and kLd = 13
kBT after calculation of the membrane fluctuation spectra in
the CG model.

2. The spontaneous curvature of the Ld phase is equal to
C0 = 2/R, the one of the average sphere. The spontaneous
curvature of the Lo + GM1 phase is fixed to Cvesicle

Lo+GM1 = C0 +
Cplanar

Lo+GM1 = 4.43/R, from measurements of Cplanar
Lo+GM1 in CG simula-

tions at 15% of GM1, as explained above.
3. The Ising parameter is set to JI = 0.336 kBT to match the

measured line tension l, through eqn (15). This value is above
the critical one JI,c = (ln3/4)kBT C 0.275 kBT on a triangular
lattice.

4. The surface tension is arbitrary since it is an extrinsic
parameter imposed by experimental conditions, and not a
property of the membrane. In the simulations, its dimension-
less value ~s = sR2/(kBT) was set at 1100, which corresponds to
s = 5.3 � 10�3 J m�2 for a radius R = 30 nm. This value ensures
it is the quasi-spherical vesicle regime, where our mesoscale
model is fully valid.42

5. The area fraction f of the Lo + GM1 phase is chosen equal
to 20%, so that Lo domains are well-defined. Increasing this
value would lead to more complex interdigitated, labyrinthine
patterning.43

The system was run for a long time (1010 MC steps) to
ascertain that thermodynamic equilibrium has been
reached.43 A snapshot by the end of the simulation is displayed
in Fig. 10.

With the parameters inferred from the CG model, the SUV
displays nanodomains in equilibrium. As observed in previous
work,43 the domains form rapidly after starting the simulation
from a configuration where Ld and Lo vertices were randomly
distributed. Then the domains fluctuate in size and shape,
permanently exchanging Lo ‘‘monomers’’ with the surrounding
phase. They can also coalesce or split. It must be emphasized
that as compared to the CG simulations above where a single
nanodomain, necessarily smaller than the simulated box size,
was formed in few ms on the quasi-flat membrane due to phase
separation, the full phase separation displaying a single, large
Lo domain, is avoided on the curved SUV, by introducing a
surface tension, s. Hence, the nanodomain size is controlled by
the typical length scale l/s, since larger curved domains have a
too large surface free-energy.19 The nanodomains are not
generically larger (in real size) than in the CG simulations,
but they never coalesce in a single, large Lo region.

To quantify this vesicle meso-patterning, we computed the
nanodomain size-distribution, as illustrated in Fig. 10. As
compared to distributions generally observed on large GUVs
below the critical temperature (see the ESI† or ref. 43 for
examples), the distribution is not bimodal but monotonously
decreasing. The main reason for this difference is that on a
SUV, the ratio between the Lo domain curvature Cvesicle

Lo+GM1 and
the sphere one C0 is moderate as compared to a GUV.
The mesoscale model thus predicts that nanodomains on SUVs
can dynamically adopt a wide range of sizes, from very small to
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very large (with respect to the number of available Lo vertices)
ones, that however never reach the maximum allowed size of 512.

3.4 Backmapping from the mesoscale model to the CG one

Backmapping from the mesoscale model to the CG system
consists in decorating the elementary triangles of the mesos-
cale tessellation while respecting both the bilayer geometry and
its local composition9 (see the methods section). The triangles
are decorated with the same Ld and Lo + GM1 phases as in the
bilayer with 15% of GM1 in the upper leaflet studied above with
the help of CG simulations. The interior and exterior of the R =
30 nm-radius vesicle are filled with water (and ions) in order to
constrain the vesicle interior volume as in the mesoscale
simulation. Backmapping is exemplified in Fig. 11. We shall
now verify that after backmapping from the mesoscale model to
the CG one, CG simulations run from the so-obtained simula-
tion output are stable through time, which will support the fact
that the mesoscale parameters were correctly estimated.
Whereas simulations at the mesoscale enable one to equilibrate
the slow long wave-length fluctuations, above the lattice spa-
cing a, at the price of ignoring the short wavelengths, CG
simulations after backmapping enable one to equilibrate in
turn these short, fast wavelengths, and finally to obtain a CG
system equilibrated at all wavelengths, whereas equilibrating

long wavelengths with the help of the sole CG model would be
prohibitive in terms of computational cost.

First, we have checked that at the molecular scale, back-
mapping reproduces faithfully lipid-tail ordering in both
phases, by computing the usual acyl-chain order parameter in
both systems with GM1 (see the ESI,† Section H).

Then, in order to assess the supramolecular stability of the
backmapped CG vesicle, notably in terms of its nano-
patterning, we have tracked the largest nanodomains along a
10 ms-long CG simulation, as shown in Fig. 12a. In order to
identify unambiguously the Lo nanodomains, we have radially
projected the lipid coordinates onto a regularly tessellated
sphere made of 5120 elementary triangles and attributed the
Lo or Ld nature to each of them by using the same kind of
majority rule as previously, as shown in Fig. 5. We have
measured that the total number of Lo triangles remains
remarkably stable through time, very close to the initial 20%
fraction before backmapping (see Fig. S6 in the ESI†). Further-
more, nanodomains are identified as the connected compo-
nents of the Lo phase. As expected, the size of the largest
nanodomains fluctuates, as they regularly lose or gain lipids of
the Lo phase, however their size does not evolve much with
time (see Fig. 12b). This suggests that the nanopatterning
ensuing from the mesoscale simulation remains qualitatively
stable with time and validates our whole multiscale scheme.

4 Discussion

This work proposes a complete strategy to extract valuable
parameters from coarse-grained simulations to design a mesos-
cale model of biphasic vesicles. Going from the molecular scale
to mesoscopic scales can present intrinsic difficulties, that we
have fully addressed here, appealing to important physics
concepts such as the renormalization group theory. This con-
cerns in particular the scale-dependent relationship between
the line tension at the interface between both phases, which is
measured in CG simulations through the fluctuation spectrum of
the interface between both phases, and controlled by the Ising
parameter JI in the mesoscale model. Once equilibrated, the
mesoscopic system is back-mapped to the molecular scale
through a well-defined procedure. This multiscale simulation
scheme eventually allows one to obtain large systems equilibrated
at all length scales, which could not be achieved solely at the CG
scale due to the prohibitive simulation time it would require. In
particular, modeling at the mesoscale enables equilibration of
long length scales before equilibration of short ones after back-
mapping to the molecular scale. Equilibrating long length scales
enabled us to sample accurately the domain size distribution.
Here we have tackled an SUV of modest size (diameter of 60 nm)
as a proof of concept, but there is no obstacle in principle to tackle
larger systems for which real equilibration times can become very
large, on the order of hours for a GUV.27

One aspect of equilibration that is not apprehended in
this work is equilibration between both leaflets, through lipid
flip-flops.68 Phospholipids flip-flops are rare events in CG

Fig. 10 Lipid nano domain sizes for the mesoscale model. (a) Snapshot of
a mesopatterned SUV of radius 30 nm after equilibration through the
mesoscale model. The area fraction f of the Lo + GM1 curving phase (in
red) is equal to 20%, which is to say there are 512 red vertices out of 2562
vertices (each vertex is represented here by 6 small triangles defining its
Voronoi cell. For one given vertex the 6 triangles are all either red or blue).
Other parameters are given in the text. (b) Nanodomain size distribution.
Nanodomain sizes are given as the number of vertices in a given (Lo +
GM1)-phase nanodomain. The two first bars have been truncated for
clarity.

Fig. 11 Backmapping from the mesoscale model (left, equilibrated vesi-
cle) to the CG one (right, after 1 ms of CG simulation). The central circle
image illustrates how each triangle of the tessellated vesicle is filled with a
lipid bilayer patch.
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molecular dynamics, with associated timescales on the order of
hours, and they cannot be implemented in the mesoscale model
that does not explicitly take leaflets into account. On timescales
much shorter than the typical flip-flop time of interest here, the
asymmetric distribution between leaflets is therefore considered
to be metastable. At the mesoscale, this issue can in principle be
solved by taking explicitly both leaflet compositions into
account,44 with stochastic composition exchanges between leaf-
lets. In this case, note that the membrane spontaneous curvature
would directly depend on these compositions.

In the present context, and in relation to the experiments of
ref. 27, our CG simulations gave us new insights into the effect
of insertion of the glycolipid GM1 into the Lo phase. Since GM1
is only inserted in one leaflet, the ensuing asymmetry imposes
a local spontaneous curvature to the membrane, proportional
to the concentration of GM1 in the leaflet. In addition,
GM1 makes the Ld/Lo interface widen, which is a visual
manifestation of the decrease in the interface line tension l.

From a dynamical point of view, it also slows down the
convergence to equilibrium. The two latter phenomena are
intimately related since boundary fluctuation time-scales are
inversely proportional to the line tension.76 Increasing the
spontaneous curvature of the minority phase while decreasing
the line tension are both favorable to the stabilization of
mesophases, where phase separation is incomplete in equili-
brium, as observed in the mesoscale simulations. Note that the
spontaneous curvature values imposed by GM1 are comparable
to the spontaneous curvatures locally imposed by the insertion
of some transmembrane proteins, measured by experimental or
numerical techniques to be on the order of few 0.01 nm�1.81–84

Thus the meso-patterning effect observed at relatively large
concentrations of GM1 is also expected to occur on cell mem-
branes where curving proteins are abundant.19

Here we have used the Martini 2.2 forcefield. Recently, a new
version of this forcefield was released increasing the number of
bead types and sizes85 refining diverse features especially
related to the protein. This resulted in a recent reparametriza-
tion of carbohydrates86 but a CG model of GM1 lipid has not yet
been released. It will be interesting, in the coming years, to
extend our CG modelling to see how this new version affects the
quantitative results. In the meantime, the Martini 2.2 version
has already given reasonable results21,22 on GM lipids and
curvature to validate our proof of concept.

To perform our Monte Carlo mesoscale simulations, we
used a model that some of us developed and characterized in
recent studies.42,43 A more common model used in numerical
statistical mechanics of membranes is the dynamically triangu-
lated surface/membrane (DTS/DTM) model.51,52 Designed in the
early 1990s to study the crumpling phase transition of homo-
geneous fluid membranes,87,88 it has been extended and
enriched in order to model membranes or vesicles closer to cell
membranes, in particular by endowing it with multiphasic
composition.1,49 In our model, the vertices of the tessellation
experience only radial moves and there are no edge-flips, which
are an important characteristic of the DTS model.

These features do not modify in depth the overall properties
of the model, however using our own model presents at least
two advantages in the present context. First, as far as the Ising
model is concerned, it dwells on a triangular lattice (except
for the 12 vertices that have only 5 neighbors, necessary to close
the membrane, due to Euler’s polyhedron formula), whereas in
the DTS case, it would dwell on a disordered lattice, with
vertices that can have in principle any number of neighbors
larger than 3. The rigorous connection between the line tension
and the Ising parameter JI relies on the knowledge of the critical

parameter JI,c and of the prefactor 4
ffiffiffi
3
p

in eqn (15), whereas they
are not exactly known on a disordered lattice. The same
problem arises when it comes to diffusion and dynamical
issues, as in eqn (19). Second, in the DTS model, edge lengths
are constrained by an upper and a lower bound, in order to
ensure membrane self-avoidance and to prevent some triangles
from becoming very large to the detriment of the smallest ones.
Because of entropic effects due to these constraints in the
configuration space, an additional entropic term modifies the

Fig. 12 Lipid Lo domains evolution in the CG-MD simulation. (a) CG-
simulated vesicles projected onto the sphere and discretized again
through the majority rule, at different simulation times. The first panel
shows the CG vesicle at t = 1 ms, for comparison. The other frames have
been rotated so that one can track the same lipid domains even though
they diffuse slowly on the vesicle. (b) Domain size evolution with time (4
largest domains only). Note that the vesicle has twice as many triangles as
vertices, so the largest domain, visible on the successive snapshots,
contains about 200 vertices out of N = 2562.
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input surface tension s in a way that is difficult to control
because it depends in a non-trivial way on the total area of the
vesicle. The quantification of this effect is out of the scope of this
work and will be the object of a forthcoming publication. For
these reasons, we did not opt for the DTS model in the present
study where every mesoscale parameter must be well-controlled.

The membrane surface tension is one of the key parameters
of the mesoscale model because the topology of the meso-
pattern89 and even its stability depend on the surface tension
value. A large enough value is required to destabilize the
macrophase whereas a too large value would suppress
membrane fluctuations and thus also lead to macrophase
separation.19,43,62 When backmapping to CG simulations, the
surface tension can easily be monitored in planar geometry
by applying anisotropic pressure on the simulation box.77

However, controlling the surface tension is more challenging
in vesicle geometry.90 Indeed, it depends on the quantity of
water and ions encapsulated inside the vesicle, due to the
Laplace law, through the difference in pressure across the
membrane. In this work, we have not quantified the surface
tension of the vesicle after backmapping, but simply filled the
vesicle with the maximum quantity of water (plus ions), antici-
pating that since the overall interior volume was the same as in
the mesoscale vesicle simulations, the surface tensions should
be comparable. Since it is difficult to compute a priori the value
of the surface tension, the most obvious way to control it is to
proceed by trial and error, removing water and ions if the
tension it too high and adding ones if it is too weak, for
example by pushing the existing solvent away from the center
of the vesicle through application of a radial force. This issue
will be addressed in the near future.

In the era of exascale computing,91,92 it is tempting to design
molecular systems to study from organelles9,93 to viruses93,94 or
even an entire cell.95–97 Yet, the computing power necessary to
simulate such large systems is still very huge and prevents one
from reaching simulated timescales useful to decipher even
simple phenomena such as the diffusion of large molecules93

without even mentioning relevant biological time scales of
milliseconds or longer. Our approach may help in tackling this
issue by equilibrating a simplified triangulated version of such
huge systems using Monte Carlo simulations to then only refine
the equilibrated system on nano- to micro-second timescales.
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91 M. Wieczór, V. Genna, J. Aranda, R. M. Badia, J. L. Gelpı́,
V. Gapsys, B. L. Groot, E. Lindahl, M. Municoy, A. Hospital
and M. Orozco, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2023, 13, e1622.

92 C. Chang, V. L. Deringer, K. S. Katti, V. V. Speybroeck and
C. M. Wolverton, Nat. Rev. Mater., 2023, 8, 309–313.

93 C. Gupta, D. Sarkar, D. P. Tieleman and A. Singharoy, Curr.
Opin. Struct. Biol., 2022, 73, 102338.

94 L. Casalino, C. Seitz, J. Lederhofer, Y. Tsybovsky,
I. A. Wilson, M. Kanekiyo and R. E. Amaro, ACS Cent. Sci.,
2022, 8, 1646–1663.

95 J. V. Vermaas, C. G. Mayne, E. Shinn and E. Tajkhorshid,
J. Chem. Inf. Model., 2021, 62, 602–617.

96 Z. Luthey-Schulten, Z. R. Thornburg and B. R. Gilbert, Curr.
Opin. Struct. Biol., 2022, 75, 102392.

97 J. A. Stevens, F. Grünewald, P. A. M. V. Tilburg, M. König,
B. R. Gilbert, T. A. Brier, Z. R. Thornburg, Z. Luthey-Schulten
and S. J. Marrink, Front. Chem., 2023, 11, 1106495.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
15

/2
02

5 
7:

14
:4

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://manual.gromacs.org/
https://manual.gromacs.org/
https://doi.org/10.48550/arXiv.2303.09142
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm00089g



