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From a distance: Shuttleworth revisitedy

Stefanie Heydeni® and Nicolas Bain P

The Shuttleworth equation: a linear stress—strain relation ubiquitously used in modeling the behavior of soft
surfaces. Its validity in the realm of materials subject to large deformation is a topic of current debate. Here,
we allow for large deformation by deriving the constitutive behavior of the surface from the general frame-
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work of finite kinematics. We distinguish cases of finite and infinitesimal surface relaxation preceding an infini-
tesimal applied deformation. The Shuttleworth equation identifies as the Cauchy stress measure in the fully
linearized setting. We show that both in finite and linearized cases, measured elastic constants depend on the

utilized stress measure. In addition, we discuss the physical implications of our results and analyze the impact

rsc.li/soft-matter-journal

1 Introduction

In most solids, small forces lead to small deformations. A soft
solid, on the opposite, undergoes large deformations under
minute forces: a phenomenon as minor as depositing a milli-
metric droplet leads to large surface deformations'™ (Fig. 1).
Such materials, which can take the form of gels, pastes, or
elastomers, are ubiquitous in our lives: They amount to most of
our body tissues, and serve as lubricants, glues, and water-
repellent coatings. In the past years, it has been shown that
surface stresses are essential in wetting, adhesion, and fracture,
and can be exploited in composites." " Yet, the physical origins
of surface stresses are poorly understood. This is especially true
in gels, in which the cohabitation of a crosslinked polymer
network and a liquid solvent complexifies the link between
molecular structure and mechanical properties.

The dominant approach to tackle this fundamental question
consists in investigating surface elastic properties.'>*>™® For
instance, surface topography measurements of a stretched
patterned silicone gel revealed an elastic surface, where surface
stresses increase with surface deformations."® This result hints
towards a role of the crosslinked polymeric network in the
surface constitutive behavior of silicone gels. Conversely, defor-
mation measures of a spinning hydrogel bead evidenced con-
stant surface stresses, independent of surface deformations,
akin to the solvent surface tension.'®
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of surface relaxation on the estimation of surface elastic moduli in the light of two different test cases.

In its simplest form, the most common description for
the surface mechanics of soft solids relates surface stresses o (in
N m ") to surface strains & and free energy W; (inJ m > or N m™ %),

oW

o, = W + Pe (1)
S

and is called the Shuttleworth equation.” This description
is restricted to the linear regime, where small deformations
prevail. It is, however, largely applied to estimate surface elastic
constants (also in N m ™) of systems undergoing large deforma-
tions, where its validity and resulting physical interpretations
have been rightfully questioned.>*"**

The major drawback of the Shuttleworth equation is to
ignore key features that can only be captured by accounting
for finite deformations. Before applied deformations, for
instance, soft solids are usually detached from a container,
and their surfaces undergo an initial relaxation, inducing
residual bulk stresses. Because soft solids are easy to deform,
this surface relaxation can be large.'***
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Fig. 1 Experimental surface profiles of initially flat soft solids in contact
with (a) a drop of glycerol, (b) a silica bead, and (c) a glass coverslip. Data
were obtained from confocal imaging of fluorescent beads deposited on a
silicone gel of shear modulus u ~ 2 kPa (same protocol as 3,12-14). Each
blue circle represents a detected fluorescent bead, and the light blue areas
represent the contacting objects.
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Although extensive works in continuum mechanics laid out
the framework of surface elasticity (see, e.g.,>> ), employing it
in finite element simulations,**** sometimes accounting for
the surface bending stiffness,?”*> the effect of initial surface
relaxations on the estimation of surface elastic constants has so
far not been assessed.

Here, we briefly expose the finite kinematics theory without
initial surface relaxation. We leverage the framework of finite
kinematics to rigorously derive surface stress-strain relations
from a strain energy density while accounting for prior surface
relaxations. We distinguish infinitesimal and finite surface
relaxations and show that, in either case, different stress
measures do not coincide, unlike the usual assumption in
linear mechanics. While the classical description eqn (1) is
valid for the Cauchy stress measure when the surface relaxa-
tions are infinitesimal, significant deviation terms appear when
they are finite. We express these deviations in the general case
and estimate their magnitude in two test cases. This framework
should incite experimentalists to choose the suitable stress—
strain relation and carefully interpret measured surface elastic
parameters.

2 Without initial surface relaxations
A. Finite kinematics

We start with a brief outline of finite kinematics without initial
surface relaxations. We can consider a solid in two states.
A reference state, before deformation, and a deformed state
(Fig. 2). In the reference state, the surface exhibits mechanical
stresses, which, in the simplest case, have the form of a
uniform and isotropic surface tension."” We furthermore
assume that the surface stresses can be thermodynamically
defined by a surface strain energy density WX in the reference
configuration.

Following the Piola transform specialized to two dimen-
sions, we define a free energy density expressed in the current
configuration W° as

J Wwedst = J WCJIdSg = J WRASR, (2)
s€ SR SR
with S® and S€ the areas in the reference- and current config-
urations, respectively. Furthermore, J; = det(Fs) = det(I + Vqu)
measures the local area change, where Fs is the deformation
gradient, and u is the displacement field (see Section S1, ESIT).
Based on material frame indifference, any strain energy density

F,
7~ N\

wE w¢

\SR \S

Fig. 2 Sketch of reference (left) and deformed configuration (right).
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can be written as a function of the Green-Lagrange strain tensor

1
E, = 3 (FTF, —1I). Here, and from now on, all vector quanti-

ties, such as displacement fields, and all tensor quantities,
such as stress- and strain fields, are projected onto the surface
(see Section S1, ESIt).

B. Different stress measures

Depending on the experimental conditions, different stress
measures may be used for comparison to theory. The first
Piola-Kirchhoff stress measure Pg, also known as the engineer-
ing stress, represents forces in the current configuration per
unit referential area. Therefore, it is the quantity of interest in
traction-controlled experiments.*® In contrast, the second
Piola-Kirchhoff stress measure S constitutes forces mapped
back to the reference configuration per unit referential area.
Finally, the Cauchy stress measure o, also denoted as true
stress, refers to forces in the current configuration per unit
current area. It is the stress measure used in an Eulerian setting
or phenomena where the reference state is ill-defined, as in liquid
flows. By definition, the second Piola-Kirchhoff stress derives
from the free energy density in the reference configuration,

_owR
"~ OE,’

Ss (3)
and the two other stress measures account for the change
of reference frame by multiplication with the deformation
gradient

OWR

oOwWR
- =J'F FT
OE,’ J

PS:FS N sa—ESS.

and o, (4)
If one considers the free energy in the current configuration
eqn (2), as is implicitly assumed in the Shuttleworth equation,

the Cauchy stress takes a form similar to eqn (1)

oOwe
OE,

6= WL+ F, FI, (5)
and the other stress measures have a similar expression (see
Section S2.1, ESI{).

C. Surface stress-strain relations

It is now instructive to define a constitutive equation for the
surface free energy. Assuming the surface energy is strain-
independent W = y, as in liquids, the Cauchy stresses eqn (5)
correspond to an isotropic surface tension 65 = 1.

For a strain-dependent surface energy, without loss of gen-
erality, we use the St. Venant-Kirchhoff model, which is the
simplest extension of linear elasticity that captures geometric
nonlinearities. To account for the surface stresses in the
reference state, we enrich this model with a constant surface
energy in the current configuration,

WR(E) = yJ, + pugtr(EEs) + %)»s(tr(Es))z. (6)

Here, ps and g are the surface Lamé parameters. Physically
speaking, v is equivalent to the surface tension of a liquid, and
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(us, /s) are the surface elastic constants attributing an energetic
cost to elastic deformation from a reference state. A straightfor-
ward derivation (see Section S2.2, ESIY) leads to the Cauchy
stress as a function of the elastic parameters

6=l + FS[ZMSES + ;Lstr(Es)I)FEa (7)

and similarly to the first and second Piola-Kirchhoff
stresses

P = ) Fy(FsFy) ™" + 2usFoEs + Jgtr(Eg)F, (8)
Ss = Y(FoF) ™ + 2pEs + Astr(E)L. (9)

D. Infinitesimal deformations

When surface deformations are finite, the stress measures
eqn (7)-(9) represent different physical quantities and hence
differ from one another. When surface deformations are infi-
nitesimal, however, linearized mechanics do not distinguish
between the reference and current states, and all stress mea-
sures coincide.? This is the case in the absence of prior surface
relaxation: all stress-strains relations give the same constitutive
relation upon linearization

Py =8, =6, =71+ 2uges + Astr(e,), (10)

where g = (Vqu + Vu")/2 is the linear surface strain, and (P, S, 65)
are the linearized stress measures. It is then straightforward to
extract surface elastic coefficients when applying small surface
deformations.®* In the latter, we will show that this property does
not hold when we account for surface relaxations before applied
deformations.

3 With initial surface relaxations
A. General setting

Soft solids are often cured within a mold, from which they are
detached before being used. Upon detachment, they undergo a
surface relaxation due to an interface change, enhanced wher-
ever the local curvature is nonzero.”**** We, therefore, distin-
guish three mechanical states (Fig. 3). The soft solid with the
shape of the mold before it relaxes, Q*, after it relaxes but
before any external load or displacement, Q,, and after being
deformed by external loads Q.

In the first state, Q*, the bulk of the soft solid is stress-free.
For this reason, we denote this state as the reference configu-
ration (Fig. 2). The surface, however, is not stress-free, as is
accounted for in our definition of the surface energy eqn (6).
While the second state, Q,, is the one experimentalists work
with, we consider it as an intermediate state because it can
contain finite residual bulk stresses due to prior surface
relaxation. We note, however, that these two states coincide
when the surface does not undergo prior relaxation, which
happens when the soft solid is tested in the state it was
prepared.

In the framework of finite kinematics, the deformation
gradient F, maps material points from the stress-free

5594 | Soft Matter, 2024, 20, 5592-5597
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Fig. 3 Sketch of fictitious stress-free configuration Q* e.g., a cured
sample within a mold, relaxed configuration Qq, e.g., a sample after
removal from the mold, and deformed configuration Q. The stress-free
and the current configurations have a surface strain energy density WR and
WE, respectively.

configuration Q* to the deformed configuration Q. We also
have F; = I + V,u* mapping from the stress-free configuration
Q~ to the relaxed configuration Q,, and Fo = I + Va® mapping
from the relaxed configuration @, to the deformed configu-
ration Q. By composition of mappings, the total deformation
follows as F, = F'F:.

In practice, experiments impose deformations Ey from the
relaxed state Q, to the deformed state 2. Here, we focus on the
case where imposed deformations are small, for which EJ ~ 2.
We then elucidate how the measured stresses vary with
imposed surface strain &5 = [Vau® + (Va°)"]/2, both when the
relaxation deformation E? is infinitesimal and finite.

B. Linearized kinematics

Let us assume the deformation due to the relaxation of the
surface is small E; ~ &f. Then, the resultant total strain is an
additive decomposition g = & + &°.

After linearization, stress measures are usually assumed to
coincide. This assumption, however, fails whenever initial
stresses are present,”” as in the case of solid surfaces. We thus
need to carefully distinguish different stress measures in the
realm of linearized kinematics.

At first order in strains g, the linearized Cauchy stress 6y
simplifies to the Hookean form

G5 = yI+ 2uges + Astr(es)L. (11)
Based on the additive decomposition of strains, Cauchy
stresses result in a contribution from the surface relaxation
¢ and a contribution from the imposed deformations Go
& =yl +6; + 6., (12)
where 63= 2used + Astr(e)I, with o € [*,0]. Unsurprisingly, the
surface relaxation here comes as an additive stress, as in the

classical principle of superposition in linear elasticity. In this
context, the prior surface relaxation does not influence the

This journal is © The Royal Society of Chemistry 2024
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estimation of the surface elastic moduli x5 and A5 from applied
strains &l
Similarly, the second Piola-Kirchhoff stress takes the form

S, = I+ 2ples + Atr(e I, (13)

with effective elastic constants uy = us — y and AY = A4 + 7. The
first Piola-Kirchhoff stress is non-symmetric

By =y 2156 + Jstr(es)] + Yoo, (14)

with gt = ug — /2, 1% = /&, and o, = (Vau — Va')/2 the
infinitesimal rotation tensor (see Section S3, ESIt). Both the
first and second Piola-Kirchhoff stress measures can also be
decomposed akin to the Cauchy stress eqn (12).

From eqn (11)-(14), we note that the three linearized stress
measures are only equal in two scenarios. First, when the solid
is unstretched & = 0. All stress measures are then trivially equal
to the prestress yI, which is the surface stress of the solid at
rest. Second, when the prestress is much smaller than the
surface elastic constants y 3 (us,4s). In this case, which primar-
ily pertains to hard solids, all stress measures are equal to the
Hookean form eqn (11).

Besides these cases, when the surface moduli is of the order of
the surface tension at rest or smaller, we should distinguish the
different linearized stress measures. Otherwise, the surface shear
modulus s can be misestimated by a value of the order of the
surface tension y, eqn (13) and (14). This applies to soft solids and
complex fluid-fluid interfaces, for which surface tension and
surface elasticity can be of the same magnitude.*>"”**

C. Finite kinematics

If the surface relaxation induces large deformations, we expand
to linear order in Vu° the imposed deformations and keep the
relaxation deformations F* finite. At first order, we write the
dependence of Cauchy stress with imposed deformations

o =yl +a: +Vu's: + 6 (Vu')"

+ 20 [FL(F) & [FL (F))T] (15)

+ Aste[(F2) el FIIFL(F2)T,

where 6! = F; (2u,E; + Astr(EJ)I) (F.)7T is the stress contribu-
tion due to surface relaxation (see Section S3, ESIT). Here, not
only does the relaxation impose an additional stress term o7,
but it also mixes non-trivially into the terms that include the
surface elastic parameters (/s,us). In practice, the exact con-
tribution from the finite surface relaxation depends on the
sample geometry and has to be estimated accordingly. For
the sake of completeness, we estimate the strain dependence
of the Second Piola-Kirchhoff stress as

Sy = 8.+ (FL) () — 260 (F2) 7
(16)
+ 20, (F2) T F: 4 2atr(F) T F)L.
Finally, the First Piola-Kirchhoff stress tensor follows as

Ps - F:S§ + VsuOS’:a (17)
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where S = 32 [(F2)TF] ' +2u,E: + Atr(ES)I is the Second
Piola-Kirchhoff stress contributions to surface relaxation.
Although the expressions (15)-(17) are cumbersome, they
do not coincide even in the case of no imposed deformations
sg =0.

Overall, whether the surface relaxation induces small or
finite deformations, the different stress measures differ from
each other. While we can extract effective surface elastic
coefficients in the case of infinitesimal surface relaxation,
eqn (11)-(14), accounting for finite relaxation prevents having
a simple constitutive equation between stresses and imposed
deformation &2, eqn (15)-(17). Still, we approximate from the
full expression for the Cauchy stress eqn (15) that, at first order
in relaxation strain &, the surface moduli (us,4s) will be mis-
estimated by a factor (1 + 4¢). Although this suggests that one
cannot neglect prior surface relaxations as soon as they reach a
few percent, being more precise requires investigating specific
test cases.

4 Test cases

Let us examine how an incompressible soft solid of bulk shear
modulus u, surface tension y, and surface elastic material
moduli (us,45) responds in two canonical examples (Fig. 4a
and b). For both examples, we compute scaling factors to
highlight the magnitude by which surface moduli deviate from
linear elastic predictions with increasing initial relaxation
strain.

First, we consider a soft solid cured into a mold with
periodic rectangular grooves of wavelength w and initial ampli-
tude a,. For simplicity, we assume that the solid is much
thicker than the pattern wavelength, akin to the experimental
system in ref. 15. After demolding, the surface topography
relaxes to a nearly sinusoidal wave with final amplitude
a; ~ apl/(1 + |q|Lec), where g = 2m/w is the pattern wavevector
and L. = 7/2u is the elastocapillary length”**> (Fig. 4a). During
this process, one period of the surface goes from its initial
length I, = w + 2a, to a final length /; ~ w + 2a,. We define the
surface relaxation strain ¢ = (/i — /y)/ly from the difference in
surface length before and after demolding.

With no loss of generality, we assume that the surface
relaxation strains are tangential to the surface profile

(S:H , e;*p) = (&,0), without shear, and that we impose an exter-

nal deformation that manifests as a longitudinal strain e[S’H =g
and no transverse applied strain ¢, = 0. The longitudinal

Cauchy stress,
Gy =7+ 04 + Qug + As) P, (18)

is linear in imposed strain &° and polynomial in relaxation
strains P(e) = (1 +&)*(1 + 4¢+ 2¢°) (see Section S4, ESIt). When the
surface relaxation strain is infinitesimal ¢} < 1, we recover the
surface modulus (2us + Zs) that can be calculated from the fully
linear Cauchy stress eqn (11). Otherwise, the estimated surface
modulus deviates from the true modulus by a factor P(¢!). This

Soft Matter, 2024, 20, 5592-5597 | 5595
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Fig. 4 (a) Surface profile of periodic grooves of wavelength w. Left: initial
profile, with amplitude aq. Right: after relaxation, with amplitude ay,
estimated for a material of shear modulus u = 2 kPa, surface tension
y = 20 mN m™, wavelength w = 50 pm and initial amplitude ag = 2 pm. (b)
Cylindrical rod before (left) and after relaxation (right). (c) Deviation factors
P and L, quantifying the effect of surface relaxation on estimated surface
modulus (egn (18) and (21)). (d) Contour plot for the surface relaxation axial
strain ¢ as a function of shear modulus and cylinder radius, computed
from eqn (20) with surface tension y = 20 mN m™. The black dashed line
represents stands for R = Lec.

deviation factor increases when the relaxation places the sur-
face in tension, ¢! > 0, and decreases when the surface is in
compression ¢! < 0 (Fig. 4c). In the experimental conditions of
ref. 15 (recalled in the legend of Fig. 4a), we estimate the
relaxation strain to be ¢ = —5% and the resulting correction
factor P(—0.05) = 0.7. Therefore, accounting for the surface
relaxation, as done in ref. 15 with nonlinear theories, avoided a
30% underestimation of the surface elastic moduli.

Second, we assume the soft solid is cured into a slender
cylindrical mold of length L and radius R, with L » R.** Once
removed from the mold, the length and radius change to [ and

5596 | Soft Matter, 2024, 20, 5592-5597
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r, respectively (Fig. 4b). At first order, this relaxation follows the
uniform deformation field

00
F=(o0o i o0 | (19)
0 0 i

where A* = r/R is the radial stretch, and A*~2 = [/L the axial
stretch.

In this framework, the stretch created by the surface relaxa-
tion that minimizes the total elastic energy,

o <LeC/R+ 1+ (LeC/R)2>1/3,

depends only on the ratio of elastocapillary length and cylinder
radius Le./R (see Section S5, ESIT). Here, we denote two types of
=47~ 1 and the circum-

(20)

*

surface strains: the axial strain &

ferential strain ¢, = 2* — 1. From eqn (20), surface strains are
infinitesimal when the elastocapillary length is much smaller
than the cylinder radius, L.. 3 R, where bulk elasticity
dominates.

Otherwise, the relaxation-induced deformations are finite
(Fig. 4d). If we assume they have no shear component and
impose a longitudinal deformation that results in small surface

strains (e, ¢J,) = (&7, —¢{/2), the longitudinal Cauchy stress

(1)

— —% * A *
o5) =7 +0og + (2H5P(85||) + TSL(%H))SS

is linear in imposed strain ¢° and non-linear in relaxation

strains ¢ through P(ej;) and the polynomial function L(¢) =

(1 +¢)(1 + 8¢ + 12¢> + 4¢”) (see Section S4, ESIt). We recover the
correct surface modulus (25 + 44/2) calculated from eqn (11) in
the case of infinitesimal surface relaxation and increasing
deviation factors when surface relaxation is finite (Fig. 4c). While
the bulk material properties may behave linearly up to large
deformations,'® surface elastic constants scale by a factor of 2 in
the case of prior surface relaxation on the order of +10%
(Fig. 4c).

5 Conclusions

In this work, we derive the different surface stress-strain
relations for a soft solid with and without prior surface relaxa-
tions in the regime of finite deformations. We show that the
Shuttleworth equation is only valid for the Cauchy stress with-
out prior relaxations. It does not apply to other stress measures,
and prior relaxations result in deviation factors that lead to
misestimating the surface elastic properties.

This has direct implications for the determination of surface
elastic constants. First, experimentalists need to assess if the
way the solid reached its rest state results in surface relaxations,
and if so estimate their amplitude. Second, they have to
evaluate which stress measure is the most relevant depending
on how measurements are done. This calls for a careful notion
of which configuration forces and areas are measured. If forces
are measured in the deformed state and areas in the rest state

This journal is © The Royal Society of Chemistry 2024
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configuration, the first Piola stress measure should be consid-
ered, whereas the Cauchy stress should be used when the areas
are also measured in the deformed state. Different constitutive
relations need to be employed depending on the stress mea-
sure, and the measured elastic moduli will depend on the used
stress measure even without prior surface relaxation.

As more experimental work is required to determine under
which conditions a soft solid has an elastic surface, our results
provide a robust framework to interpret measurements of sur-
face elastic constants from different stress measures, whether
the surface has or hasn’t relaxed during the fabrication process.
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