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Collective behavior of squirmers in thin films†

Bohan Wu-Zhang, Dmitry A. Fedosov and Gerhard Gompper

Bacteria in biofilms form complex structures and can collectively migrate within mobile aggregates,

which is referred to as swarming. This behavior is influenced by a combination of various factors,

including morphological characteristics and propulsive forces of swimmers, their volume fraction within

a confined environment, and hydrodynamic and steric interactions between them. In our study, we

employ the squirmer model for microswimmers and the dissipative particle dynamics method for fluid

modeling to investigate the collective motion of swimmers in thin films. The film thickness permits a

free orientation of non-spherical squirmers, but constraints them to form a two-layered structure at

maximum. Structural and dynamic properties of squirmer suspensions confined within the slit are

analyzed for different volume fractions of swimmers, motility types (e.g., pusher, neutral squirmer,

puller), and the presence of a rotlet dipolar flow field, which mimics the counter-rotating flow generated

by flagellated bacteria. Different states are characterized, including a gas-like phase, swarming, and

motility-induced phase separation, as a function of increasing volume fraction. Our study highlights the

importance of an anisotropic swimmer shape, hydrodynamic interactions between squirmers, and their

interaction with the walls for the emergence of different collective behaviors. Interestingly, the

formation of collective structures may not be symmetric with respect to the two walls. Furthermore, the

presence of a rotlet dipole significantly mitigates differences in the collective behavior between various

swimmer types. These results contribute to a better understanding of the formation of bacterial biofilms

and the emergence of collective states in confined active matter.

1 Introduction

Collective motion of microswimmers is a popular topic in the
field of active matter due to its wide applicability in the context
of both biological and artificial systems as well as the richness
of observed behaviors and physical mechanisms.1–3 A promi-
nent example of the collective behavior of biological micro-
swimmers is biofilms, which represent complex dynamic
communities of microorganisms at surfaces.4,5 Biofilms are
often associated with various infectious diseases, such as
dental plaque formation on teeth6 and chronic wounds that
resist healing,7 driving the research to better understand sur-
face colonization by bacteria and biofilm development.5,8 In
the context of artificial microswimmers, there exist a variety
of active systems, including collectives of diffusiophoretic
and thermophoretic Janus particles,9–11 active droplets,12,13

and Quincke rollers.14 Studies with artificial microswimmers

primarily focus on understanding the emergence of collective
motion and the governing physical mechanisms.1–3

One of the prominent examples of collective behavior is
motility-induced phase separation (MIPS), which can occur
without any attractive or alignment interactions between self-
propelled particles.15–19 MIPS are characterized by the co-
existence of low and high density phases of active particles,
where the latter is generally represented by nearly immobile
large clusters of particles.9,10,20 In the initial stage of biofilm
formation, a collective motility of bacteria known as swarming
is frequently observed.5,21 In contrast to MIPS clusters, bacterial
swarms are stable and highly mobile aggregates, which gen-
erally migrate along surfaces. The formation of swarms often
requires some type of alignment interactions between
microswimmers.22,23 Another collective phenomenon observed
for bacterial suspensions is called active turbulence,24–26 which
is similar to the traditional Kolmogorov–Kraichnan-type hydro-
dynamic turbulence,27 but occurs at very low Reynolds num-
bers. The state of active turbulence is observed for a sufficiently
large density of microswimmers, which each generates a force-
dipolar flow field around it.28–31 Finally, the motion of micro-
swimmers in confinement, such as in channels and pores, can
result in a hydrodynamic instability and the formation of
complex flow patterns.24,32,33
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Different properties of microswimmers and their environ-
ment affect the emerging collective behavior. These include
shape anisotropy,34–36 the generated flow field around a
swimmer,31,37,38 hydrodynamic interactions,38–40 the presence
of confinement,32,41 and dimensionality.12,42 Biological micro-
swimmers (e.g., bacteria) have complex geometries and propul-
sion mechanisms, such that their detailed modeling is
computationally challenging, especially in systems with a large
number of swimmers. One of the popular models of simplified
swimmers is the squirmer model,43,44 which represents a
microswimmer by a spherically- or spheroidally-shaped active
particle with a prescribed slip velocity at its surface.45 Despite
its simplicity, the squirmer model is flexible enough to capture
various swimming modes, including pushers (e.g., E. coli),
neutral microswimmers (e.g., Paramecium), and pullers (e.g.,
Chlamydomonas). In particular, the squirmer model mimics
well both the far- and near-field flow of a variety of realistic
microswimmers.

The squirmer model has been used to study collective
behavior of microswimmers in quasi two-dimensional (2D)
systems (i.e., a monolayer of swimmers)31,38,39,41,46–49 and
three-dimensional (3D) settings with periodic boundary condi-
tions (BCs).37,50–53 In quasi-2D systems, the positions of sphe-
rical squirmers are restricted to a monolayer, while their
orientation can still cover a large range of angles in 3D,
depending on their aspect ratio.38,41,49 As a result, the in-
plane velocity of squirmers is not constant, but has a wide
distribution. Nevertheless, these systems show MIPS at large
enough concentrations of squirmers, which is qualitatively
consistent with quasi-2D simulations where the squirmer
orientation is restricted to a plane.46–48 The presence of
hydrodynamic interactions shifts the binodal curve for MIPS
to larger Péclet numbers (characterizes the propulsion
strength of swimmers) in comparison with active Brownian
particles (ABPs).38,40 This means that for a fixed Péclet num-
ber, as the swimmer volume fraction f is increased, the
transition to MIPS for ABPs takes place at lower f than
that transition for swimmers with hydrodynamics. Pullers
show the onset of MIPS at lower f values in comparison to
pushers. For spheroidal squirmers in quasi-2D systems,31,38

the collective behavior is qualitatively similar to spherical
squirmers, but a larger aspect ratio of the spheroidal body
favors cluster formation, leading to shape-induced jamming
and alignment. The alignment interaction due to the aniso-
tropy of spheroidal shape can lead to swarming behavior at
moderate f values. For the 3D systems with periodic
BCs,37,50–53 the MIPS phase also develops at large volume
fractions of squirmers.

In our study, we investigate the collective behavior of
spheroidal squirmers in thin films that are thick enough to
allow a full freedom of squirmer orientation. However, the
squirmers are still restricted in their vertical position, so that
they can form only a two-layered structure. Thus, we address
some aspects of biofilm formation beyond the monolayer
structure, when the development of further bacterial layers
takes place. In particular, we address the following questions:

� Do swimmers within a thin film primarily assume orienta-
tions parallel or perpendicular to the wall?
� Under which conditions can swimmers spontaneously

leave the wall to form multi-layered structures?
� Does the collective behavior of squirmers in thin films

differ qualitatively from that of quasi-2D systems?
In our simulations, the volume fraction of squirmers, their

swimming mode, and the strength l of rotlet dipole, which
mimics a counter-rotating flow field of swimmers whose body
and flagella bundle rotate in opposite directions, are varied. In
agreement with the quasi-2D systems, pullers display MIPS
phase at lower f values in comparison with pushers and
neutral swimmers. At moderate volume fractions, all squirmers
with rotlet dipole and pushers with l = 0 show swarming
behavior. Pullers prefer a nearly perpendicular orientation to
the wall, which leads to the formation of flower-like structures
at low f and provides the nucleation for larger clusters as f is
increased. Pullers rarely switch between the two walls, while
pushers do so frequently, indicating that a collection of pushers
would quickly develop a multi-layered structure. In all investi-
gated cases, a two-layered structure is dominant with the
orientation of squirmers parallel to the walls. Interestingly,
the presence of rotlet dipole significantly reduces differences in
the collective behavior of squirmers with different swimming
modes. These results provide the first steps in bridging very
confined quasi-2D systems with much less confined situations
of the collective behavior of swimmers in 3D.

The paper is organized as follows. Section 2 contains all
necessary details about the employed methods and models,
including parameters used in simulations. In Section 3.1,
structural properties of squirmer suspensions are analyzed,
including cluster size distribution, position and orientation of
squirmers within the slit, and the radial distribution function.
Dynamic properties are characterized in Section 3.2, where
effective rotational diffusion, mean-squared displacement,
and the average speed of squirmers are presented. The main
results are discussed in Section 4, with short conclusions.

2 Methods and models
2.1 Squirmer model

We consider a spheroidal squirmer model, whose surface is
described by

x

bx

� �2

þ y

by

� �2

þ z

bz

� �2

¼ 1; (1)

where bz and bx = by are the major and minor radii of the
spheroidal squirmer [see Fig. 1(a)]. The orientational vector e of
the squirmer is aligned with its major axis. The aspect ratio of
the spheroidal shape is set to bz/bx = 2, which is similar to the
aspect ratio of 2–3 for the body of E. coli bacteria.54 The
squirmer surface is discretized by Np particles connected by
springs into a triangulated network. To maintain the spheroi-
dal shape, the squirmer consists of a membrane-like surface
with shear and curvature elasticity, and has constraints for its
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surface area and enclosed volume.55,56 Details of the membrane
model are described in Appendix A.

Locomotion of a spheroidal squirmer is imposed through
the prescribed surface slip velocity given by38,57–59

usq ¼ �B1 ez � ezð Þð1þ bzÞez þ
3lzs�rs
rs5

ej; (2)

where ez, ez, and ej are unit vectors in Cartesian (x,y,z) or
spheroidal (z,t,j) coordinates, which are related to each
other as

x ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

cosj; (3)

y ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

sinj; (4)

z = ctz. (5)

Here, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bz2 � bx2

p
, and the spheroidal coordinates have

the ranges �1 r z r 1, 1 r t o N and 0 r j o 2p. The
parameter B1 determines self-propulsion speed of the squirmer
U0 = B1t0(t0 � (t0

2 � 1)coth�1t0) with t0 = bz/c.45,60 The
coefficient b defines different swimming modes of the squir-
mer, including a pusher (bo 0), a neutral swimmer (b = 0), and
a puller (b 4 0). The second term in eqn (2) defines a rotlet

dipole with the strength l, where rs = (xs,ys,zs), rs = |rs|, �rs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs2 þ ys2

p
with the subscript s denoting points at the squirmer

surface. The rotlet dipole mimics a counter-rotating flow field,
e.g. of E. coli whose body and flagella bundle rotate in opposite
directions.61 To verify the correctness of squirmer-model imple-
mentation, the flow field generated by a squirmer has been
compared with the corresponding analytical solution,45 yield-
ing good agreement.

2.2 Boundary conditions

The suspension of squirmers is confined between two walls in
the h direction, while periodic BCs are applied along the
other two perpendicular-to-h directions. Fluid flow is modeled
by the dissipative particle dynamics (DPD) method,62,63 which
is a particle-based hydrodynamics simulation technique (see

Appendix B for details). Solid walls are represented by frozen
DPD particles within a layer of thickness rc (the cutoff radius
for DPD interactions) with the same number density as that
for the DPD fluid. To prevent wall penetration by fluid particles,
a reflective surface is placed at the fluid–solid interface, where
bounce-back reflection of fluid particles is enforced. No-slip
BCs at the walls are imposed by the dissipative interaction
between fluid and frozen-wall particles, and through the
bounce-back reflection at the interface.

To restrict the motion of squirmers between the two walls,
particles within the squirmer discretization are subject to the
repulsive Lennard-Jones (LJ) potential

ULJðrÞ ¼ 4eLJ
sLJ
r

� �12
� sLJ

r

� �6� �
(6)

at the fluid–solid interface. Here, eLJ is the potential strength,
sLJ sets a characteristic repulsion length, and r is the distance
to the wall. Note that only the repulsive part of the LJ potential
is considered by setting the cutoff distance to 21/6sLJ. Excluded-
volume interactions between different squirmers are also
implemented through the LJ interactions, where r becomes a
distance between two surface particles belonging to distinct
squirmers.

Squirmers are submerged within a DPD fluid, and also filled
by DPD fluid particles due to their membrane-like representa-
tion. The membrane surfaces of all suspended squirmers serve
as a boundary separating DPD particles inside and outside of
the membranes. This is achieved through the reflection of fluid
particles at the membrane surfaces from inside and outside.
Note that the dissipative and random forces between the
internal and external fluid particles are deactivated, and only
the conservative force is employed to maintain uniform fluid
pressure across the membranes. To enforce the slip velocity usq

at the squirmer surface, the dissipative interaction (see Appen-
dix B) between the squirmer particles and those of the sur-
rounding fluid is altered as follows

FD rij
	 


¼ �gWD rij
	 


r̂ij � v�ij
� �

r̂ij ; v�ij ¼ vi � vj þ uisq; (7)

where r̂ij = (ri � rj)/rij, rij = |ri � rj|, ui
sq is the slip velocity at the

position of squirmer particle i, while j corresponds to an outer-
fluid DPD particle. Furthermore, the friction coefficient g
between fluid and squirmer particles is properly adjusted55 to
ensure the imposition of usq at the squirmer surface.

2.3 Simulation setup and parameters

The simulation setup corresponds to a domain of dimensions
L � H � L, where L = 28bz and H = 2.5bz (bz = 4 in simulations),
see Fig. 1(b). The number density of fluid particles is
nf = 320/b3

z, with a particle mass m = 1. The energy unit is
kBT = 1. Parameters selected for the DPD fluid (see Appendix B)

yield a fluid dynamic viscosity of Z ¼ 403:2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p �

b2z .
Each squirmer in simulations consists of Np = 1024 parti-

cles. Excluded-volume interactions between different squirmers
and between squirmers and the walls are implemented through
the LJ potential with parameters eLJ = kBT and sLJ = 0.125bz. The

Fig. 1 Schematic of the simulation setup. (a) Sketch of a spheroidal
squirmer model. The orientation vector e is aligned with the squirmer’s
major axis z, and bx and bz = 2bx denote minor and major radii of the
spheroidal shape. et and ez represent the local normal and tangential unit
vectors, respectively. (b) Several squirmers within a slit of thickness H. Note
that H 4 2bz, so that the squirmers can freely rotate within the slit and
form a two-layered structure. L is the size of the simulation domain in the
periodic dimensions perpendicular to the slit height.
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computed three-dimensional rotational diffusion coefficient
around the major axis of a spheroid without confinement is

DR ¼ 3:28� 10�4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p �
bz, which is close to the theoretical

prediction of DR ¼ 3:52� 10�4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p �
bz.

45 To present simu-
lation results, the half length bz of the semi-major axis is
chosen as a length scale, and the characteristic rotational time
tR = 1/DR as a time scale. In all simulations, the activity
parameter B1 is fixed at 56.8bzDR. We have verified that the
swimming velocity of a single squirmer is U0 = 45.5bzDR, in
agreement with the theoretical prediction.45 Using these values,
we can define a dimensionless Péclet number Pe = U0/(2bzDR) E
28.4. Furthermore, the Reynolds number Re = 2bzU0mnf/Z E
0.03 is small enough to eliminate possible inertial effects.

Different volume fractions f = 4Nsqpbxbybz/(3L2H) A
{0.18,0.35,0.44,0.56} are considered, corresponding to different
numbers of squirmers Nsq A {228,456,576,720}. The three
values of active stress b A {�5,0,5} represent simulation sys-
tems with pusher, neutral, and puller swimmers, respectively.
Finally, we also consider two values of the non-dimensional
rotlet dipole strength ~l = l/(b4

zDR) A {0,133.5}. For ~l = 133.5, a
single squirmer moves in a circular trajectory at a wall with a
radius of approximately 2bz. For comparison, the rotlet dipole
strength of ~l A {0,561.1} has been used in ref. 31 where
squirmers were confined to a single layer. All simulations are
first run for a time of at least 1.5tR to reach a steady state, and
afterwards various structural and dynamical characteristics of
the system are measured during the time 1.5tR.

2.4 Mapping to experimental systems

Squirmer parameters used in simulations can also be mapped
to the properties of real swimmers. In the far-field approxi-
mation, the hydrodynamic field of a microswimmer is domi-
nated by its force-dipole strength w = fdld/(8pZ),64–66 where fd

and ld are the characteristic force and length of the dipole. The
active stress b of a spheroidal squirmer can be expressed as45

b ¼ � w
U0 bz2 � bx2ð Þ

3t0 þ 1� 3t02
	 


coth�1 t0
� 


t0 � t02 � 1
	 


coth�1 t0
� 


2=3� t02 þ t02 � 1ð Þ coth�1 t0
:

(8)

Average properties of E. coli bacteria swimming in water
correspond to U0 = 29 mm s�1, fd = 0.42 pN, ld = 1.9 mm, bz =
1.5 mm, bx = 0.5 mm, and Z = 10�3 Pa s,54,61,65 resulting in
b E �3. Note that a direct comparison is possible only in the
far-field limit, while the near-field flow of each swimmer
depends on its geometric and propulsion details.

3 Results

In our investigation, we analyze the collective structural and
dynamical properties of swimmer ensembles in thin fluid films
as a function of volume fraction f and squirmer characteristics
of active stress b and rotlet dipole strength ~l. Snapshots of the

emergent structures are displayed in Fig. 2. We characterize
these phases through the analysis of cluster sizes and radial
distribution functions of the squirmers. Furthermore, the dis-
tribution of squirmers along the h-direction (perpendicular to
the walls) and their orientation are considered to distinguish a
two-layered arrangement with an average orientation within the
x–z plane from the stacked packing with the orientation
perpendicular to the walls. Finally, dynamical properties, such
as velocity distribution, and effective rotational and transla-
tional diffusivities, are computed to characterize squirmer
motility within collective states.

An important question for any two-layered structure is to
which extent the two layers interact with and affect each other.
The snapshots in Fig. 2 nicely demonstrate that the correlation
between the two layers strongly depends on volume fraction
and strength of the rotlet dipole. Without rotlet dipole, i.e.
for ~l = 0, the layer correlation is very weak for small f, but
becomes very significant for large f, where the clusters in the
top and bottom layers are essentially in registry. With strong
rotlet dipole, i.e. for ~l = 133.5, the situation is very different, as
there is hardly any visible correlation between the two layers.

Previous studies of structure formation of artificial and
biological microswimmers in two- and three-dimensional
systems1,2,31,67,68 report the existence of various phases,
including
� A gas of small clusters, where the distribution of swimmers

is homogeneous and dynamic clusters are formed by a few
swimmers;
� Large clusters or motility-induced phase separation

(MIPS), where the cluster size is often comparable with the size
of the entire system; such large clusters are nearly immobile;
� Swarming and flocking, which is characterized by the

collective locomotion of dense swimmer clusters with swirling
and streaming patterns.

A similar behavior is found in our system (see Fig. 2);
however, the possibility of the formation of two distinct layers
at the walls gives rise to novel structures and dynamics.

3.1 Structural properties

3.1.1 Cluster size distribution. The cluster-size distribution
function N(n) is calculated as

NðnÞ ¼ 1

Nsq
npðnÞ; (9)

where N(n) represents the fraction of squirmers belonging to
clusters of size n, and p(n) denotes the number of clusters of
size n. The distribution is normalized, such that

P
n

NðnÞ ¼ 1.

Different squirmers belong to the same cluster when the
nearest surface-to-surface distance ds between them satisfies
ds/bz o 0.25. The average cluster size hni is then:68

hni ¼
X
n

nNðnÞ: (10)

The cluster-size distribution is used to distinguish the
different collective phases21,68 mentioned above. For the gas
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of small clusters, N(n) exhibits an exponential decay, as
shown in Fig. 3(a) for f = 0.18. For MIPS or large clusters, a
bimodal distribution of N(n) is observed, with the second
peak at large n signaling the presence of large clusters, see
Fig. 3(b) and (c) for f = 0.35 and f = 0.56. Finally, swarming
can be characterized by a power-law decay of N(n) with an
exponential cutoff and without the presence of a distinct
peak.31,47 This implies a slow decline of cluster sizes over a
broad range, compared to the fast decay for a gas of small
clusters.

The described characteristics of different phases can be
extracted by fitting N(n) with the function47

f (x) = Ax�g exp�x/a, (11)

where A, g, and a are the fitting parameters. Table 1 presents
these parameters for different simulated conditions.

For f = 0.18, the simulated systems exhibit a homogeneous
gas-like phase, except for the case of pullers (b = 5) without
rotlet dipole (~l = 0), shown in Fig. 2(a). Here, the exponential
term dominates, as can be seen well in Fig. 3(a). At low packing
fractions of squirmers, there is a limited chance for squirmer
collisions, leading to a gas-like phase, compare also Fig. 2.
For b = 5 at f = 0.18, N(n) resembles a bimodal distribution,
indicating the existence of large clusters (n E 60), whose
formation is primarily governed by the attractive hydrodynamic
field around pullers.

Swarming-like behavior is observed in several cases at f =
0.35, characterized by the relatively large values of a and

Fig. 2 Snapshots of the emergent structures for different active stresses b, volume fractions f, and rotlet dipole strengths ~l. (a) Simulated structures for
~l = 0, f = 0.18 and 0.35, and bA {0,�5}. Squirmers in the upper (bottom) half of the slit are colored in orange (blue). See also corresponding Movies S1–S6 (ESI†).
(b) Squirmer structures within the upper and bottom layers of the simulated system for f = 0.35, b = 5, and ~l = 0. See also Movie S6 (ESI†). (c) Snapshots of the
simulated systems for ~l = 133.5, f = 0.35 and bA {0, �5}. See also Movies S7–S9 (ESI†). (d) Squirmer structures within the upper and bottom layers of the slit for
f = 0.35, b = 5, and ~l = 133.5. Squirmers belong to the upper (orange) or bottom (blue) layers, when the h-coordinate of their center of mass is in the upper or
lower half of the slit, respectively. See also Movie S9 (ESI†).
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moderate values of g A [0.4,0.7], indicating the dominance of
the power-law term in eqn (11). Note that for the cases of
neutral swimmers and pullers (without rotlet dipole), the value
of g is close to unity, and N(n) exhibits a bimodal distribution
in Fig. 3(b), suggesting the presence of a MIPS phase. For even
larger volume fraction f = 0.56, Fig. 3(c) shows a prominent
peak in N(n) at large n for all cases, which is the main
characteristic for the MIPS phase. This is also confirmed in
Table 1 through g values close to unity. At large packing
fractions, steric interactions between squirmers dominate due
to crowding, so that the differences in N(n) for different
swimming modes nearly disappear.

For squirmers without rotlet dipole (~l = 0), the swimming
mode affects their collective behavior when the volume fraction
is small enough, i.e. f �o 0:4. In this case, the local hydrody-
namic flow field generated by the squirmers is relevant for
cluster formation and dynamics, in agreement with previous

studies.31,38 However, when the rotlet dipole is activated (~l =
133.5), differences in N(n) for various active stresses b nearly
disappear, as displayed in the insets of Fig. 3. With rotlet
dipole, we obtain the gas phase at f = 0.18, swarming at f =
0.35, and MIPS at f = 0.56, independently of active stress – see
also Fig. 2(c). Note that the systems with f = 0.56 are very

crowded, and MIPS is more difficult to recognize for ~l = 133.5

in Fig. 2(c) than for ~l = 0 in Fig. 2(a). Additional simulations

(not shown) indicate that the suspension of squirmers with ~l =
133.5 transits from swarming to the MIPS at f E 0.4.

The average cluster size hni as a function of f is shown in
Fig. 3(d). For f \ 0.18, hni increases rapidly with increasing
volume fraction of squirmers for all b and l values. The
simulation systems with different active stresses result in a
similar range of average cluster sizes for both rotlet dipole
strengths.

3.1.2 Squirmer distribution between the walls. Fig. 4 shows
time-averaged distributions ph of the squirmers’ center-of-mass
position along the h direction between the two confining walls.
Note that the symmetry of the distributions is a result of time
averaging, while the number of squirmers at each wall might be
different at any instant of time. However, during the course of
the simulations, squirmers switch frequently between the walls
(see Section 3.2.4), and the localization of all squrimers at a
single wall has never been observed. The distributions in Fig. 4
indicate that the squirmers exhibit a distinct affinity for the
walls, especially in the case of pushers, as indicated by the
pronounced peaks at h/bz E �0.6. This phenomenon is pri-
marily attributed to the well-known wall-trapping effect, which

Fig. 3 Cluster size distributions for different volume fractions of squirmers. (a) f = 0.18, (b) f = 0.35, and (c) f = 0.56. The curves with different colors
represent various swimming modes: pusher with b = �5 (red), neutral with b = 0 (blue), and puller with b = 5 (green). The blue solid lines are the power-
law fits, while the black-dotted lines are the fits using eqn (11) with the parameters shown in Table 1. (d) The average cluster size for various conditions as a
function of volume fraction. The average cluster size is calculated using eqn (10). All plots are for the simulations without rotlet dipole (~l = 0), while the
insets show data from the corresponding simulations with ~l = 133.5.
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is on the one hand due to motion, steric interactions, and slow
reorientation,69–71 on the other hand due to hydrodynamic
attraction.65,66,72

Pushers (b = �5) exhibit a distinctive two-layered structure
with the orientation parallel to the walls, which is reminiscent
of E. coli behavior in in vitro observations.73,74 For pushers, the
far-field flow re-orients the squirmers parallel to the wall.65,66,72

Furthermore, the elongated spheroidal body of the squirmers
favors their orientation parallel to the walls.75,76 For pullers (b =
5), Fig. 4(a) show two small peaks at h/bz E �0.2 at small
volume fraction f = 0.18, which indicates a nearly perpendi-
cular orientation with respect to the walls [see also corres-
ponding conformations in Fig. 2(b)]. Note that the far-field flow
generated by pullers favors such a perpendicular-to-the-wall
orientation,65,66,72 while the spheroidal shape promotes
parallel-to-the-wall orientation. Thus, pullers in Fig. 4(a) show
their major peaks in ph at h/bz E �0.5, such that their most
probable orientation has about 40 degree angle with respect to
the walls [see also Fig. 5(a)]. ph for neutral swimmers at f = 0.18
is close to that for pushers.

At the higher volume fraction of f = 0.56, differences in ph

for the three swimming modes significantly diminish, and all
cases essentially show a two-layered structure, see Fig. 4(b).
Note that the two peaks in ph at h/bz E �0.6 become broader
than those for f = 0.18, which can be attributed to an increas-
ing importance of steric interactions at large volume fractions,
such that close packing introduces a larger deviation to the two-
layered structure. Insets in Fig. 4 demonstrate that the

activation of rotlet dipole mitigates the influence of active
stress on ph, in agreement with the results for the cluster-size
distribution in Section 3.1.1.

3.1.3 Squirmer orientation in the slit. The orientational
distribution function py(y) of the angle of the squirmer orienta-
tion vector e with the wall normal (h axis) are presented in
Fig. 5. A perpendicular orientation to the walls corresponds to
y = 0 and y = 180, a parallel-to-the-wall orientation to y = 90.
Fig. 5(a) shows that pushers and neutral swimmers with ~l = 0 at
f = 0.18 are primarily oriented parallel to the wall, in agreement
with the results in Fig. 4(a). In contrast, pullers show several
peaks at y E 201 and 1601 (small peaks) and y E 601 and 1201
(large peaks), which correspond to a nearly perpendicular-to-
the-wall orientation and a tilted orientation with about 401
angle to the walls, respectively [compare also snapshots in
Fig. 2(b)]. These results are consistent with the position dis-
tributions ph discussed in Section 3.1.2.

Fig. 5(b) shows py for a non-zero rotlet dipole (~l = 133.5) at
f = 0.18, which again demsontrates a significant reducuction of
differences between different swimming modes due to the
rotlet dipole. In particular, for all b, a single peak in py centered
around 901 is observed, confirming the preferred squirmer

Table 1 Parameters of the cluster size distributions, obtained from fitting
the simulation result with eqn (11), for various packing fractions f, active
stresses b, and dimensionless rotlet dipole strengths ~l = l/(bz

4DR). A ‘‘—’’
sign in the a-column indicates that the exponential term in eqn (11) is
omitted, so that the fitting function becomes f (x) = Ax�g. The last column
provides the classification of different simulation cases into the defined
phases

f b ~l A a g Phase

0.18 �5 0 0.33 5.07 0.19 Gas
0.18 0 0 0.26 13.1 0.57 Gas
0.18 5 0 0.09 — 0.49 MIPS
0.18 �5 133.5 0.32 7.1 0.4 Gas
0.18 0 133.5 0.31 7.61 0.43 Gas
0.18 5 133.5 0.34 8.55 0.54 Gas
0.35 �5 0 0.07 49.4 0.4 Swarming
0.35 0 0 0.1 — 1.1 MIPS
0.35 5 0 0.05 — 0.99 MIPS
0.35 �5 133.5 0.07 45 0.45 Swarming
0.35 0 133.5 0.07 72.5 0.58 Swarming
0.35 5 133.5 0.07 90 0.62 Swarming
0.44 �5 0 0.04 — 0.89 MIPS
0.44 0 0 0.02 — 0.93 MIPS
0.44 5 0 0.03 — 1.28 MIPS
0.44 �5 133.5 0.03 — 0.62 MIPS
0.44 0 133.5 0.03 — 0.69 MIPS
0.44 5 133.5 0.03 — 0.83 MIPS
0.56 �5 0 0.01 — 1.02 MIPS
0.56 0 0 0.03 — 1.64 MIPS
0.56 5 0 0.01 — 0.81 MIPS
0.56 �5 133.5 0.01 — 0.9 MIPS
0.56 0 133.5 0.01 — 0.94 MIPS
0.56 5 133.5 0.01 — 1.04 MIPS

Fig. 4 Distributions ph of the squirmers’ centre-of-mass position along
the slit height for volume fractions (a) f = 0.18 and (b) f = 0.56. The walls
are located at h/bz = �1.25. Colors indicate the swimming modes: pusher
with b = �5 (red), neutral with b = 0 (blue), and puller with b = 5 (green).
Main figures are for the simulations without rotlet dipole ~l = 0, while the
insets show the corresponding simulations with rotlet dipole ~l = 133.5.
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orientation parallel to the walls, as illustrated in Fig. 2(d). As
the volume fraction of squirmers increases, the dominant role
of steric interactions also leads to a diminished effect of
different swimming modes (even for ~l = 0) with the formation
of a two-layered structure.

The probability P> of squirmers to be oriented nearly
perpendicular to the walls is displayed in Fig. 6 for different
values of b as a function of f. The probability is computed by
integrating the orientation distributions over the ranges [0,251]
and [1551,1801], as indicated by the blue shaded areas in
Fig. 5(a). At low f, the probability of perpendicular orientation
to the walls is zero for pushers and neutral squirmers, while
P> E 0.11 for pullers. This simply confirms the tendency of
pushers and neutral swimmers to align with the walls, due to
their hydrodynamic interactions with the walls. Interestingly,
the majority of pullers does not have a perpendicular-to-the-
wall orientation, despite of such predictions for a single
puller.66,72 This is due to collective effects between pullers,
which will be discussed in Section 3.1.4 below.

As the volume fraction of squirmers increases, P> for pullers
decreases because steric interactions between squirmers
become dominant, forcing the formation of a two-layered
structure, as discussed above. For neural squirmers, P> first
increases with increasing f, but then closely follows P> for
pullers when f \ 0.4. For pushers, there is only a slight
increase in P> with increasing f. Nevertheless, we expect that
for large volume fractions f \ 0.6, orientational differences
between squirmers with various swimming modes essentially
disappear.

3.1.4 2D radial distribution function parallel to the walls.
To characterize the internal structure of the suspension of
squirmers along the walls, we compute the 2D radial distribu-
tion function

gðrÞ ¼ M

Nsq
2

X
i

X
jai

d r� rij
	 
* +

; (12)

where rij is the vector between two centers of mass of squirmer
pairs, and M = A/(2pr) is a normalization factor (A is the area of
the considered 2D plane) such that g(r) - 1 for r - N. Note
that g(r) is calculated in 2D within the x–z plane, where the
measurements are performed within the two layers (upper and
lower halves of the slit) separately. This is a reasonable simpli-
fication due to the prevalence of a two-layered structure as
shown in Fig. 4.

Fig. 7(a) presents g(r) for different swimming modes at low
volume fraction f = 0.18 and without rotlet dipole, ~l = 0. Only
the suspension of pullers with b = 5 exhibits pronounced peaks
in g(r), which represent the most frequent structural elements
illustrated in Fig. 7(b). The existence of structure for pullers,
but not for pushers and neutral squirmers, is primarily related
to the fact that pullers form large clusters already at f = 0.18,
while the other squirmer types yield a gas-like phase, see
Table 1. Interestingly, the x–y perspective plot in Fig. 2(b) shows
that pullers frequently form flower-like arrangements with one

Fig. 5 Orientational distribution py of squirmers, where the angle y is
between the swimmer orientation vector and the h axis (wall normal axis).
y = 0 and y = 180 correspond to the orientation perpendicular to the walls,
while y = 90 represent the orientation parallel to the walls, see the insets.
py is presented for f = 0.18 with the rotlet dipole strength (a) ~l = 0 and
(b) ~l = 133.5. The three different b values correspond to pushers (b = �5),
neutral swimmers (b = 0), and pullers (b = 5). The shaded blue areas in (a)
mark the angle ranges [0,25] and [155,180] used to compute the fraction of
squirmers with a perpendicular orientation to the walls.

Fig. 6 Probability P> of squirmers to be aligned with the h axis (i.e., wall
normal vector) for different volume fractions and swimming modes
at ~l = 0. Data for pushers with b = �5 (red), neutral squirmers with
b = 0 (blue), and pullers with b = 5 (green). The probability is calculated by
integrating the orientation distributions in Fig. 5(a) over the ranges [0,25]
and [155,180] degrees.
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or two squirmers oriented perpendicular to the walls and
surrounded by several ‘‘petal’’ squirmers [also illustrated in
Fig. 7(b)]. These structures form due to the attractive flow field
generated by pullers, which slide along the walls until they
collide and form the flower-like structures through the

attractive hydrodynamic interactions. When the rotlet dipole
is turned on at f = 0.18 [see the inset in Fig. 7(a)], the
suspension of pullers becomes gas-like and thus looses its
internal structure.

Fig. 7(c) shows g(r) at the high volume fraction f = 0.56,
where several peaks are observed for all squirmer types. At this
high volume fraction, all squirmer suspensions are in MIPS
phase (see Table 1), so that large clusters are present with an
internal fluid structure. Furthermore, due to the dominance of
steric interactions, radial distribution functions are again very
similar for different b, indicating that the internal structure is
nearly independent of the swimming mode at large f.

3.1.5 Angle between two neighboring squirmers. Previous
simulation studies45,46 for a monolayer of squirmers in a thin
fluid between two walls have analyzed the angles between pairs
of squirmers for different swimming modes. Theers et al.45

report that pairs of pullers tend to adopt a fixed relative angle
after their initial encounter, which is equal to approximately
451. The stable angle formation does not occur for neutral
squirmers and pushers. Similarly, Kyoya et al.46 suggest that
neutral squirmer pairs tend to align with each other, puller
pairs assume a stable angle between them in the range of 01 to
901, and pusher pairs do not show any order and swim away
from each other after a brief encounter.

We calculate distributions pa of the relative angle a between
orientation vectors of two neighboring squirmers within a
defined cutoff radius as

pa ¼
1

NsqC

X
i

Xrj�rjj j	3bz

jai

d a� aij
	 
* +

; (13)

where and C is the normalization factor so that the integral of
pa is equal to unity. Fig. 8(a) shows the distribution pa for
various b at f = 0.18. pa for pullers displays two peaks located at
a E 631 and a E 1131, where the former value is not far from
451 found for a monolayer of squirmers in ref. 45. Notably, the
peak at a E 631 is quite prominent, since it represents
the flower-like arrangements illustrated in Fig. 7(b). However,
the distribution for pullers spans a wide range of relative
angles. Neutral squirmers and pushers yield broad and nearly
flat distributions, indicating that no stable structures are pre-
sent. The existence of two small peaks at a E 251 and a E 1551
suggests that pushers and neutral squirmers tend to swim
parallel to each other, which is consistent with previous pre-
dictions for a squirmer pair.58,77

The distribution of pa for an active rotlet dipole with ~l =
133.5 is shown in Fig. 8(b). For all b values, pa is centered at
a E 901, indicating that hydrodynamic interactions favor the
perpendicular orientation between squirmer pairs. Note that
for pushers, the central region in pa is flatter than that for
pullers and neutral squirmers.

3.2 Dynamical properties

3.2.1 Effective rotational diffusion coefficient. To charac-
terize the rotational properties of squirmers, we compute their

Fig. 7 (a) 2D radial distribution function g(r) of squirmers with f = 0.18
and ~l = 0, for pushers (red), neutral squirmers (blue), and pullers (green).
The locations of peaks of g(r) for pullers correlate well with local structural
arrangements illustrated next to the peaks. The inset presents the corres-
ponding g(r) functions for ~l = 133.5 and the same f. (b) Snapshot of the
simulated system for f = 0.18, ~l = 0, and b = 5, which illustrates the most
frequent squirmer structures, see also Movie S3 (ESI†). (c) g(r) of squirmers
for f = 0.56 and ~l = 0. The legend for the curves is the same as in (a).
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effective rotational diffusion coefficient DR, obtained by fitting
the auto-correlation function of squirmer orientation

he(t)�e(t + Dt)i = e�DRDt, (14)

where h� � �i denotes the average over all squirmers and all times
in the simulated system. Here, the exponential decay applies
for small Dt t 1=DR. Fig. 9 shows the dependence of DR on f,
b, and l. In most cases, DR/D0

R 4 1, indicating that the
rotational dynamics of squirmers within a suspension is
enhanced in comparison with the rotational diffusion D0

R of a
spheroid in an unconfined system. This is due to hydrodynamic
interactions between squirmers, and their collisions during

motion. Only for the case of b = 0, f = 0.56, and ~l = 0, rotational
diffusion is reduced, DR o D0

R, which is likely due to the
crowding of squirmers at large volume fractions [compare
Fig. 2(a)].

Fig. 9(a) (~l = 0) shows that the enhancement of rotational
diffusion coefficient for pushers is significantly larger than
for pullers and neutral squirmers. This occurs due to
repulsive hydrodynamic interactions between pushers,45,46

which leads to the enhanced scattering between squirmers.

The dependence of DR on f first exhibits an increase, followed
by a maximum and subsequent decrease. With increasing f,
the collision rate between squirmers increases, resulting in the
enhancement of DR. However, at large f, squirmer clustering
and the transition to the MIPS phase take place [compare
Fig. 2(a)], so that the effective rotational diffusion is signifi-
cantly slowed down.

Noteworthy is the difference in DR for ~l = 0 and ~l = 133.5 in
Fig. 9(a) and (b), respectively, where the enhancement for
squirmers with rotlet dipole is at least a factor three larger
than that without. Interestingly, squirmers with ~l = 133.5
switch between the two layers (i.e. migrate from one wall to
the other) much more frequently than squirmers with ~l = 0,
which will be discussed in Section 3.2.4. The ability of inter-
change between the two layers increases significantly the
effective rotational diffusion. The DR curves for ~l 4 0 are
similar for different swimming modes b, in agreement with
the structural characteristics for suspensions of squirmers with
the rotlet dipole, as discussed in Section 3.1 above.

3.2.2 Mean-square displacement. The mean-square displa-
cement of squirmers for various conditions are shown in
Fig. 10. The motion is ballistic at short times, with a quadratic

Fig. 8 Distribution pa of relative angle between two neighboring squir-
mers for different swimming modes at f = 0.18. a is the angle between
orientation vectors of a pair of squirmers, whose separation is smaller than
3bz. (a) pa for the case of no rotlet dipole (~l = 0), with the insets illustrating
configurations of squirmers at the two peaks with aE 631 and aE 1131. (b)
Relative angle distribution for ~l = 133.5.

Fig. 9 Effective rotational diffusion DR as a function of f for (a) ~l = 0 and
(b) ~l = 133.5. DR is obtained by fitting auto-correlation functions of
squirmer orientation using eqn (14), and normalized by the rotational
diffusion D0

R of a spheroid. Data for pushers (red), for neutral squirmers
(blue), and for pullers (green).
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time-dependence, and diffusive at long times, with h(r(t) �
r(0))i2 B t, as expected. For f = 0.18 and ~l = 0, pullers yield
the lowest effective diffusivity, followed by neutral squirmers
and pushers, because the suspension of pullers at these con-
ditions is already in the MIPS phase (see Table 1). The effective
diffusivity of squirmers at f = 0.56 is lower than at f = 0.18 due
to crowding and the formation of large clusters.

The transition from the ballistic to the diffusive regime for
~l = 0 in Fig. 10(a) occurs around tD0

R C 0.2–0.5. Theoretically,
this transition should take place around tDR C 1,78 which is
consistent with the values of DR/D0

R C 2 in Fig. 9(a). Note that
the ballistic-to-diffusive transition for squirmers with rotlet
dipole occurs at tD0

R \ 0.1, which is also consistent with the
values of DR/D0

R C 10 in Fig. 9(b). Furthermore, mean-square-
displacement curves for ~l = 133.5 in Fig. 10(b) are similar to
each other for various b at a fixed volume fraction, confirming
once more that the rotlet dipole nearly offsets the effects of
different swimming modes.

3.2.3 Average squirmer speed. To further characterize the
mobility of squirmers for different conditions, we also study the
average squirmer speed %v. For a single squirmer i, the instan-
taneous swim speed is calculated as

vi(t) = |ri(t + Dt) � ri(t)|/Dt, (15)

with time interval Dt = 0.022/DR (significantly smaller than
1/DR), during which a free squirmer moves a distance bz. %v is
then obtained by an ensemble and time average as a function of
the volume fraction f.

As shown in Fig. 11, pushers are the most mobile, displaying
the largest average speed %v among all squirmer types. For the
case without rotlet dipole in Fig. 11(a), %v decreases with
increasing f due to crowding at large volume fractions and
the transition to MIPS or clustering regime. For all studied b
values, the average speed of squirmers is below U0, which is the
speed of a single squirmer in an unconfined system.

The average speeds of squirmers with rotlet dipole in

Fig. 11(b) are larger than those with ~l = 0. Furthermore, the

decay in %v for ~l = 133.5 with increasing f is slower than for ~l =
0. Interestingly, for f t 0:4, the average speed of squirmers
with rotlet dipole is slightly larger than U0, indicating motility
enhancement due to interactions with the walls. An increased
mobility near walls was reported previously for pushers without
rotlet dipole.46,76,79 The results in Fig. 11 confirm that the
presence of rotlet dipole enhances the mobility of squirmers
and delays the transition to MIPS as a function of f.

Fig. 10 Mean-squared displacement of squirmers for f = 0.18 (dashed
lines) and f = 0.56 (solid lines) (a) without the rotlet dipole ~l = 0 and (b)
with the rotlet dipole ~l = 133.5. Curves for pushers are in red, for neutral
squirmers in blue, and for pullers in green. Black dotted lines indicate
power-laws Bt2 in the ballistic regime and Bt in the diffusive regime.

Fig. 11 Average squirmer speed %v as a function of f for (a) ~l = 0 and
(b) ~l = 133.5. The speed is normalized by the swimming speed U0 of a
squirmer in an unconfined system. Data for pushers (red), for neutral
squirmers (blue), and for pullers (green).
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3.2.4 Migration between the two layers. Due to the dom-
inance of two-layered squirmer structures for nearly all condi-
tions (see Fig. 4), an interesting quantity is the switching
frequency of individual squirmers between the layers. The
switching frequency is inversely proportional to the squirmer
residence time tres defined as the time during which a squirmer
remains within one of the layers before switching to the other
one. Fig. 12(a) and (c) presents the distributions ptres

of resi-
dence times for f = 0.18 and f = 0.56, respectively. For short
residence times, ptres

exhibits a power-law behavior which is
shown by the power-law fits with exponents indicated. Note
that the distributions ptres

have very long tails, but the data for
long residence times are noisy due to limited statistics. For f =
0.18, distributions of tres appear to be similar to each other for
different swimming modes, at least for short residence times.
For f = 0.56, the differences in ptres

are clearly visible, and
pushers yield the lowest exponent in comparison to neutral
squirmers and pullers.

In fact, it is more informative to look at average residence
times htresi, which are shown in Fig. 12(b) and (d) for simula-
tions without and with rotlet dipole, respectively. Pushers dis-
play the lowest values of htresi in comparison to the other two
swimming modes, regardless of the rotlet dipole strength. This
means that pushers have the highest switching frequency,
which is consistent with previous studies45,57,79–81 showing that

the residence of pushers near a wall is unstable due to local
hydrodynamic interactions which orient them slightly away
from the wall. The average residence time increases with
increasing f for all squirmer types due to significant crowding
at large f, which limits the migration between the two layers.
Pullers possess the largest average residence times, which is
consistent with their preferred orientation toward a wall (see
Section 3.1.3) as well as with the formation of stable flower-like
structures (see Section 3.1.4). It is likely that switching between
the two layers for pullers is facilitated by squirmer collisions,
rather than occurring spontaneously.

Finally, for squirmers with a rotlet dipole (~l = 133.5), average
residence times are about one order of magnitude lower than
for squirmers without rotlet dipole. Therefore, the presence of
rotlet dipole significantly destabilizes the residence of squir-
mers near walls, and thereby enhances their switching fre-
quency between the two layers. It is also consistent with an
enhanced motility of squirmers with rotlet dipole, as shown in
Fig. 9 and 11.

4 Discussion and conclusions

In this study, we have performed mesoscale hydrodynamic
simulations of a confined system of squirmers in a thin fluid

Fig. 12 Distributions of squirmer residence times tres within one of the layers for (a) f = 0.18 and (c) f = 0.56 without rotlet dipole (~l = 0). Symbol colors
represent different swimming modes: pusher with b = �5 (red), neutral with b = 0 (blue), and puller with b = 5 (green). The lines are power-law fits with
the exponents indicated. Insets in (a) and (c) show the distributions ptres

for simulations with rotlet dipole (~l = 133.5). Average residence times htresi as a
function of volume fraction for different squirmers (b) without rotlet dipole and (d) with rotlet dipole.
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film between two parallel walls, in order to better understand
the intricate interplay between hydrodynamic and steric inter-
actions and their impact on the collective behavior of squir-
mers. In contrast, previous studies that considered
hydrodynamic interactions between swimmers have mainly
focused on quasi-2D systems (i.e., a monolayer of
squirmers)31,38,39,46–49 or 3D systems with periodic boundary
conditions.37,50–53 The considered film thickness is large
enough to allow the formation of two-layered structures. This
situation is of interest when the formation of a biofilm, which
starts from a monolayer of bacteria, proceeds toward the
development of further layers. In particular, an interesting
question is whether bacteria can spontaneously leave the
surface layer.

By systematically varying relevant parameters, such as the
volume fraction of squirmers, their active stress, and their
rotlet dipole strength, we show the emergence of different
structures and phases (Fig. 2). As expected, at low volume
fractions of squirmers, the system is in a gas-like phase. As f
is increased, a swarming state is observed, with the formation
of mobile clusters with a wide range of sizes. The elongated
shape of squirmers is essential for the emergence of these
swarming clusters, as it provides an alignment interaction,
which has been observed previously for self-propelled rods,
spheroids, and semi-flexible filaments.22,38,82 Swarming clus-
ters form at intermediate values of f for pushers and squirmers
with the rotlet dipole. The absence of the swarming state for
pullers with ~l = 0 suggests that contractile hydrodynamic
interactions between swimmers suppress the formation of
swarming clusters.

At large enough volume fractions, a single large cluster of
squirmers emerges, surrounded by a few mobile swimmers (see
Fig. 2(a) at f = 0.44 or 0.56), indicating formation of MIPS.
Pullers exhibit MIPS already at low volume fraction, f E 0.18,
while neutral squirmers and pushers require larger volume
fractions, in agreement with previous studies.38,46 Our simula-
tions also suggest that hydrodynamic interactions suppress
motility-induced clustering and phase separation, in agreement
with previous reports38,40 for particles with aspect ratios not far
from unity. Note that the suspension of pushers at f = 0.56
does not show a transition to the state of active turbulence,
because the strength of the induced force dipole is likely too
weak.25,29

An interesting aspect of our investigation is the interplay of
simultaneous hydrodynamic and steric interaction both
between squirmers and of squirmers with the confining walls,
and its effect on the collective behavior. In particular, pullers
favor a nearly perpendicular orientation with the walls, result-
ing in the formation of flower-like clusters [Fig. 2(b)] at low
volume frations, where pullers first slide along the surface, and
upon collisions form a structure with a single puller oriented
nearly perpendicular to the wall surrounded by a few petal
pullers. This leads to the nucleation of clusters for pullers
already at low f, promoting MIPS at low f. Pushers and neutral
squirmers favor an orientation parallel to the walls, which does
not significantly hinder their mobility. Therefore, pushers can

frequently switch between the layers of a two-layer structure,
substantially delaying the formation of large clusters with
increasing f. Thus, a colony of pusher-like swimmers (e.g.,
E. coli) should be able to spontaneously switch from an initial
monolayer structure to a multi-layered configuration. Recent
experiments74 suggest that E. coli bacteria also employ tum-
bling (i.e., active turning due to the rotation reversal of one of
its flagella) to leave a surface, indicating that the aspect ratio of
a swimmer is very important for its interaction with the wall. In
our simulations, bz/bx = 2, which is somewhat smaller than that
for E. coli.

For all studied cases, there is a clear preference for the two-
layered structure. Only pullers at f t 0:25 show partial pre-
ference for the perpendicular-to-the-wall orientation due to
their hydrodynamic interactions with the walls. Pushers and
neutral squirmers display mostly parallel-to-wall alignment.

Our comprehensive simulations reveal that the the effect of
a rotlet dipole is to offset the effect of active stress, character-
ized by b, to a large extent. Even at relatively low volume
fractions, the presence of a rotlet dipole of dimensionless
strength ~l a 0 nearly eliminates differences in the behavior
of pullers, neutral squirmers, and pushers. With the rotlet
dipole, squirmers assume a parallel-to-the-wall orientation
and therefore, remain mobile up to moderate volume fractions,
frequently switching between the two layers. This enhancement
of layer switching can be attributed to the rotational flow field
of rotors, which implies an induced motion around their center
of mass. Furthermore, the rotlet dipole leads to a circular
trajectories of squirmers near the walls,83,84 which further
contributes to the mobility of squirmers within the confine-
ment. In our study, a single squirmer with ~l = 133.5 circles at
the wall with a radius of approximately 2bz. However, the
circling motion near a wall is difficult to detect at higher
volume fractions due to frequent squimer–squirmer scattering.
As a result, the effective rotational diffusivity of squirmers with
rotlet dipole is approximately one order of magnitude larger
than that for squirmers with ~l = 0. Thus, swimmers with rotlet
dipole are expected to spontaneously initiate multi-layered
structures within a biofilm.

Finally, we would like to discuss some limitations of our
study. Despite the fact that the squirmer model can produce
various swimming modes, the near-field flow of real micro-
swimmers, like bacteria, is unavoidably species-specific, arising
from body shape, the geometry and dynamics of propelling
flagella, and the ability to navigate (e.g., E. coli tumbling).
Furthermore, steric interactions between microswimmers
including their flagella are likely different from interactions
between idealized spheroidal shapes. However, modeling of
swimmers with explicit appendages84 is computationally expen-
sive, significantly limiting the number of simulated swimmers
in a study. Therefore, the direct comparison of our simulation
results with experiments requires some calibration, including
the aspect ratio of squirmers, and the strengths of active stress
and rotlet dipole. Furthermore, biofilms in vivo are generally
bound by a solid wall and an air–water interface, in contrast to
the two solid walls in our study. The air–water interface is
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deformable and such simulations are beyond the scope of our
work. However, our setup with the two non-slip walls may
capture qualitatively the collective behavior of bacteria in
porous media and microfluidic devices.85–87 Future work
should also consider thicker films to bridge these results with
those from three-dimensional periodic systems.37,50–53
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Appendices
Appendix A: Vesicle-like squirmer model

Each squirmer surface is represented by Np = 1024 particles
connected by springs into a triangulated network. Shear elas-
ticity of the squirmer membrane is supplied by the spring
potential55

Ubond ¼
kBTlm

4p

3x2 � 2x3

1� x
þ kp

l
; (16)

where x = l/lm A (0,1), l is the spring length, lm is the maximum
spring extension, p is the persistence length, kp is the force
coefficient, and kBT is the energy unit defined by the tempera-
ture T in the simulated system. The curvature elasticity that
provides bending resistance is implemented through the dis-
cretisation of the Helfrich bending energy88 as

Ubend ¼
k
2

X
i

si Hi �Hi
0

	 
2
; (17)

where k is the bending rigidity, si is the area corresponding to
vertex i in the membrane triangulation, Hi is the mean curva-
ture at vertex i, and Hi

0 is the spontaneous curvature at vertex i.
The mean curvature is discretized as Hi ¼ ni �

P
jðiÞ

sijrij
�

sirij
	 


,

where ni is the unit normal at the vertex i, si ¼
P
jðiÞ

sij rij
�
4, j(i)

spans all vertices linked to vertex i, and sij = rij(cot y1 + cot y2)/2
is the bond length in the dual lattice with y1 and y2 being the
angles at the two vertices opposite to the edge ij in the dihedral.
The spontaneous curvature Hi

0 is set locally after the triangula-
tion of the spheroidal surface of the squirmer.

The area and volume conservation constraints are repre-
sented by the potential55

Uaþv ¼
ka A� Atot

0

	 
2
2Atot

0

þ
X

m21...Nt

kd Am � Am
0

	 
2
2Am

0

þ
kv V � V tot

0

	 
2
2V tot

0

; (18)

where ka, kd, and kv are the coefficients of global area, local area
and volume conservation constraints, respectively. A and V are
the instantaneous area and volume of the enclosed membrane,
Atot

0 and Vtot
0 are the targeted global area and volume which are

defined by the spheroidal shape. Am is the area of the m-th
triangle (or face) within the triangulation, while A0

m is the
targeted value. Nt is the number of triangles within the trian-
gulated surface.

The membrane-like representation of squirmers has the
shear modulus m0 = 1.44 � 105kBT/b2

z, the bending modulus
k = 250kBT, the area-constraint coefficients kd = 1.6 � 103kBT/b2

z

and ka = 8 � 103kBT/b2
z, the volume-constraint coefficient kv =

3.2 � 104kBT/b3
z, the total area Atot

0 = 5.36bz
2, and the total

volume Vtot
0 = 1.05bz

3. In all simulations, kBT = 1 and bz = 4.

Appendix B: Modeling fluid flow

To model fluid flow, we employ the dissipative particle
dynamics (DPD) method,62,63 which is a mesoscopic hydrody-
namics simulation technique. DPD is a particle-based Lagran-
gian method, where each particle represents a small fluid
volume. DPD particles i and j interact through three types
(conservative, dissipative, and random) of pairwise forces
given by

FC(rij) = aWC(rij)r̂ij, (19)

FD(rij) = �gWD(rij)(r̂ij�vij)r̂ij, (20)

FR rij
	 


¼ sWR rij
	 


xij r̂ij
. ffiffiffiffiffi

Dt
p

; (21)

where a, g, and s are the force amplitudes, rij = ri � rj is the
relative position vector, rij = |rij|, r̂ij = rij/rij, and vij = vi � vj is the
velocity difference. xij = xji is a symmetric Gaussian random
variable with zero mean and unit variance, and Dt is the time
step. All forces act within a cutoff radius rc and vanish beyond
it. The conservative force controlls fluid compressibility, while
the dissipative and random forces form a thermostat, so that
the DPD fluid has an isotropic temperature T. Thus, FD and FR

are related through the fluctuation–dissipation theorem63 as

s2 = 2gkBT, WD(rij) = [WR(rij)]
2. (22)

The weight functions are defined as

W rij
	 


¼WR rij
	 


¼ 1� rij
�
rc

	 
s
; rij o rc;

0; rij 
 rc;

�
(23)

with an exponent s. For the conservative force, WC(rij) = W(rij)
with s = 1.

Time evolution of each DPD particle follows the Newton’s
second law

dri

dt
¼ vi; mi

dvi

dt
¼
X
jai

FC rij
	 

þ FD rij

	 

þ FR rij

	 
	 

; (24)

where mi is the mass of particle i. Time integration is per-
formed using the velocity-Verlet algorithm.

DPD parameters for the interactions between fluid particles

and between fluid and wall particles are a = 200kBT/bz, g ¼
80

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p �

bz (m = 1 in all simulations), s = 0.15, and rc = bz/4.
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Furthermore, friction coupling of squirmers to fluid flow is

performed using DPD parameters a = 0, g ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p �

bz, s =
0.1, and rc = 0.175bz. The time step for integration is

1:25� 10�3bz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
.

Acknowledgements

We thank Roland G. Winkler for numerous discussions related
to the study. We acknowledge funding from the ETN-PHYMOT
‘‘Physics of microbial motility’’ within the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 955910. The
authors also gratefully appreciate computing time on the super-
computer JURECA89 at Forschungszentrum Jülich under grant
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11 T. Bäuerle, R. C. Löffler and C. Bechinger, Nat. Commun.,

2020, 11, 2547.
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108, 168301.

68 D. Levis and L. Berthier, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2014, 89, 062301.

69 G. Li and J. X. Tang, Phys. Rev. Lett., 2009, 103, 078101.
70 G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer and
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