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Fluid objects bounded by elastocapillary membranes display intriguing physical properties due to the
interplay of capillary and elastic stresses arising upon deformation. Increasingly exploited in foam or
emulsion science, the mechanical properties of elastocapillary membranes are commonly characterised
by the shape analysis of inflating/deflating bubbles or drops held by circular needles. These impose
complex constraints on the membrane deformation, requiring the shape analysis to be done using
elaborate numerical fitting procedures of the shape equations. While this approach has proven quite
reliable, it obscures insight into the underlying physics of the problem. We therefore propose here the
first fully theoretical approach to this problem using the elastic theory for a membrane with additive
contributions of capillary and Hookean-type elastic stresses. We exploit this theory to discuss some of
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the key features of the predicted pressure-deformation relations. Interestingly, we highlight a breakdown
of the quadratic approximation at a well-defined value of the elastocapillary parameter depending on
the shape of the reference state, which is regularized by the non-quadratic terms. Additionally, we
provide an analytical relationship which allows experimentalists to obtain the elastocapillary properties of
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1 Introduction

The adsorption and cross-linking of polymers, proteins or
particles at liquid interfaces creates “membranes” whose defor-
mation energy combines a capillary-type response from the
interface with a solid-like elastic response from the adsorbed
layer."” The coupling of these two energies leads to intriguing
properties of objects created from these “elastocapillary mem-
branes”, whose reliable description is of interest from a scien-
tific point of view and for applications. For example, such
membranes can completely stop the ageing of foams or
emulsions,’ and they can play an important role in controlling
the response of micro-capsules.! The properties of these mem-
branes can also teach us about the interactions of their
constituents.">”

The theoretical description of elastocapillary membranes
evokes many fundamental questions, the first being how
exactly the capillary and elastic stresses are coupled within the
membrane.’”® Often, a simple additive relation is assumed,
neglecting the likely coupling of both contributions in most
experimental systems. However, this simplifying assumption
has been proven to describe reasonably well a wide range of
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a membrane by simple measurement of the height and the width of a deformed bubble (or a drop).

experiments®® and provides an important first step to grasping
the properties of such membranes.

Due to their increasing importance, different experimental
techniques have been developed to characterise the often non-
linear visco-elastic properties of elastocapillary membranes.
One of the most commonly used approaches relies on the
analysis of the shape changes of a drop or bubble held by a
circular needle upon inflation/deflation,®'®"? as sketched in
Fig. 1a and b. While this problem can be treated easily in the
Young-Laplace framework for interfaces with liquid-like elas-
ticity, the addition of a solid-like elasticity makes this problem
intrinsically non-linear due to the constraints imposed on the
deformation by the needle, acting like a non-deformable
inclusion.”®' Due to the complexity of the resulting stress-
deformation relation, currently used approaches for the extrac-
tion of the visco-elastic properties of the interfacial membrane
require delicate numerical fitting by shape equations.®®'*
While this has proven fairly successful from an experimental
point of view, it obscures the underlying physical picture and is
also prone to numerous experimental artefacts.

We therefore treat here for the first time in a fully theoretical
approach the simplest possible configuration of this problem:
as sketched in Fig. 1a and b, an initially spherical bubble (or
drop) of radius R, is inflated/deflated on a circular needle of
radius R,. The fact that we neglect gravity corresponds either to
experiments with density-matched liquids or to sufficiently
small systems in which the elasto-capillary stresses outweigh
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Pint,o = Pext + APy Pint = Pext + AP

(c) A=AlA,=1.2

a=0.01
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Fig. 1 Sketch of the investigated configuration and associated key quan-
tities. (a) The spherical cap shape of radius Rg corresponds to the reference
state of the elastocapillary membrane, when Pinto — Pext = APo = 29/Ro.
The needle radius R, and the angle 0, are related by sin6, = R,/Ry (for
future reference, we indicate also , the surface rotation angle at the
needle). (b) For AP # APg, the internal volume is different due to the
motion of all surface elements from their position r to ¥ = r + u(r). The axial
symmetry of the deformation implies that |u| depends only on 0 and
the torsionless hypothesis implies that u L e, (with e, = e, x e).
(c) Predictions of typical bubbloon (droploon) shapes for different values
of the elastocapillary number o and an area stretch 2 = A/Ag = 1.2, noting
the associated normalised pressure change ¢ = (AP — APg)/APq. Dashed
contour = (initial) reference shape; dotted contour = spherical shape
passing through the apex and the needle of the deformed bubbloon.
The actual shape of the bubbloon (droploon) is at the boundary between
the light and dark grey regions. H, and R, are the height and the equatorial
radius of the bubbloon.

those created by gravity. We consider a homogeneous, isotropic
and Hookean-type membrane of thickness ¢ and bulk shear
modulus G. This membrane is assumed to have a non-zero and
constant interfacial tension y with the bubble (drop) and
negligible interfacial tension with the surrounding liquid. This
allows us to define an elastocapillary number

«=27, @

which compares the relative importance of elastic and capillary
contributions upon deformation. While this seems a crude
simplification, it allows to capture the most important features
of this elastocapillary problem.

Using quadratic theory, we predict analytically the full shapes
and the associated pressure-deformation relation of what we call
“bubbloons” (elastocapillary bubbles) or “droploons” (elastoca-
pillary drops)."® We restrict the description to small deformations
which preserve the axial symmetry of the reference spherical cap,
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and exclude any wrinkling of the structure which arises experi-
mentally when elastocapillary capsules are deflated.

Examples of shapes obtained by our theory for an overall
interfacial area increase of 1 = A/A, = 1.2 for different elastoca-
pillary numbers o are shown in Fig. 1c together with

AP
=g 1, @

which is the the normalised change in the pressure difference
from the reference state value AP, = 2y/R,, where the elastic
stresses are zero.

Two of the key properties of these systems are directly visible
in these examples:

(1) For the same magnitude of inflation, for « < 0.5, the
pressure jump AP is negative, while for o > 0.5 it is positive.

(2) While for a small elastocapillary number « the overall
shape remains spherical, for larger capillary numbers, the
bubbloon (droploon) expands increasingly in the vicinity of
the needle.

In the remaining article, we introduce the main theoretical
relations and results before discussing in detail some of the
specific features created by the interplay of elasticity and
capillarity.

The obtained theoretical relations do not only provide
important insights into the underlying - sometimes counter-
intuitive — physics of the problem but they also provide gui-
dance for reliable experiments together with analytical expres-
sions which can be fitted directly to experimental results to
extract the main properties of the elastocapillary membrane.
To this end, we provide a simple theoretical relation which
allows extracting the elastocapillary number of an in/deflated
balloon (droploon) simply by measuring its change in height
and width.

For simplicity, we will only talk about elastocapillary bub-
bles (i.e. bubbloons). However, all derived theory is equally
valid for elastocapillary drops, i.e. droploons.

2 Definitions
2.1 System definition

We consider the experimental setup sketched in Fig. 1: a
membrane is attached to the extremity of a circular needle of
radius R, and acts as a boundary between an external chamber
at pressure P and an internal chamber at pressure P;,.. Both
chambers may be filled with a liquid, or one of them may be a
gas. The separating membrane is of ‘“elastocapillary type”,
meaning that it displays both elastic and capillary properties:
as an elastic membrane, it has a reference state, for which its
elastic stresses are zero. We assume that this reference state is a
spherical cap of radius R, as sketched in Fig. 1. Away from
this reference state, the interface stores an elastic energy E.,.
As a capillary interface, it has also a constant interfacial tension
7 and an energy term E, = yA, proportional to the interfacial
area A.

This journal is © The Royal Society of Chemistry 2024
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An important feature of our model is to assume that the
interfacial and elastic energies sum up to define the membrane
free energy

Em = L] + VAY (3)

an approach which has been successfully exploited in the
past.”® Microscopically, this kind of model may correspond
to an interface where a cross-linked and percolated network of a
polymer (with interfacial affinity) covers the whole surface but
with a small overall surface density, like a three-dimensional
fisherman’s net covering the interface. In this case, the
membrane displays both elastic and capillary properties, and
y will be approximately constant and close to that of the liquid.

2.1.1 Elastic energy. The elastic (stretching) energy E is
derived from Hooke’s law adapted for a thin incompressible
membrane®®

Ey ~

0/7
| 4TCGZR02 [ df sin 9(8992 + 8¢¢2 + 8998¢¢), (4)
quad. .

0

where the elastic part of the membrane is modelled as a quasi-
two-dimensional, incompressible elastic medium of bulk shear
modulus G and thickness ¢. We neglect the bending energy
which is usually negligible for membranes with curved refer-
ence states in regimes where no wrinkles form. The quantities
ggo and ¢4, are two diagonal elements of the strain tensor in
spherical coordinates. Assuming axisymmetric torsionless
deformations of the membrane, the displacement field is given
by u(0,¢) = — r=u,(0)e, + uyg(0)ey where 7 is the current position
of a physical element of the membrane having been displaced
from the original position r = Rye(0,¢) (see Fig. 1b and Fig. S1
in the ESIt). The strain tensor elements (ggg,644) are expressed
in terms of the components of u: we define first their linear
components by

&g = [y + upcot 0]/R, (5)
b0 = [+ 4] o )

where u’ = du/d6. A pivotal quantity is = [u] — ug| /Ry which -
in the limit |u|/Ry, « 1 - is also the rotation angle of the
material element normal. The three quantities (&4,89,/) enter
the definitions of

1 1
£go = €9 + 5802 + 5',027 @)
1
Epp = Ep + 584,2. (8)

The nonlinearities in &gy and ¢4, (With respect to u) have
therefore a purely geometrical origin."”

2.1.2 Surface energy. The capillary energy term of the
elastocapillary membrane retains by assumption the usual
expression A, with A being the interfacial area. A priori, any
parametrisation of the surface is possible, but the presence
of the elastic component gives the natural parametrisation

This journal is © The Royal Society of Chemistry 2024
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(0,¢) — r+ u and hence the expression

On
E, =74= 2m/ROZJ dOsin 0(1 +e4)\/ (1 +e0)* 92 (9)

0

2.1.3 Gibbs functional. The total free energy of the
membrane is E. + y4, and its variation stems from the work
of pressure forces applied on each side of the membrane: 6E,; +
y0A = (AP)V;. Here V; is the interior volume of the bubbloon,
virtually closed horizontally at the orifice of the needle (gray
line in Fig. 1a).

As a result, the equilibrium shape of the bubbloon is given
by the minimisation of the Gibbs energy E. + yA — (AP)V; with
respect to the variations of the displacement field u(0), with the
constraint #(0,,) = 0. The latter has a physical origin: the elastic
membrane is clamped at the needle orifice, prohibiting local
displacement. This problem has hence the structure of a
Lagrange minimisation which can be tackled using the techni-
ques of variational mechanics.f For this approach, it is con-
venient to use the strain tensor components (gg(0),¢,(0)) instead
of the displacement field u(0) as the varying field, since it
happens to simplify greatly the equations. This is made possi-
ble by noting (see Section 3 in the ESI) that the variations of V;
are also those of

1

2R, [ . 2 3 |
== Jo dOsin0(1 + &) (1 +§£0 - 55,/,),

(10)

although V; # V;. We therefore define the Gibbs functional as
Ylepe] = Eel + yA — (AP)V;. This is a functional of (g4(0),e4(0))
only, because { can be written as

¥ =&y — 4. cot 0, (11)

Ae = &9 — &g (12)

For a clearer physical picture, it is relevant to switch from (s,,80)
to the (equivalent) fields (¢4,4;). Combining eqn (4)-(10), we
define the Lagrangian % (¢4, ), 4;,0) (note the absence of 4,
as a consequence of the Oz-translational invariance of the
energy) associated with ¢ using the formula

9”
g — 2TtyR02J d0.7 <s¢, &y, A, 0>7 (13)
0
with
< 20
M = ?[8()()2 + 8¢¢2 + 8008¢¢] + (1 + 8¢) v 1+ 2¢ep9
(14)

2 3
_5(1 + é)(l +8¢)2(1 +8¢ +§Ag>7

where « is the dimensionless elastocapillary number defined in
eqn (1) and ¢ is the normalised pressure change defined in

eqn (2).
i With the minor difference that the variation of the profile occurs with nonzero

variation of the displacement field at 6 = 0, contrary to the usual scheme. But the
Lagrangian has a factor sin 0 which makes the discrepancy inconsequential.

Soft Matter, 2024, 20, 4707-4714 | 4709
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3 Results

3.1 Quadratic approximation

A quadratic expansion of the Lagrangian given using eqn (14)
with respect to the displacement field # and in the limit
¢ « 1yields

gquad 200

=42+ Qo — D(es + 4,
sin 0 3 -+ (2 )(Sd) + '%)

2 (15)

+ 5 - E(20 + A1)

Notice that the last term assumes implicitly that |u| = O(&).
Even though it is well-known'® that this quadratic approxi-
mation predicts wrong results for purely elastic, clamped
membranes, due to a slightly singular behaviour of { in the
vicinity of the needle (namely y’'(0) oc |0 — 0,] "), it will be
shown that the capillary energy term removes this singularity,
and allows a purely quadratic approach to the elastic limit.
To solve eqn (15), it is interesting to use the Routh method,"”
which consists in performing only incompletely the Lagrangian
to Hamiltonian transformation. More precisely, the (quadratic
expansion of the) Routh Hamiltonian is defined by

f%quad = P¢8/4, - gquad (&b: 3;)7 ViPs 0)1 where Py = 851/, rg)quad =

Y sin 0 is the conjugate momentum. From eqn (15), one there-
fore obtains

%quad 1, 2
= l — 2 C 2 G
sin 0 Zw +( w)eg + 288y
(16)
ST PR I L
317° 4a 8’
W=ycotd+ (1 — 2a)g, + & (17)

The Routh equations of motion are the usual Hamiltonian
equations, supplemented by a Lagrange equation for 4., which

gives readily 4, :4—W. Via a suitable canonical change of
o
variables (details given in Section 5 in the ESIY), we arrive at

a linear equation for

w”+-w%mta_-(14-a+coee)w::0. (18)

2
Note that this equation is independent of £, so y is only globally
proportional to ¢ (see eqn (19) and (22)), as a consequence
of the quadratic approximation. Its solution, regular (and
vanishing) at 0 = 0, is given in terms of the associated Legendre
function,'® namely

P! (cos
0O) = bt (19)
V:—%—i-\/%—a, (20)

where ,, = /(0,,) is the rotation angle of the membrane at the

1
needle, as sketched in Fig. 1b. Note that v € ) +iRifa > 3/4,
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in which case the Legendre function (termed also Mehler or
conical function) is still real-valued, and the evolution of y(0)
with o is altogether smooth. ¢4 is obtained once y is known
(¢f Section 5 in the ESIY)

B 4 P,(cos0) 3cotO\ y¥(0)
=TT 24 (P,‘,(cos 0) 22 ), +i’ (21)
200

where P, = F°. ¢, is obtained via the last Routh equation 4, =

3
@W and eqn (17). It can be verified (¢f. Section 5 in the ESIt)

that 4,(0) = ¢(0) — &,(0) = 0, as required by the rotation
symmetry at the apex 0 = 0. The problem is solved (at the level
of the strain tensor components) if one determines . This is
achieved using eqn (21) and the fact that ¢4(0,) = 0, imposed by
the clamping of the elastic membrane. From eqn (21) and the
general properties of the Legendre functions, we obtain

1 3
Vo _ ( +ﬂ) {P,,(cos 0,) 3 -1

— —cot0,
Pl(cosB,) 2u o

(22)

¢ 1 —2a

This normalised bending angle at the needle can be inter-
preted as a susceptibility coefficient, namely the ratio of the
response over excitation intensity upon inflation/deflation. In
Fig. 2a are plotted the values of the ratio |/,/¢| for various
values of o and 0, (we remind the reader that sin(6,) = R,/R).
In this graph, the dashed lines correspond to negative values of
|,/&|. First, it can be noted that all curves tend to zero for 0,, -
180° which is expected, because in this limit, the bubbloon
becomes a sphere and the tilt angle at the needle is necessarily
zero. Second, for very small values of o, the bubbloon behaves
almost like a bubble with a non-elastic interface and its
response to a pressure increase ¢ depends on 0,: for 0, < 90°
(lens-shaped membranes), the spherical cap experiences a low-
ering of its radius for £ > 0 which corresponds to an outward
rotation at the clamping, ie. a negative ¥, (dashed curves).
Reciprocally, for 0, > 90° (horseshoe-shaped membranes) and
o « 1, the bubble deflates for ¢ > 0 in order to increase its
curvature and accommodate the Young-Laplace law, yielding
W, > 0 (solid curves), as can be checked for instance in the
curve for o = 0.01 in Fig. 2a. At the transition between the two
behaviours - which arises at a critical angle 0 - the linear
regime is no longer defined: the normalised bending angle

[Walé| diverges as o |6, — (9;|71, since the bracketed term in
eqn (22) vanishes linearly at the transition. For the sake of
completeness, Fig. 2b shows the reciprocal behaviour of |i,/¢|
when 0, is fixed and o varied.

At or near the critical angle 6} («), the quadratic approxi-
mation is no longer valid, since the predicted value of /¢
diverges. This region is theoretically investigated in Section 3.3.
In the inset of Fig. 2b is plotted 0} (c), which shows that on
approaching o = 1/2, the critical angle converges toward 180°.

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 (a) Magnitude of the normalised bending angle at the needle
Wnlél = W(0,)/E, as a function of 0, (in degrees), for various values of
the elastocapillary number o. The dashed branches correspond to negative
values, while the solid branches are positive. For < 0.5, there is a critical
angle ¢; where the limiting value of y,/¢ is not defined, due to the
vanishing of the bracket term in (22). The limiting case « = 0.5 (eqn (27))
is shown with black dots. Notice that for o > 0.5, the positive domain of
Wnl€ no longer exists. (b) [y,/&| as a function of a/a* for various values of 0,,.
The dashed parts of the curves correspond again to negative branches.
Inset: 07 («) (in degrees). The reciprocal function defines a*(0,).

3.2 Stress tensor elements and displacement fields

All other physically relevant quantities can be computed from
Y(0). Of interest are the membrane (2D) excess stress tensor
elements g3, = gy, — 7 in the polar (0) and the azimuthal (¢)
direction. These are represented in Fig. 3 for the example of 0, =
120° (horseshoe-shaped) and various values of « after normal-
isation by y¢. They are calculated from the expressions

X 2
6;7 = ;(280 + S,b) +&p — &0, (23)
O—CX 2a

;f = ?(2817, + 89) + &y — &p- (24)

The limit of vanishing elasticity (o« = 0) gives excess stresses
0.4 which are non constant but whose sum is zero, as the local
mechanical equilibrium only requires o4 + o4 = 2y everywhere
for o = 0. For o = 0.2, the main effect of the elastic component is
to shift the typical value of the total excess stress to a negative

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Normalised excess 2D stress tensor elements [g; — yl/y¢ in the polar
(j = 0, dot-dashed line) and azimuthal directions (j = ¢, dotted line), for
different values of o for a reference shape with 60,, = 120°. Left ordinate
(blue curves): « € {0,0.2,0.5}. Right ordinates (red curves): o« € {10,50}.

value. This comes from the elastic response following the
surface decrease due to the contraction of the membrane.
In the example shown in Fig. 3, the critical value of o* defined
by 0*(a*) = 0, (see the inset of Fig. 2b) is «* ~ 0.32 and crossed
when passing from o = 0.2 to « = 0.5. This crossing explains the
inversion of roles of ¢* and o3 in the blue curves of Fig. 3 at o =
0.5: at the needle, o5 = (42/3 — 1)gy(0,,) whereas ¢ = (20/3 +
1)eg(0,,). For oo < 0.5, the prefactor of ¢y(0,,) in the former (resp.
latter) expression is negative (resp. positive). As a result, the
decreasing behaviour of oy(6) for o* < o < 0.5 is explained by
the fact that g(0,) is here positive because the response of the
bubbloon to a pressure is “balloon-like”, i.e. it inflates when
¢ > 0. Notice that, for o > 3, it can be checked that ¢§(0,) >
a4(0,) > 0, a reinversion which corresponds to what is
observed in the red curves in Fig. 3.

For o » 1, the stress fields are mainly influenced by the
elastic part of the energy. The present quadratic approximation
is therefore unable to describe satisfactorily these regimes,
because for the strict elastic case, the harmonic expansion fails
at describing the singularity caused by a nonanalytical & VAP
behaviour of y,, described by the Foppl-von Karman theory
(see Section 7 in the ESIY).

The displacement fields (u,(0),uy(0)) can be computed from
the knowledge of ¢ 4(0) and eqn (ESI S77), which can then be
used to compute the bubbloon shapes. Some results are shown
in Fig. 1c for 0,, = 120° and different values of the elastocapillary
number o. The higher the elastic modulus of the membrane,
the more strongly the shape deviates from a spherical cap for a
given deformation. To quantify this asphericity in the case of a
horseshoe-shaped bubbloon, we define a susceptibility

cos 0,
—H, — R
= (ORe\ 0Ha _cos0, — 170 (25)
“~ \0H,) ,OR. R. — Ry
Soft Matter, 2024, 20, 4707-4714 | 471
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P!(cos0,) — 2?Otcot (%) (1 —P,(cos0,))
= 0 ) (26)
Pl(cos0,) + 5 tan(0,)(P,(0) — P,(cosb,))

where 0H, is the variation of the vertical distance of the apex from
the base of the bubbloon, and 0R. is the variation of the equatorial
radius of the bubbloon (half the width of the bubbloon), as
sketched in Fig. 1c. y is normalized by (OR./0H,), = cos 0,/(cos 0,
— 1), the value of this ratio for pure bubbles (¢ = 0). These
quantities can be measured easily in experiments. If the bubbloon
retains a spherical shape, y = 1, whilst 0 < y < 1 if the needle
clamping imposes an oblate deformation away from a spherical
sector. The predicted variation of y with o is shown in Fig. 4 for
different 0,. This curve allows using y to measure the value of «,
provided « is neither too large nor too small (notice in eqn (26)
that o is present explicitly and implicitly, via v). This susceptibility
has the experimental asset of being simple and not requiring the
measurement of the pressure difference. For large o, y tends to
cos 0,/(cos 0,, — 1), accounting for an isotropic inflation of the sole
upper part of the membrane, coherent with what a purely elastic
Foppl-von Karman approach would give (see Section 7 in the
ESIt). A precise quantitative study of the parameter range o« > 1
building on a perturbation of the pure elastic theory is left for
future work. Notice however that the combined limits ¢« — o0,
0, — m do not commute: at fixed «,  tends smoothly to 1 for 0,, —
n, namely when the system becomes a sphere attached to a single
point. The not entirely elastic membrane is insensitive (in its
response) to this singularity. If now one considers first the elastic
limit « — oo, and only afterwards the limit 6, = « limit, one
realises that y — 1/2, showing that the singular attachment,
which imposes ¢4(r) = 0 (in contrast to the homogenous, nonzero
value of the strain tensor elements for a inflated “free” sphere),
has a profound, non local impact on the elastic response of the
sphere, a consequence of the long range of the elastic interac-
tions. The value 1/2 corresponds roughly to an object inflating
isotropically, but only in its upper half.

08
07
0.6
> 05
04
03
02

0.1

0 . . . .
102 107 10° 10! 10% 10°

[0

Fig. 4 Susceptibility parameter y (egn (26)) as a function of «, for various
(horseshoe) bubble shapes. The plotted equations are given in (26).
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3.3 Nonanalytical response close to the critical angle
0, ~ 0,

The presence of a shifted critical angle 6, ~ 0; is of theoretical
and experimental interest, since it realises indirectly a measure
of the elastocapillary number o. It is therefore interesting to
theoretically characterise the response of the bubbloon to a
nonzero small excess pressure ¢ near this critical angle. In the
light of the arguments provided in the preceding paragraphs, one
expects that the displacement field scales as /¢, and the actual
response magnitude is fixed by the first non-quadratic order of
the Hamiltonian. Using the so-called Hamiltonian perturbation
method detailed in Section 8 in the ESI,f we extended the
quadratic theory to calculate the correct finite value of the
amplitude ,, in the vicinity of 6. Eqn (ESI S57) of the ESI}
creates a continuous matching between the quadratic result y,, oc
&, far from 607, and the y,, o /€ saturation in the vicinity of 6. To
illustrate the difference between the purely quadratic result and
the Hamiltonian perturbative result, we plot in Fig. 5a both results
for |y,/&|, for different values of £, and o = 0.4.

It can be seen that for { — 0 the theory accounting for both

O an regimes merges to the quadratic divergin
&) and O(+/|¢]) regi g he quadratic diverging

theory (in black). The proper scaling representing the vicinity of
0, is shown in the inset of Fig. 5a, namely a neat collapse of the
curves is observed for y, /v/€ plotted against (0, — 0;) /+/Z. This
comes from the fact that the leading term of ,, in the vicinity of
0; is proportional to [~ + sgn(c)v/o? + 1] where ¢ is a scaling
variable proportional to (6, — 0;) /v/€ for 0, ~ 0. This leading
term predicts a strict sign reversal of y,/\/Z on passing 0,
which is not observed for ¢ = 10~ for instance. This is due to
the fact that the next-to-leading order O(¢) is also taken into
account in eqn (ESI 577), a term which is continuous at 6 and
not completely negligible at & = 1072,

Another striking feature must be noted: while any sign of ¢ is
possible in the quadratic regime, i.e. the membrane can be
probed in inflation and deflation, this is not the case in the
vicinity of the avoided singularity: as explained in more detail
in the ESIt (see eqn (ESI 54)-(ESI 57)), the proper O< |§|)
regime is possible only for ¢ having the sign of a quantity
constructed with the cubic terms of the Gibbs energy. Note that
this restriction on the sign of ¢ cannot be shown in Fig. 5a,
because only /¢ is plotted. For the parameters of Fig. 5a, only
positive values of ¢ are allowed on this O(v/€) branch, but this
sign cannot be predicted a priori for other parameters, since it
depends on the integral of eqn (ESI 541) whose sign cannot be
ascertained on general grounds. We checked that for o < 0.27

negative ¢ values are associated with this 0( \5|> regime, and

positive for higher o. This is coherent with the o« — 0 limit,
where 0% ~ 90°, and for which only negative pressure differ-
ences are allowed, since the bubble is at its maximum curva-
ture. Note that for o # 0 a tiny regime of the opposite sign for &
does exist for 6, distinct but close to 6, with a maximal

accessible value for || oc (0, — 0;)2, probably too narrow to

This journal is © The Royal Society of Chemistry 2024
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Fig. 5 (a) [yal/¢ versus 0, for o = 0.4. The weakly non-quadratic theory

(WNQ) is plotted for several values of £ For comparison, the quadratic
theory is plotted in black, and corresponds to the limit £ — 0 of the WNQ
theory. The divergence at the maximum for ¢ — O arises because

¥ (0;) o< VE. Inset: y, /VE versus (0,(°) — 0,) /€ for « = 0.4 (same color
code). (b) For « = 0.4, evolution of |y,|/v/E with & The negative ¥, are
dashed. Notice that the sign of & cannot be negative in this critical region.

be observable. In contrast, the nature of the transition near
o ~ 0.27 is interesting and left for a future work.

Fig. 5b shows how, at constant 0,, the leading order O(+/€)
and the next order O(¢) are mixed when 0, is close to 0 and ¢ is
varied. First, it must be stressed that at precisely 07, the curve is
not constant, because a O(¢) term is provided to the expression
(ESI 571) by the next-to-leading order in the correspondence
between y and the canonical coordinates (see eqn (ESI 19) in
the ESIt). As a result, the common behaviour of all curves at
large ¢ is affine (what the semilog representation hides some-
what), decreasing for the dashed curves, and increasing for the
solid ones. This splitting according to the sign of 6, — 07 comes
from the fact that far from the immediate vicinity of 0}, y,, is oc
&sgn(é2,). By the way, another experimental signature of
whether an experiment takes place at 6, — 0, > 0 or the oppo-
site, beyond the sign of /¢, is given by the monotony of the
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curves shown in Fig. 5b: a non monotonous evolution of y, /v/&
with v/ would be unambiguously associated with 6, — 6% < 0.
Finally, one notices that when ¢ — 0, , / V€ is returning to
zero for all cases but 0, = 0. These curves are the most relevant
from the experimental point of view, since in rising bubble (or
pendant drop) experiments, 6, and o are both fixed by the
initial makeup of the bubbloon, and the control parameter of
the essays being indirectly ¢ via the volume control.

3.4 The exceptional case a = 1/2

For o = 1/2, the quadratic theory simplifies somewhat, due to a
cancellation of the quadratic terms with respect to g4. As a
result, one obtains from eqn (16) and the boundary conditions

W(0)/¢ = ~2tan], (27)
ep0(0)/¢ = lncos%;%tanzg—k Cy, (28)

(the minus (resp. plus) for ¢, (resp. g)), where C, is such that
&4(0,) = 0. The limit 0, — 180° is clearly singular, as a result of
contradictory constraints imposed on the bubbloon: on the one
hand, this limit re-establishes the spherical symmetry, where
&9 = &4 = constant. On the other hand, the clamping boundary
conditions impose &4 = 0 at  — . Since they are fundamentally

incompatible, this entails a divergence of & (6,) / ¢ for 0, —

180°. As a result, according to eqn (11), two cases are possible:
either y(0,)/& ~u.(¢,)/¢ diverges as well, or 4,(0,)cot0, ~
up(0,) cot0, compensates the divergence of ¢, and y(0,). The
latter case always occurs except for o = 1/2. For o < 1/2, the
behaviour of i, is bubble-like (/¢ — 0") whereas for o 2 1/2 it
is balloon-like (,/¢ — 07). This rather complicated and con-
voluted behaviour near (o = 1/2,0, = 180°) may complicate the
analysis of experiments carried out in this parameter range.
Interestingly, o = 0.5 is particularly relevant for foam and
emulsions science. Often called the “Gibbs criterion”, it
assigns the critical value of the elastocapillary number beyond
which the interfacial elasticity is strong enough to counter-
balance interfacial tension and prohibit Ostwald ripening."®*

4 Conclusion

We analysed the mechanical response of thin elastocapillary
membranes framing initially spherical caps clamped on circu-
lar needles with no internal elastic stresses in their reference
state. The energy of the membranes was assumed to be the sum
of a capillary term proportional to the deformed interfacial area
and an elastic term at its Hookean limit. It is important to
mention that this additivity together with a constant interfacial
tension is a simplified physical assumption which in actual
cases could have to be refined.

We considered the linear regime where only quadratic terms
can be kept in the effective Hamiltonian of the problem and
showed that this elastocapillary quadratic theory yields bona
fide solutions, in contrast with the purely elastic capsules where
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the inclusion of non-quadratic terms is necessary (Foppl-von
Karman theory). However, we noticed for elastocapillary num-
bers o = 3Gt/y < 1/2 the systematic presence of ‘“‘exceptional”
horseshoe-shaped reference states around which the quadratic
theory fails. Despite a completely different origin, the response
of , (rotation angle at the needle) is also proportional to the
square root of the excess pressure, very much like the purely
elastic capsules (of all shapes). We showed how to compute the
actual response of i, in these cases. It is interesting to note that
the actual value of v, /\/¢ at the singularity involves explicitly
an integral over the lowest-order non-quadratic term, which
could provide an experimental probe of the beyond-hookean
properties of elastocapillary membranes.

Where the quadratic theory is valid, we propose a very
simple susceptibility parameter y oc JH,/0R., defined as the
ratio of the response of the base-to-apex distance H, to that of
the equatorial radius R, normalised by the value of the pure
bubble. For all shapes of the initial bubbloons (i.e. all values of
0,), it offers a one-to-one correspondence with the elastocapil-
lary number and gives an efficient estimation of « without the
need of complex shape or pressure measurements (provided
the underlying physical assumptions are correct). Considering
the precision of modern experiments, this verification should
be reasonably straightforward. A similarly simple approach was
suggested by Hutlzer at al.>' to measure the surface tension of
purely liquid interfaces on a bubble or drop deformed by
gravity. It should be noted that for these measurements the
near-hemispherical horseshoe geometries are the most sensi-
tive (see Fig. 4) and that particular care needs to be taken to
start with a stress-free reference state.

Finally, the elastocapillary membranes for which ¢ — o
should have a specific analytical treatment to match correctly
the Foppl-von Karman solution of the pure elastic membrane.
We showed that the susceptibility parameter y tends to the
correct elastic limit for « — oo, but a detailed study of the
mechanical equilibrium of the near elastic elastocapillary cap-
sules still needs to be carried out.
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